Текст книги "ЭВМ и живой организм"
Автор книги: Александр Драбкин
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 4 (всего у книги 8 страниц)
Насколько важно учитывать мотивацию, видно хотя бы из того, что условный раздражитель (звонок, обычно сопровождающий кормление) не может вызвать условнорефлекторного эффекта (выделение слюны у собаки), если животное плотно накормлено.
Особая роль мотивации объясняется тем, что невозможно представить себе какое-либо действие без соответствующих предпосылок, соответствующего побуждения. Причем побуждения могут быть самые различные, в зависимости от совершенства организма – начиная с чисто биологических потребностей и кончая специальным поведением. Суть дела от этого не меняется.
Таким образом, мы можем принять, что практически любая внешняя информация, попадающая в нервную систему, неизбежно сопоставляется и оценивается на весах этой доминирующей в данный момент мотивации, грубо говоря – рассматривается с точки зрения «самого главного в данный момент» желания. Мотивация представляет собой фильтр, через который просеивается вся избыточная информация и остается нужная.
Весь процесс сопоставления внешней информации с мотивацией отнюдь не прост. «Перебор информации» должен идти именно в направлении наибольшей пригодности получаемой информации для реализации данной цели. При этом очень важно помнить, что в каждый данный момент наши, например, органы чувств способны передать астрономическое количество информации. В то же время нервные структуры способны перерабатывать значительно – в тысячи раз меньшее количество информации. Отбор нужных сведений может превратиться в поиски иголки внутри стога сена. Задача эта чрезвычайно сложная и ответственная. Без мотивационного возбуждения решить ее невозможно.
Следующий элемент механизма предвидения – обстановочная информация. Под этим понимаются сведения об условиях, в которых должно протекать действие. Например, если я хочу пить (мотивация) во время урока (обстановка), я не могу покинуть класс до тех пор, пока занятия не кончатся.
Кроме мотивации и обстановочной информации, решающее значение имеет также сигнал к действию (в нашем последнем примере – звонок, сообщающий о конце урока).
Физиологический смысл сигнала заключается в том, что он приурочивает выявление скрытых возбуждений к определенному моменту, наиболее выгодному с точки зрения успеха.
Теснейшим образом связана с предвидением и память. Синтез всех трех компонентов был бы невозможен, если бы он не был тесно связан тончайшими нитями с прошлым опытом, отложенным в аппаратах памяти (в нашем примере именно память подскажет, куда нужно пойти после звонка, чтобы выпить стакан воды).
Мы проанализировали, из каких элементов складывается решение действовать. Тем самым стала очевидна схема механизма предвидения, вернее его части – той, что связана с выработкой решения, с так называемым «афферентным синтезом информации» (т. е. синтезом информации, предшествующим действию).
Формирование цели – это критический пункт в развитии действия. Именно затем должно начаться формирование сложного комплекса возбуждений, которые, распределяясь по рабочим аппаратам (исполнительным органам), обусловливают получение результатов, точно соответствующих поставленной цели. С точки зрения существа этого переходного момента важно подчеркнуть, что здесь происходит пока еще малопонятная трансформация. Результаты афферентного синтеза трансформируются в возбуждение исполнительных органов, точно отражающее этот синтез. Путь таких превращений пока точно не установлен.
Рассмотрим теперь другие нервные механизмы, образующиеся также немедленно после стадии «принятия решения» и также имеющие непосредственное отношение к предвидению. Как только определены цель действия и программа действия, в нервной системе формируется своеобразный комплекс возбуждений. Физиологический смысл его состоит в том, что с его помощью производится оценка той информации, которая только еще будет поступать в центральную нервную систему от будущих результатов действия. Это подлинный аппарат оценки и сличения результатов с поставленной целью. На существование этого аппарата уже давно имелись косвенные указания в экспериментах с условными рефлексами. Первый эксперимент, который заставил думать в этом направлении, был проделан более 40 лет назад с подменой безусловного подкрепления.
