Текст книги "ЭВМ и живой организм"
Автор книги: Александр Драбкин
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 3 (всего у книги 8 страниц)
В этом нельзя не видеть грандиозного достижения эволюции, которая оказалась способной создать аппарат, позволяющий дать в тысячи раз ускоренное отражение действительности, значительно опережающее ход реальных явлений внешнего мира. Именно различие скоростей течения явлений в натуральной действительности и в нервном веществе мозга животного создает условия для распространения такого опережающего возбуждения.
Если сравнить организацию живой материи на различных этапах эволюции – от праорганизмов до высших животных, – совершенно очевидным станет, что принцип опережающего отражения внешнего мира является неотъемлемой стороной жизни, ее приспособления к окружающим условиям.
Конечно, существует значительное различие между той формой опережающего отражения у высших животных, которая представлена условным рефлексом (явлением чрезвычайно сложным), и опережающим отражением у примитивных существ. Но речь пойдет о ведущем признаке.
А какой признак условного рефлекса является наиболее для него характерным, делающим рефлекс тем, что он есть? Из всех возможных его качеств признак «предупредительности» или «сигнализации» о предстоящих событиях внешнего мира является наиболее решающим качеством рефлекса. Ни изменчивость, ни приобретенность не могут сравниться по значению с этой его биологической особенностью.
Именно потому, что животные имеют возможность подготовиться по сигналу к еще только предстоящим звеньям последовательно развивающихся событий, условный рефлекс стал узловым пунктом эволюции.
Но если этот основной признак является древнейшим, то, следовательно, по нему вполне можно сопоставлять приспособительные возможности низших и высших животных, считает академик П. К. Анохин.
Естественно, что усложнение самих аппаратов предупреждения, обеспечивающих первоначально прием небольшого количества различных сигналов, привело к качественным изменениям в поведении животных. Конечно же, поведение собаки мало общего имеет с поведением червяка. Однако сигнальность как универсальная черта приспосабливаемости живого к внешнему миру не теряла от этого своего принципиального значения.
Следовательно, условный рефлекс высших животных, оцениваемый с точки зрения сигнальности, есть только частный случай «предупредительной деятельности» опережающего отражения действительности, то есть приспособления организма к будущим, но еще не наступившим событиям.
При таком подходе легче становится отвечать на многие «проклятые» вопросы: когда в эволюции появился условный рефлекс? есть ли «условный рефлекс» у простейших организмов и растений? может ли врожденная деятельность иметь сигнальное значение?
Очевидно, что универсальным принципом всех форм приспособления живой материи к условиям окружающего мира является опережающее отражение событий, развивающихся последовательно и повторно.
В широком смысле толкования проблемы речь идет о «предупредительном» приспособлении организма к предстоящим изменениям внешних условий или, точнее, о формировании подготовительных изменений для будущих событий.
Этот принцип имеет силу уже с первых этапов формирования живой материи. Следовательно, вопрос может быть только о форме и конкретных аппаратах, в каких этот принцип реализован на том или ином уровне эволюции. У одноклеточных организмов он представлен в форме цепей химических преобразований протоплазмы, опережающих развитие последовательного ряда внешних событий. У высших животных он реализован в специальных нервных аппаратах. Эти аппараты позволяют охватить широкий круг внешних явлений, а также и опередить их отражение. Однако во всех случаях формы опережающего отражения имеют одну и ту же решающую черту – сигнальность. Для животных же, обладающих нервной системой, это и будет условный рефлекс.
При оценке положения вещей с таких позиций теряет смысл и другой вопрос: можно ли выработать временную связь у простейших организмов и растений?
И растения, и простейшие организмы представляют собой живые образования со сложным многоклеточным строением. Поскольку они испытывают на себе последовательные и повторяющиеся воздействия, постольку можно утверждать, что те и другие имеют предупредительную сигнализацию или ее можно выработать заново. Но надо соблюсти изложенные раньше условия: внешние воздействия должны быть длительными и повторяющимися и иметь существенное значение для жизни растения или простейшего организма.
