355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Волков » Тайны открытий XX века » Текст книги (страница 24)
Тайны открытий XX века
  • Текст добавлен: 7 октября 2016, 19:23

Текст книги "Тайны открытий XX века"


Автор книги: Александр Волков


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 24 (всего у книги 38 страниц)

Огурец объявляет войну

Когда нидерландский ботаник Марсель Дикке проводил опыты с бобами, он заметил странный факт. Растения, пораженные клещами, взывали о помощи – приманивали хищных насекомых, естественных врагов клещей. Во время отдельных опытов выяснилось, что хищники вообще не проявляют интерес к добыче, пока расстояние до нее велико. Но как только клещи начинали поедать листики бобов, хищники заметно настораживались и вскоре бежали к жертвам. Что же полошило их?

Чтобы ответить на этот вопрос, пришлось приглядеться к бобам. Оказалось, в момент нападения на них клещей поверхность листьев выделяет смесь различных ароматических веществ: главным образом, это – терпеноиды. Почуяв их запах, хищные насекомые немедленно спешат навстречу. Марсель Дикке и его коллеги сделали вывод, что бобы с помощью этих веществ приманивают своих «телохранителей», и те защищают их от врагов.

Эти опыты вызвали огромный интерес. Прежде мало кто полагал, что растение способно на такую сложную реакцию. Однако вскоре стало ясно, что данный случай вовсе не единичный. Сейчас известно уже более двадцати пяти видов растений, готовых вызвать себе «охранников». Все они научились изъясняться на языке насекомых, химией сигналов спасая себе жизнь. Среди них, этих «крикунов и горлопанов», такие известные нам растения, как помидоры, огурцы, кукуруза. При появлении вредителей они мобилизуют целые отряды насекомых. Те же только рады; теперь им не надо подолгу рыскать в поисках добычи: в остром лучике запаха та видна, как при свете прожектора.

Многие растения не только защищают поврежденные вредителями части, но и заботятся о сохранении здоровых еще листьев и ветвей. Всеми своими частями они начинают заранее приманивать себе защитников: нетронутые ткани растений тоже вырабатывают ароматические вещества.

Но ведь не только гусеницы и жуки вредят листьям растений. Возьмите гвоздь и продырявьте мякоть листа – кого будут есть хищники, если придут на помощь? Острие гвоздя? А они и не шевельнутся! Не полетят и не поползут, как бы ни чувствовал себя раненый росток. Ученые проводили опыты: кололи, царапали, прищемляли листья, подражая вредным насекомым, однако растение терпело, но молчало – не звало никого на помощь. Оно слишком дорожило дружбой с хищными насекомыми и не обманывало их. Если некого было есть, оно не завлекало их – иначе в следующий раз не придут! В наших садах и огородах изо дня в день стараниями «зеленых артистов» как будто разыгрывается притча о мальчике-пастухе и волках. Не зови понапрасну друзей, и они останутся друзьями! Анализируя ароматические вещества, выделенные растениями, ранеными кнопкой, иглой или ножом, ученые не обнаружили ни следа тех веществ, которые привлекают хищных насекомых.

Хищная оса напала на кладку яиц, отложенных жуками-листоедами  
При нападении насекомых-вредителей вяз зовет на помощь хищных насекомых – на тыльной стороне его листьев появляются капельки нектара

Как же растение заметило, что повредило его листья? Как отличило гусеницу от ножа? Очевидно, «растения могут различить стерильный скальпель и ротовой аппарат гусеницы», – говорит итальянская исследовательница Петиция Маттьяччи. Иначе этот феномен не объяснить.

Чтобы истолковать происходящее, ученые попробовали смазать слюной гусеницы надрез, оставленный скальпелем. Внезапно все переменилось. Растение стало посылать совсем другие сигналы. Капельки слюны оно принимало теперь за фигуру насекомого. Оно путало гусеницу с выделяемым ею секретом.

Этот пышный страстоцвет растет в одном из тропических лесов Коста-Рики. Бабочка-геликонида – главный враг этого растения

Между тем стало ясно, что растения догадливее, чем мы думаем. Стоило лишь мотыльку отложить яйца на листьях вяза, как дерево начинало беспокоиться, не дожидаясь, пока выползут вредные гусеницы. Оно заранее вопило на своем химическом языке. Еще не выросли те гусеницы, как за ними пришла их смерть.