Смысл эксперимента заключался в следующем. Собака в течение нескольких лет работала с условным рефлексом при постоянном безусловном подкреплении в виде 20 граммов сухарей. За это время собака привыкла, что звонок связывается с появлением определенного количества сухарей (безусловное подкрепление). С точки зрения обычных представлений об условной пищевой реакции для животного не было радикальной разницы между подкреплением рефлекса сухарями или мясом. Ведь с общепринятой точки зрения и сухари, и мясо являются безусловными раздражителями, подкрепляющими действие условного раздражителя (звонка). Более того, с точки зрения биологической значимости подкрепление мясом, несомненно, имеет большее значение, чем подкрепление хлебом.
Опыт же показал явления неожиданные. Когда внезапно после одного из очередных звонков перед собакой в кормушке вместо сухарей оказалось мясо, собака это мясо не взяла, хотя и была голодна. Стало очевидно, что на неожиданно появившееся мясо собака реагирует совсем иначе, нежели на привычные сухари. У нее появилась ориентировочно-исследовательская реакция: «Что это такое?»
Естественно, возник вопрос: каковы причины появления такой ориентировочно-исследовательской реакции? Условный раздражитель был обычным – звонок. К кормушке после звонка собака пошла как обычно. Что же не хватило животному, чтобы и дальше прореагировать обычным образом?
Анализ этого вопроса показал, что применение условного раздражителя (звонка) вызывает как бы параллельное формирование двух нервных механизмов. В результате действия первого механизма возникает пищевая реакция–движение в сторону кормушки, выделение слюны и так далее. Второй механизм создает в мозгу собаки комплекс возбуждений (комплекс сличения), соответствующих виду, запаху, вкусовым качествам сухарей. Была высказана гипотеза: для того, чтобы пищевая реакция животного закончилась планомерно и стандартно, надо, чтобы раздражение от внешнего вида сухарей поступило в центральную нервную систему и было соотнесено с комплексом сличения (который сформировался сразу же после начала действия условного раздражителя).
Внешние признаки мяса, конечно, тоже возбуждали собаку. Однако комплекс этих возбуждений оказался не подобным «заготовленному» возбуждению. Произошло, таким образом, «рассогласование» между результатами афферентного синтеза и реальным комплексом раздражений, поступивших в нервную систему.
Это была единственная физиологически мыслимая причина того, что мясо не оказало немедленного пищевого воздействия. Очевидно, комплекс возбуждений, связанных с мясом, оказался не подобным чему-то. Но чему? Установить это удалось лишь значительно позже.
МЕХАНИЗМ ПРЕДВИДЕНИЯ
Постепенно завоевала право на существование гипотеза о наличии специального механизма. Этот механизм возникает вследствие афферентного синтеза раньше, чем совершится действие и появится его результат, но вместе с тем содержит в себе все признаки этих будущих результатов. Этот механизм был назван П. К. Анохиным «акцептором результатов действия».
Его существование мыслилось в связи с необходимостью сличать результаты действия с результатами афферентного синтеза.
Однако сформулировать еще не значит доказать. Нужно было подтвердить существование этого весьма предположительного механизма, нужно было выяснить его устройство.
С этой целью специальные наблюдения были произведены на людях.
В то время, когда мясом в кормушке собаки подменяли сухари (1932 г.), еще не существовало ни кибернетики, ни бионики. Не возникло еще и проблемы предвидения. Поэтому встреченное новое физиологическое явление было названо «заготовленным возбуждением».
18 лет спустя, после ряда новых опытов, это явление было изучено еще глубже и названо «опережающим возбуждением». Тогда уже была возможность применить новейшую аппаратуру и измерять электрические токи, возникающие в человеческом мозге – в частности, при возбуждениях, опережающих течение событий.
Опыт поставили таким образом. Регистрировались биотоки мозга, появляющиеся при воздействии на человека тремя последовательными раздражителями «звонок – сирена – свет». После длительной тренировки последовательность этого ряда воздействий была изменена: вместо света внезапно был опять включен звонок. А мозг реагировал на повторный звуковой сигнал так же, как на свет. Из этого следовало, что возбуждение пришло в зрительную область раньше, чем туда мог прийти внешний раздражитель.
Стало очевидным, что при организации цепи раздражений возбуждение распространяется по мозгу от пункта к пункту гораздо более быстро, чем сами реальные, последовательно появляющиеся внешние раздражители. Возбуждение опережает реальный раздражитель, который должен еще только в будущем подействовать на центральную нервную систему, и занимает те области мозга, которые он в будущем должен возбудить. Так возникла идея о приспособительной роли возбуждений, названных «опережающим возбуждением».
Способность нервной системы создать цепь опережающих возбуждений является древней основой, на которой развивается условный рефлекс и любое предсказание, или «прогнозирование», будущих явлений. Стала ясна и ориентировочно-исследовательская реакция животного на подмен сухарей мясом. Она могла возникнуть только потому, что возбуждение от условного раздражителя, сигнализирующего вполне определенные вкусовые ощущения, развивается в тех клетках, где оно должно появиться лишь в будущем, то есть в момент поедания пищи. Между тем, признаки мяса оказались несовпадающими с этими «заготовленными возбуждениями».
Принцип развития опережающих возбуждений является следствием свойств нервной ткани и потому имеет место всюду, где возникает необходимость, выражаясь языком И. П. Павлова, «предупредительной реакции». Практически он «предсказывает» вероятные результаты действия при данном решении и данной цели действия. Вместе с тем комплекс возбуждений, в котором закодированы свойства будущих результатов, полностью обеспечивает сопоставление полученных результатов с тем, что задано, или с совокупностью признаков данной ситуации. Механизм «акцептора действия» имеет универсальное распространение, и вряд ли возможен какой-либо даже самый простой акт (будь то акт поведения или чисто физиологический процесс) без предварительного его формирования.
Однако все это еще не дает ответа на вопрос о конкретном устройстве механизма, который обеспечивает предсказание результатов и их сличение с реально получаемыми сведениями.
Для его изучения была избрана система дыхания. Достоинства и удобства ее как объекта исследования очевидны. Система дыхания характеризуется значительно упрощенным афферентным синтезом по сравнению даже с самым простым актом поведения. Сопоставив мотивацию, обстановку, сигнал и память в случае, когда человек идет выпить стакан воды, с мотивацией, обстановкой, сигналом и памятью при дыхании, мы ясно видим, что в первом случае число возможных вариантов поступка, число «степеней свободы» человека неизмеримо больше. В самом деле, если дыхание мотивируется только необходимостью воздухообмена в легких, то наряду с мотивом «жажды» у человека может быть еще множество других желаний, которые усложняют картину его психической деятельности. То же самое положение и в других составных частях афферентного синтеза.
Словом, процесс дыхания прост с точки зрения психической деятельности да вдобавок и хорошо изучен физиологически.
Был поставлен опыт. На пути распространения команд от мозга к органам дыхания (на диафрагмальном нерве) было поставлено специальное электронное устройство. Задача этого электронного устройства состояла в том, чтобы расшифровать сигналы, поступающие по нерву, и превратить их в команду для специального аппарата искусственного дыхания (аппарат искусственного дыхания, естественно, выполнял в данном случае функции легких). Благодаря такому способу преобразования естественной команды дыхательного центра, прибор искусственного дыхания становился самоуправляемым – в точном соответствии с запросами организма. Весь процесс забора воздуха в этой установке управлялся самим «дыхательным центром» мозга, то есть точно так же, как и в обычной ситуации.
Такой способ самоуправляемого искусственного дыхания позволяет самому организму выбирать наиболее благоприятный для его окислительных процессов режим дыхательной деятельности. Это, естественно, может представить большой интерес для практических целей в медицине.
Однако нас сейчас интересует не эта сторона дела. Для изучения проблемы «акцептора действия» важна возможность «рассогласовывать» команды, посылаемые мозгом и передаваемые электронным устройством.
Рассогласование производилось следующим образом. Получив команду от мозга забрать, скажем, 500 кубических сантиметров воздуха, электронное устройство уменьшало эту цифру до 300 и ее-то передавало аппарату искусственного дыхания. В соответствии с измененной командой в легкие поступало воздуха на 200 кубических сантиметров меньше, чем «запрашивал» мозг. Естественно, сведения о таком уменьшении дозы мгновенно поступали от легких к мозговому дыхательному центру. Как прореагирует он на это внезапное «рассогласование», на это несоответствие между решением и истинной его реализацией?