Еще находчивее страстоцвет, произрастающий в Центральной Америке. На его листьях появляются наросты, напоминающие яйца насекомых. Когда бабочка-геликонида прилетит, чтобы отложить потомство, она увидит, что здесь уже появился чей-то «инкубатор». Гусеницы этой бабочки поедают друг друга, поэтому откладывать сюда яйца нет никакого смысла. Старшие пожрут младших. Мотылек летит прочь, на другое растение. Страстоцвет изловчился и обманул своих врагов.

Акация приманивает муравьев и нектаром, и наростами на листьях – те богаты белком

Любопытный случай произошел в конце 1980-х годов в Южной Африке, где невзрачные акации сумели дать бой многочисленным антилопам куду и победили их. Люди не были безучастными свидетелями этой войны и всячески помогали антилопам, но те гибли одна задругой. Фермеры ЮАР были напуганы внезапным падежом куду. Мясо этих животных пользовалось большим спросом в стране, особенно у коренного африканского населения, а витые рога охотно покупали туристы. На здешних фермах все чаще разводили куду, содержа их в огороженных вольерах, и вот без видимой причины антилопы одна за другой стали гибнуть. Что же было виной: голод, отравление, эпидемия?

Зоолог Воутер ван Ховен исследовал содержимое желудков умерших антилоп. Нет, на первый взгляд, они умерли вовсе не от голода, не от жажды, не от паразитов или заразных болезней. Все очевидные причины отпали. Лишь два года спустя ученый догадался, что погубило антилоп. Открытие, как это часто бывает, явилось Делом случая. Ван Ховен заметил, что жирафы в парке никогда не задерживаются возле одной и той же акации. Они пощиплют немного листву и минут через десять переходят к другому деревцу, непременно двигаясь против ветра.

Жирафы, понял ученый, боятся отравиться! Так же поступают и антилопы. Однако их собратья, запертые в вольере, поневоле глодали одни и те же деревца и кусты. Им некуда было деться. Новые вскрытия показали, что в организме умерших антилоп было очень много танина – вещества, которое защищает растения от поедания их животными. Листья акации, почуяв беду, выделяют смертельно опасную дозу танина. Сигналом к тому бывает резкое покачивание листьев. Как только антилопа дернет за ветку, «процесс пошел». Если животное не прервет своей трапезы, оно отравится. Желудок куду не может переварить листья с таким содержанием танина. Они остаются в организме. Бедные антилопы умирали от голода с набитым до отказа желудком.

Бывает, что растения прибегают к услугам «профессиональной армии». Так, различные виды акаций, произрастающих в Мексике, словно заключают пакт о взаимопомощи с муравьями, поят-кормят их сладким нектаром, а в ответ ждут помощи в сражениях с врагами, причем одни акации приглашают муравьев на постой, непрестанно подкармливая их рать, а другие – это более древняя тактика – зовут на помощь, когда их листья кто-то тронет. Тогда струится нектар. Его капли, как горсти золотых монет, разбросанных встревоженным государем, приманивают солдат.

Если голодная коза продолжит щипать листву, – а в жарком, засушливом климате Мексики листья акаций ей сущее лакомство, – то тут же почувствует боль, ее язык обожгут впившиеся в него муравьи. После таких кислотных атак нескоро коза в следующий раз отважится пожевать аппетитную пищу.


Цветочный парфюмер

Итак, растения, эти безмозглые былинки и бревна, могут думать? Воистину велики твои чудеса, о природа! До сих пор считалось, что память и интеллект, умение учиться и размышлять были дарованы лишь человеку и животным. Мир растений был этой благодати лишен. Но что бы мы ни думали о них, они, оказывается… думают о себе. В их поведении отчетливо видна мысль. Никто не заставлял и не научал их обманывать врагов, они же пускались в сражение, доверяя одной смекалке. Хрупкие, неподвижные, безрукие организмы растений придумывали ловушки, в которые угодят их враги. Очевидно, их поведение – результат долгого приноравливания к окружающему миру. Процесс этот длился миллионы лет.