Опыт показал, что, получив информацию от легкого только о частичном выполнении приказа, дыхательный центр мозга немедленно реагирует на это увеличением запроса с 500 кубических сантиметров до, скажем, 700.
Такая быстрая и точная реакция дыхательного центра на информацию с периферии о внезапно сниженном результате имеет свои причины. Она может возникнуть только в том случае, если одновременно с посылкой команды легким в дыхательном центре создается и нервный комплекс, способный проверить соответствие будущих результатов исходному решению, то есть акцептор действия.
Будь дело иначе, получай мозг команду о нехватке кислорода, например, по изменению состава крови, его реакция не была бы столь быстрой и точной.
Здесь же следует обратить внимание на одну важную деталь. Как сказали бы кибернетики, информация о результатах подается здесь «в другом коде», нежели она «записана» в акцепторе действия. Нужно сказать, что организм вообще с поразительной легкостью проводит перекодировку сигналов, значительно превосходя в этом ныне существующие устройства. Тут лежит одна из интереснейших областей поисков для конструкторов будущих электронно-вычислительных машин.
Возвращаясь к нашей теме, можно констатировать существование некоторой универсальной закономерности в работе мозга, которая, по-видимому, относится как к актам поведения, так и к физиологическим актам.
Эту закономерность можно сформулировать следующим образом: во всех случаях посылки мозгом возбуждений к рабочим аппаратам одновременно с «командой» формируется некоторая модель, способная предвосхитить параметры будущих результатов и сличить в конце действия это предсказание с параметрами истинных результатов.
Особенное значение эта закономерность имеет в случае сложных актов поведения человека. Здесь могут быть поставлены самые разные цели – и большие, и малые. Всюду акцептор действия, формирующийся в момент принятия решения, определяет степень совпадения между задуманным и полученным. Не претендуя на точность определения, можно сказать, что каждый из нас состоит как бы из двух индивидуумов – один действует, а другой поглядывает и поправляет.
Предсказание результатов действия является универсальной функцией мозга, предупреждающей всякого рода «ошибки», то есть свершение действий, не соответствующих поставленной организмом цели.
Единственная возможность построить гармоническое поведение и избежать ошибки состоит именно в сличении результатов сделанного с ранее предсказанными данными этих результатов.
Акцептор действия – универсальный механизм для всех видов поведения. Известен такой эксперимент.
Птицам (воронам, курам) показывают движущийся в определенном направлении корм. При этом они его видят только на небольшом отрезке, затем корм уходит за ширму и продолжает двигаться в том же направлении.
Смысл «экстраполяционных рефлексов» состоит в том, что птицы (особенно вороны) определяют направление движения корма и бегут к тому месту ширмы, где корм должен показаться из-за нее. Иногда птицы обегают ширму с нужной стороны. То есть, видя движущийся предмет и определив направление движения, птицы «экстраполируют», продолжают это направление. «Экстраполируя» предмет на дальнейшее положение, они реагируют двигательной реакцией именно на это, невидимое им, положение кормушки.
Такой вид предсказания целиком отвечает той общей закономерности предвидения будущих результатов, которые были нами рассмотрены. В самом деле, для животного несколько видимых положений движущейся в определенном направлении кормушки служат материалом для афферентного синтеза. После завершения этого синтеза принимается решение о движении в определенном направлении и формируется акцептор действия, включающий характеристику будущего положения кормушки.
Точно так же, как и во всех остальных случаях, акцептор действия и здесь является аппаратом сличения и, следовательно, предсказывает возможные результаты замеченного движения объекта.
Другой пример относится к речи. Анализ ее структуры (с позиций нейрофизиологии) показывает весьма любопытные вещи. Решение сказать какую-либо фразу или высказать суждение складывается абсолютно так же, как и всякое другое решение, то есть после стадии афферентного синтеза. При этом решение что-то высказать формирует акцептор действия со всеми признаками будущей фразы.
Следовательно, здесь нет, как обычно представляют, каждого слова в отдельности. Акцептор действия формируется на каждую фразу с последовательным расположением слов, на целую смысловую систему. Последующее произнесение слов фразы с поэтапным контролем исключает возможность ошибки в выражении целой мысли, сформированной в стадии «решения». Никакой другой возможности произнести длинную фразу без смещения слов или даже, наоборот, с вариацией их расположения, но без потери смысла, нельзя представить себе, если не учитывать существования акцептора действия.
Это становится особенно явным, когда слово, произносимое первым, имеет смысл, находящийся в прямой зависимости от слова, произносимого позднее.
Например, в английской фразе «It is a book» артикль «а» может быть употреблен только в том случае, если неопределенность книги была известна перед началом фразы.
Еще нагляднее та же закономерность в стихосложении.
...Гори, гори, моя звезда
Эта фраза требует продолжения в определенном стихотворном размере:
Звезда любви приветная...
Размер будущего произведения «зашифрован» в первой фразе, с его учетом сформирован соответствующий акцептор действия.
Таким образом, мы видим, как аппарат предвидения результатов будущего действия, видоизменяясь, присутствует во всех жизненных актах самых разных индивидуумов. Отсюда следует непреложный вывод: наличие акцептора действия как аппарата контроля результатов действия и сличения их с поставленной целью абсолютно необходимо всему живому. С учетом этого вывода многие сложные акты поведения животных уже не покажутся чем-то парадоксальным.
Например, в конце пятидесятых годов были проделаны весьма интересные опыты с канарейкой. Птице подвязывались крылья так, чтобы она не могла взлететь, а могла лишь подпрыгивать. В высоко закрепленную кормушку насыпали пищу. Канарейка беспомощно прыгала около кормушки, не имея возможности добраться до зерен. Однако продолжалось такое безуспешное движение сравнительно недолго. Испробовав различные прыжки и не достигнув результата, канарейка подтащила клювом к кормушке картонную коробку, взобралась на нее и уже оттуда, подпрыгивая, добралась до зерен. Очевидно, что столь сложный поведенческий акт птица могла реализовать только по изложенной схеме: афферентный синтез – решение – акцептор действия – сличение результатов. Между тем еще совсем недавно, когда подобные опыты ставились И. П. Павловым на обезьянах, было принято считать, что такое целенаправленное поведение может быть присуще только высшим животным – человекообразным.
Интересно отметить, что необходимость анализа биологического предвидения актуальна сегодня и для физиологии, и для специалистов в области кибернетики. Это как бы встреча двух групп, ведущих прокладку туннеля навстречу друг другу. Поскольку с физиологической стороной вопроса мы более или менее познакомились, дадим слово представителю точных наук. Недавно крупный американский кибернетик Мэран писал, что мозг обладает, кроме всех прочих, способностью предвидения будущих ситуаций, причем не только непосредственно в следующий после получения информации момент, но также и в некотором отдаленном будущем. Поэтому все теории организации мозга, которые не отражают способности к предвидению, должны считаться несостоятельными. Система биологическая или искусственная не может быть признана мыслящей, если она не обнаруживает способности к предсказанию.
Такое заключение имеет, несомненно, большой практический смысл. Как мы видели, любая дробная функция организма, представляющая собой часть системы поведенческих или физиологических актов, оказывается возможной только в одном случае – если в момент формирования решения и команды к действию формируется сразу же и аппарат предсказания. Мы уже говорили раньше, а теперь на новом материале подчеркнем еще раз, что машины, имеющие возможность на каждом этапе своего действия «заглядывать в будущее», получат значительное преимущество перед современными.
Однако хотя мы и констатировали, что функция предсказания результатов является универсальной, имеется в любом виде деятельности организма и представляет собой реальный факт, от этого еще далеко до познания механизма ее действия. Дальнейшее изучение предвидения должно быть посвящено тонкому нейрофизиологическому и психологическому анализу его сущности.
Как видно, секрет формирования функционального аппарата предсказания ученые ищут в структуре командных импульсов, возникающих после принятия решения, импульсов, поступающих на исполнительные органы. При этом команды исполнительным органам мы должны сопоставлять с результатами действий, передаваемыми в мозг органами чувств.