Долгое время считалось, что растения вряд ли что замечают вокруг себя, ведь у них нет органов чувств. Камень, металл,

гипс… Этот бездушный перечень вроде бы логично продолжало дерево. Однако в последние годы мнение биологов о мире растений разительно переменилось. Они взывают о помощи; они болтают с клопами и клещами; они видят, замечают, думают – они воспринимают внешний мир и общаются с ним. Им дарован язык ароматов, недоступный нашему обонянию. Лишь оттого они молчаливы, что к их языку мы абсолютно глухи. Животных мы еще слышим, но не понимаем; растения мы просто не понимаем.

Иное дело – насекомые. Это – прирожденные «парфюмеры»; они улавливают малейшие дозы ароматических веществ – перед их чутьем пасуют приборы. Вот почему им понятны любые химические «вскрики» растений. «Шорох и шепот» запахов для них что громовые удары.

Однако современная техника, хоть мы и укорили ее сравнением с нюхом инсектов, позволяет «подслушать» довольно громкие разговоры растений и даже изучить их лексикон. Так, растения, атакованные вредителями, не просто вопиют: «Беда! У меня беда!», но и докладывают, что за враг на них напал. Для каждого вредителя у них свой букет запахов. Так, опыты с хлопчатником показали, что он выделяет одни вещества, когда его поедает долгоносик, и совсем другие, когда на него нападет точильщик. Хищные насекомые знакомы с этим словарем и потому спешат на помощь, когда на листьях растения появилась их излюбленная добыча.

Кукуруза подмечает даже, какого возраста личинки, пожирающие ее листья. Чем они моложе, тем больше ароматических веществ выделяет растение. Вот как ученые объясняют эту тактику. Старые личинки скоро окуклятся и перестанут причинять вред. Когда мотыльки вырастут, они и вовсе будут питаться лишь нектаром и пыльцой. А вот маленьким гусеницам надо набираться сил; им только дай волю… Против этих «молодых хулиганов» растение спешно ищет подмоги.

Итак, на какие бы уловки ни шли насекомые, растения пока сильнее. Если бы было наоборот, то Земля напоминала бы выжженную пустыню. Сейчас же вся она покрыта зеленым ковром трав и зеленым шатром деревьев. И те и другие умеют постоять за себя. Они скорее докличутся до любой готовой помочь букашки, чем будут безропотно терпеть одну оргию за другой.

Нам тоже есть чему поучиться у растений. Если мы разучим команды, которыми растения загоняют к себе «на работу» хищных насекомых, то сумеем перехитрить вредителей. Зачем опылять грядки и сады химикатами, если можно позвать «хищников»? Это и эффективно, и – для нас – безвредно.

«Вот так мы, может быть, выиграем битву с вредными насекомыми», – говорит Марсель Дикке. По его мнению, с помощью селекции или генетических манипуляций можно повысить стойкость многих культурных растений – этих неженок, изводимых вредителями. Нам надо научить их тому, что они позабыли и что умеют дикие формы растений, – самостоятельно защищать себя от вредителей. Когда они научатся этому, о пестицидах можно будет забыть.

В одном из самых радостных стихотворений Артюра Рембо есть такие строки: «Первое приключенье: на тропинке, осыпанной холодными, тусклыми искрами, мне поклонился цветок и назвал свое имя» (пер. А. Ревича). Возможно, эта фраза станет провидческим откровением. Если растение пользуется для общения определенными символами – ароматами, значит, это средство общения принципиально можно расшифровать. Если растение защищает себя, зовет на помощь, чтобы сберечь свои листья и стебель, стало быть, оно сознает, что отличается от всего окружающего мира и что какая-то гусеница, ползущая по листу – ЕГО листу – угрожает ему, а не кому-то другому. Оно понимает себя, и, возможно, у него есть свой знак – россыпь неких молекул, – каким оно отмечает себя. Тогда нет ничего удивительного в том, что под шелест листьев, вежливо поклоненных ветром, в воздухе возникает крохотное, неприметное облачко – автограф или слово цветка, тут же тающее в воздухе и пока непонятное нам, даже незаметное нам.

Но имя уже названо… Имя цветка. Если хотите, имя розы.


3.6. БОТАНИКА ТРЕБУЕТ ТОЧНОСТИ

Исследования последних лет показывают, что царство флоры от царства фауны вовсе не отделяет непроходимая пропасть. Во многом растения близки животным, разве что не вольны двигаться.