Для изучения этих тонких процессов очень удобна уже рассматривавшаяся система дыхания. Тут очевидно следующее: аппарат предсказания, сформированный в момент выхода командных сигналов органом дыхания, должен быть в состоянии ожидания ровно столько, сколько потребуется для цикла дыхания. Время нужно, чтобы сократить диафрагму, расширить грудную клетку, растянуть альвеолы и сформировать обратную сигнализацию, идущую к дыхательному центру мозга. В ходе всех этих действий аппарат предсказания должен ждать их результатов.
При 15 дыханиях в минуту этот интервал равняется примерно 1 секунде. Следовательно, акцептор действия должен быть готов воспринять обратную информацию, информацию легких о заборе воздуха, в течение 700–800 миллисекунд.
Тут возникает несколько вопросов:
Каким образом импульсы команды могут положить начало формированию акцептора действия?
В какой форме, в каком состоянии аппарат предвидения находится в течение 800 миллисекунд?
В чем состоит механизм встречи акцептора действия и импульсов, характеризующих результаты действия?
Рабочая гипотеза, которую академик П. К. Анохин рекомендует принять для ответа на все эти вопросы, состоит в следующем. Вероятнее всего, что командные импульсы, управляющие в нашем случае процессом дыхания, поступают одновременно и к органам дыхания, и к тем нервным клеткам, которые получают от легких информацию о фактически взятом количестве воздуха. Это напоминает известный процесс «рассылки копий». Предположим, что некое министерство посылает какой-то приказ на завод. Чтобы можно было проверить ход выполнения распоряжения, копия этого приказа рассылается различным отделам министерства. В нашем примере центр мозга, управляющий дыханием (министерство), посылает приказ легким (заводу) и одновременно рассылает «копии» тем клеткам, которые будут получать информацию от легких о фактическом ходе дела. Чтобы «копию» приказа и информацию о его исполнении можно было сличить, нужно чтобы эта копия сохранялась достаточно долго, до получения информации с периферии. В нашем случае клетки, получившие «копии» дыхательных импульсов, должны быть ими возбуждены достаточно долго (около 800 миллисекунд) – до тех пор, пока не придет информация от органов дыхания.
Рассмотрим процесс, совершающийся в первый раз, например, первый вдох ребенка. От нервного центра команда к действию поступает в легкие. Одновременно ее «копии» возбуждают клетки А, В, С. Эти клетки удерживаются в возбужденном состоянии до тех пор, пока не придет с периферии информация о выполнении команды.
Информация о результатах действия поступает к тем же клеткам А, В, С. Так создается некое сложное образование, которое и есть, в сущности, акцептор действия. Теперь это уже полный аппарат предсказания, который может произвести сличение «предсказанного» с реальными результатами действия. Малейшее рассогласование импульсов ведет к изменению команды, как мы это уже отмечали раньше.
Подчеркнем: предлагаемая модель аппарата предвидения – воплощение рабочей гипотезы, наиболее удобной для исследовательской работы. Возможно, что она будет уточнена. Однако некоторая закономерность, важная и для целей исследования, и для нашего изложения, представляется установленной: мы не можем рассматривать изолированно какую-либо часть предвидения, не представляя всей архитектуры выполняемого акта, а главное – не представляя себе важнейшей роли самого предвидения во всей деятельности организма.
ОТ ФИЗИОЛОГИИ К ПСИХОЛОГИИ
Последнее утверждение можно лучше всего проиллюстрировать примерами из области психологии человека. Что такое обращение правомочно, безусловно подтверждается многими соображениями. Мы же приведем лишь одно высказывание И. П. Павлова. В своих трудах он неоднократно подчеркивал необходимость идти как «вниз», к исследованию элементарных физиологических процессов, так и «вверх», к психологии. А однажды он пришел в лабораторию в веселом, шутливом расположении духа и, обратившись к присутствующим, сказал: «Рефлекс, рефлекс. Все-таки, не слишком ли много рефлексов? Я предлагаю ввести какой-нибудь новый термин. Например, «психология».