«Здесь темный дуб и ясень изумрудный, а там лазури тающая нежность…»

«Как серебристый дремлет лист, как тень черна прибрежных ив…»

«Как здесь свежо под липою густою, полдневный зной сюда не проникал, и тысячи висящих надо мною качаются душистых опахал…»

В садах и лесах бродила муза русской поэзии. Из листьев и цветов сплетала день ото дня венки. Памятником ей все еще шелестят добрые старые соловьиные сады. «Цветущих лет цветущее наследство!» (А.А. Фет)

Те же сады и леса столетиями кустились в «Системах природы» и «Философиях ботаники». Те же в них колосились луга и поля.

Долгое время ботаника была прикладной наукой. Занятия ею сводились к описанию и классификации растений, к изучению их полезных свойств. Козалось, потомки Линнея недалеко от него ушли. Деревья, цветы, папоротники…

Их считали и перечисляли, словно коллекцию неживых предметов. Или другое поле деятельности ботаников опытная делянка селекционеров, на которой вырастали все новые сорта ржи или пшеницы. Лишь в последние десятилетия положение в ботанической науке начало меняться. Все больше исследователей стали обращать внимание на физиологию растений и даже их поведение. Методы точных наук стали практическим средством изучения внутренней жизни растений. Оказалось, что царство флоры от царства фауны вовсе не отделяет непроходимая пропасть. Во многом растения близки животным, разве что не вольны двигаться. Впрочем, некоторые растения даже наделены достаточно мощным «мышечным аппаратом».

Один из старинных ботанических трактатов

Генетика растений

В лесах и полях еще много тайн, недоступных глазу. Разгадать их можно, лишь изучая растения на клеточном и генетическом уровне, чем все больше занимаются ботаники, предпочитая приятному пейзажу окуляр микроскопа. Вот некоторые вести из лабораторий, где ботаника-натуралиста теперь встретишь чаще, чем на природе.

Фрагмент из старинного ботанического трактата

В 2003 году большой интерес вызвала работа Энрико Коэна из британского John Innes Centre. Он создал компьютерную модель, показывающую развитие различных частей растения. На ее примере видно, как тесно связаны друг с другом клетки растения. Как только одни клетки начинают расти быстрее других, клеточный конгломерат поворачивается. Процесс его роста определяется тремя основными параметрами: скоростью, то есть временем, что проходит между двумя делениями клеток; анизотропией – наличием оси, вдоль которой преимущественно развивается растение; а также углом, под которым располагаются клетки в момент своего деления относительно воображаемой оси координат. От соотношения этих параметров зависит, в какую сторону вытягивается клеточная структура.

Вот, например, асимметричные цветки львиного зева. Раньше считалось, что асимметрия возникает, когда у какой-либо структуры растения есть одна определенная зона роста. В ней и происходит бурное деление клеток. Однако модель Коэна показывает, что делятся все клетки этой структуры. Только некий химический сигнал – его, по-видимому, подают гормоны или медиаторы, – заставляет новые клетки расположиться асимметрично. Растение обретает свою форму.

Кстати, у животных направление роста клеток тоже указывают химические сигналы. Свидетельством тому – опыты с мухой дрозофилой.

Немецкий ботаник Мартин Хюльскамп показал, как «переговариваются» клетки растения в процессе его роста. Его работа была посвящена образованию волосков на листьях Arabidopsis thaliana. Подобный процесс предполагает четкую координацию клеточных циклов. Достигается она за счет разных транскрибирующих факторов, которые руководят считыванием генов. Одни из таких факторов проявляют себя как активаторы, а другие как ингибиторы – они «тормозят» данный процесс. Как только активаторов становится слишком много, тут же растет число ингибиторов и наоборот. Благодаря этим постоянным колебаниям различные части растения формируются согласованно.

Как интересно! Геном человека, протеом человека, «найден ген лености», «найден ген добродушия»… В последние десятилетия ученые только и перетряхивали наше родовое достояние – набор генов – в поисках причин и следствий «человеческого, слишком человеческого». Homo sapiens стал фигурой более прозрачной, чем прежде, но так и не объяснен до конца. Успехи генетиков, особенно поначалу, привлекали пристальное внимание публики. Ботаники, изучающие генетику растений, не избалованы вниманием, но это не умаляет их достижений. Результаты они получают любопытные.

Вот грядка капусты на даче: кочанчики, тянущиеся в ряд. Чем не научная тайна? Род Brassica, капуста, включает 35 видов. Одни из них опыляют себя сами, а другие – перекрестноопыляемые. Почему так? Как оказалось, мешают процессу самоопыления два гена. Первый отвечает за формирование белковых молекул, расположенных на поверхности завязи, а второй – за синтез коротких пептидов в оболочке зерен пыльцы. Имеется много вариантов той и другой молекулы. Реагируют друг с другом они только в том случае, если принадлежат одному и тому же растению. Продукт их реакции препятствует оплодотворению семяпочки. Самоопыления не происходит. Однако в результате мутации одна из этих двух молекул может измениться. Тогда между ними не произойдет никакой реакции. Растение само опылит себя. Итак, процесс самоопыления обусловлен дефектом одного из двух генов.

В опытах Джун Нашралла из Корнеллского университета дефектный ген заменялся обычным. Растение вновь становилось способным к перекрестному опылению. Как известно, этот вид опыления имеет преимущество перед самоопылением; он приводит к новым комбинациям признаков у дочернего организма. Значит, принцип опыления растения можно изменить; нужно лишь подкорректировать один из генов.

Растения, как и мы, люди, могут приобретать иммунитет. Например, если часть растения, пораженная вредителем, отомрет, а само оно выживет, то, встретив других вредителей, будет активнее сопротивляться им. Крис Л амб из John Innes Centre определил, какая именно белковая молекула отвечает за приобретенный иммунитет. По всей видимости, та самая, что отвечает за перенос жиров и жиросодержаших веществ в тканях растений. Лямб полагает, что этот же белок прицепляет к себе сигнальную молекулу и доставляет ее в отдаленные части растения. Ее сигнал вызывает иммунную реакцию.

Немецкая исследовательница Доротея Бартельс отыскала ген, который помогает растениям переносить жажду. Начиналось все с наблюдения за Craterostigma plantagineum из Южной Африки. В дни засухи это растение может потерять до 95 процентов воды и впадает в спячку; его обмен веществ сокращается почти до нуля. Все дело в определенном гене. По его команде синтезируется альдегид-дегидрогеназа. Она нейтрализует ядовитые вещества, возникающие в тканях растения, когда то страдает из-за жажды. Возможно, подобным геном удастся «оснастить» новые сорта сои, кукурузы и пшеницы, чтобы выращивать зерновые и бобовые в засушливых районах планеты.

Эта работа очень своевременна. По прогнозу, через 20 лет уже около трети населения Земли будет проживать в пустынных и полупустынных районах. В основном это – жители «третьего» мира, которые кормятся дарами своих полей. Для спасения их от голода крайне важно вывести новые, устойчивые к засухе сорта растений.


Поведение растений

Еще одна область исследований – «поведение растений». Первым стал осмыслять его Чарлз Дарвин. Его внимание привлекла венерина мухоловка. Она произрастает в США, в торфяниках Северной и Южной Каролины. Дарвин назвал ее «самым удивительным растением на свете». У нее круглые, мясистые листья, разделенные на две половинки; их запах приманивает насекомых. По краям они усеяны длинными зубцами, неуловимо напоминающими зубы акулы. Правда, мухоловка не перекусывает ими свои жертвы. Она ловит их, захлопывая листья, как половинки капкана. Зубцы сходятся, и насекомое попадает в клетку. Это случается всякий раз, как только муха коснется одного из чувствительных волосков, имеющихся на каждом листе. Теперь, сколько бы ни дергалась цокотуха, пробуя вырваться из капкана, ей это не удастся. Зубцы лишь крепче сожмутся. Наконец из желез, расположенных на поверхности листа, выделится пищеварительный сок. Насекомое погибнет. Спустя 5 – 12 дней ловушка приоткроется, и растение выбросит несъеденные остатки животного.