Весь юмор этой полушутливой фразы заключен в сопоставлении слов «новый термин» и «психология». Ведь разрыв между физиологическими и психологическими исследованиями, как показал опыт, не приносит пользы науке. Поэтому, говоря о физиологии высшей нервной деятельности, в частности, об аппарате предвидения, мы всегда должны помнить и о проблемах психологических.
...Запели жрецы, распахнулись врата –
Восхищенный,
Пал на колени народ:
Чудовищный конь, с расписной головой,
Золоченый
В солнечном блеске грядет.
Горе тебе, Илион! Многолюдный,
Могучий, великий!
Горе тебе, Илион!
Ревом жрецов и народными кликами
Дикий
Голос Кассандры – пророческий вопль – заглушён!
Так начинался последний день Трои – легендарного Илиона.
А дальше – резня и разрушения: воины, спрятавшиеся внутри фантастического коня, открыли ворота осаждающим город врагам, которые уничтожили древнюю Трою.
Не помогла мудрость царя Трои Приама. Не помогли пророчества дочери его Кассандры. Ибо судьба решила:
Будет некогда день, как погибнет
Высокая Троя,
Древний погибнет Приам и
Народ копьеносца Приама.
Пророчество свершилось – дымятся руины некогда цветущего города. А среди развалин бродит старец Приам – мудрый, но бессильный.
В начале нашего века судьба молодой отрасли знаний – научной психологии представлялась ученым судьбой Приама – мудрость и бессилие среди хаоса.
Прошло не так уж много времени, и оценки резко изменились: теперь психология рассматривается как одна из важнейших наук, преобразующих мир.
В наш просвещенный век часто приходится слышать слово «чудо». «Чудо» экономическое. «Чудо» кибернетическое. «Чудо» футбольное. Так, может быть, произошло еще одного «чудо» – психологическое?
Думается, чудеса здесь ни при чем. У каждой науки есть свои звездные часы и свои сумерки. Недавно один из известнейших математиков назвал эвклидову систему доказательств геометрических теорем победой науки над здравым смыслом. Действительно, в эпоху нынешнего бурного развития науки методы Эвклида представляются скорее принадлежащими логике, нежели математике. Сегодня, как считают некоторые математики, задачи геометрии можно решать значительно проще, нежели это делали древние греки.
Научной психологии чуть более ста лет. Что ж за сила в столь короткий строк преобразовала эту науку?
Внешняя обусловленность внутренних явлений и их отражение в сознании человека – вот идейный фундамент научной психологии.
Подлинной ариадниной нитью, которая ведет ученых правильным путем через запутаннейшие лабиринты человеческой психики, назвал теорию отражения лауреат Ленинской премии А. Леонтьев. В этом секрет столь широкого интереса к психологии. Как только во главу угла была поставлена теория отражения реальной действительности в человеческом сознании, психология стала наукой, нужной всем.
– Не далеко ли мы уходим от темы нашего разговора? – может спросить читатель.
Нет, ответим мы. Ибо теперь стало совершенно ясно, что нет такой области психологии, где физиологические причины и, в частности, «физиология предвидения» не играли бы существенной роли.
Нужно сказать, что такой подход к проблемам взаимосвязи, взаимовлияния физиологии и психологии давно интересовал не только специалистов, но и многих широко мыслящих представителей интеллигенции. Сошлемся, например, на весьма примечательное письмо Н. П. Огарева, написанное им А. И. Герцену: «Груба еще физиология, Герцен! Наука не берет еще в расчет всю тесную цепь нервных потрясений, а между тем жизнь интегрирует их в каждом росте организма. За непониманием этой постоянной интеграции ни физиология, ни история не поставили еще своей формулы и потому, с одной стороны, только рассеянные наблюдения, а с другой – натянутые теории по крупным данным. Обе науки, которые должны составлять одно целое, хромают в разбивку».
К сожалению, то, что писал Огарев об истории, сегодня в значительной степени применимо к психологии и другим гуманитарным наукам. И если мы хотим (а мы этого хотим) попытаться сблизить столь далекие, казалось бы, области науки, попытаться пополнить наши сведения о духовной жизни человека за счет всех возможных источников знания, попробуем сделать еще один шаг – от физиологии к психологии, а затем от психологии вообще к психологии интеллекта.