Венерина мухоловка реагирует на появление жертвы очень быстро. Стоит дотронуться до волоска, и через 0,3 секунды ловушка захлопнется. Если бы растение медлило, добыча ускользала бы от него. Дарвин сделал вывод, что молниеносное движение листьев обладает «всеми признаками животного рефлекса», но у него не было нужных приборов, чтобы объяснить свои наблюдения «на языке науки». Тогда он обратился к одному из самых знаменитых физиологов викторианской эпохи: Джону Бердону-Сандерсону. На протяжении пятнадцати лет тот исследовал венерины мухоловки. Сомнений не оставалось: в ткани растений возникают электрические импульсы. Однако опыты Бердона-Сандерсона, как и выводы Дарвина, были надолго забыты.

Лишь в конце XX века ученые вспомнили о них. Опыты, проведенные в последние годы, показывают, что электрические импульсы заменяют растениям нервные рефлексы. Вместо нервной системы, присущей животным и человеку, растения обладают особой «электрической системой», позволяющей им реагировать на внешние раздражители.

Вот еще одно приметное растение – мимоза стыдливая. Она реагирует на любые раздражители. Все смущает ее: прикосновение человека, грохот проезжающего поезда, топот коров. Даже ветер и дождь заставляют листья мимозы смыкаться. Ее поведение давно занимало ученых. Поколения ботаников пытались понять, где прячутся «глаза и мозг» мимозы. Постепенно выяснилось, что листья растения движутся благодаря особым «суставам». Одни из них соединяют части перистого листа, другие скрепляют его черешок с веткой. Эти суставы состоят из так называемой «моторной ткани», выстланной клетками с очень тонкими стенками. Вот что происходит, когда кто-то касается листа.

Из клеток тут же выделяются отрицательно заряженные ионы хлора, зато ионы калия с положительным зарядом просачиваются внутрь клеток. Осмотический потенциал клеток падает. Вода начинает вытекать из них, и потому внутриклеточное давление снижается. Вот итог этой цепочки перемещений и перепадов: лист складывается. Но где же «нервные волокна», управляющие этим процессом? Как передаются сигналы?

Ученые долго искали потайную систему «нервов». В конце концов выяснилось, что электрическое возбуждение передается вдоль волокон, обычно питающих листья водой и минеральными веществами. Снаружи эти волокна облицованы мириадами отмерших клеток. Точно так же любой электропровод оплетен толстым изолирующим слоем. Если бы не этот слой мертвых клеток, электрический импульс беспрепятственно передавался бы во все стороны, к другим тканям растения. А так получился вполне приличный кабель!

Любопытно, что у растений, инфицированных вирусом, как и у человека, слегка повышается температура. Так, исследователи из Гентского университета обнаружили, что на участках листьев табака, пораженных вирусом табачной мозаики, температура повышалась на 0,3—0,4°. Этот рост температуры наблюдался за несколько часов до видимых симптомов поражения. Подобное открытие поможет ускорить селекцию растений, устойчивых к действию вирусов.

Есть у растений и свои «мышцы». Известно, что листья и цветки часто поворачиваются к Солнцу, жадно впитывая свет. Не дремлют листья и ночью, исподволь меняя свое положение. Каждое утро растение встречает Солнце, помахивая под ветром листвой, обращенной на восток.

Даже хлоропласты – крохотные органоиды, спрятанные в клетках растений и занятые фотосинтезом, – постоянно пребывают в движении, улавливая, откуда падают солнечные лучи. Когда свет очень слаб, хлоропласты, чтобы не «расплескать»

эти жалкие крохи, располагаются под прямым утлом к падающим лучам. При ярком освещении они прячутся по боковым стенкам клеток, ведь света и так вдоволь. А что ими движет – не световые же лучи их отталкивают? Роль мышц в растительном мире играют актиновые волокна. Они способны сокращаться и этим своим талантом пользуются изо дня в день.

Впрочем, мышцы и суставы растений все же слабы, чтобы защитить их от зверья. Миллионы лет две армии – флоры и фауны – ведут нескончаемую битву. Оружие одних – губы, зубы, желудки и языки, слизывающие, схватывающие, сметающие, съедающие все на пути. Надежда других обращена к шипам, колючкам, стрекалам, ядам, заготовленным для обороны. Оружие одних – сила. Надежда других – хитрость.


    Ваша оценка произведения:

Популярные книги за неделю