Ни одно растение не смогло бы существовать и немедленно было бы отброшено естественным отбором, если бы оно реагировало только на наличный фактор среды, то есть только на то, что действует в данный момент, а не реагировало бы по принципу опережающего отражения.
Например, сезонные изменения температуры обычно таковы, что могут быть самые неожиданные «тепловые скачки». Следовательно, внезапный мороз мог бы полностью погубить дерево, не имей оно механизма сигнализации.
Дерево (миндаль, например) отсчитывает холодные дни с осени, с самого первого дня, когда температура спустилась ниже плюс 18 градусов. По этому сигналу растение уже приготовилось к зиме. Даже если ударят жестокие морозы – не страшно. Растение выживает.
Потеплело. Растение начинает вести счет теплым дням. Однако оно не снимает еще зимней защиты. И лишь когда накопится теплых 650 градусо-дней, растение откроется навстречу весне. Почки, правда, еще не распускаются, они лопнут еще через 620 градусо-дней. Но растение уже направило все силы на подготовку к весне. И если сейчас ударит мороз – оно погибнет.
Конечно, бывает, что даже столь тонкая сигнализация не спасает растение от гибели – заморозки случаются поздние и сильные. Однако сам механизм приспособления, его целесообразность и необходимость для эволюционного развития не вызывают сомнений.
Теперь осталось ответить еще на один вопрос – о врожденной сигнализации. Установлено, что сигнальность является наиболее характерной чертой условного рефлекса. Однако согласно распространенным взглядам врожденные, то есть безусловные, рефлексы не могут иметь самого характерного свойства условного рефлекса – сигнальности, предупредительности.
Так, между условным и безусловным рефлексом воздвигалась неодолимая стена.
...Из яйца вылупился птенец грача. Он безотказно реагирует на такие раздражители, как движение воздуха, звук «кар-р-р», сотрясение гнезда. При этом на такие раздражители птенец реагирует пищевой реакцией – поднимает голову и раскрывает клюв – хотя раздражители не имеют сами по себе пищевого значения. Анализ ситуации, в которой живут грачи с первых дней рождения, показал, что все три эти раздражителя служат сигналами предстоящего вкладывания пищи отцом-грачом в раскрытый клюв птенца. Налицо, казалось бы, парадоксальный случай – «врожденный условный рефлекс», который обладает всеми чертами опережающего отражения действительности и сигнальной деятельности.
Между тем никакого парадокса здесь нет. В жизни птиц наличие воздуха и его движение являются важнейшим фактором существования. Не удивительно, что в процессе развития приспособительных реакций грача реакция на движение воздуха как на неизбежное следствие движения крыльев отца и матери была включена в функции нервной системы.
Таким образом, на основе исторической повторяемости последовательных изменений в нервной системе, предшествующих кормлению и связанных с движением воздуха, произошло закрепление наследственностью этих взаимосвязей. Так у новорожденного грача появилось опережающее отражение внешних событий. Здесь произошло принципиально то же, что уже было видно на примере первичных простейших организмов.
В самом деле, движение воздуха не есть пищевой продукт, не есть безусловный раздражитель, в том смысле как его обычно понимают в трактовке павловской школы. Оно служит сигналом кормления. А сигнал этот включает «пищевые центры» нервной системы.
Почему же раздражение кожи птенца движением воздуха связано и готовит его организм именно к приему пищи? Тут дело в том, что движение воздуха – это лишь одно звено в длинной цепи внешних явлений, которая заканчивается кормлением. Цепь эта выглядит так: мать уходит из гнезда; птенцы, раньше защищенные от движения воздуха телом матери, теперь этой защиты не имеют; раздается повторный звук «кар-р-р»; мать обмахивает крыльями птенцов, лежащих в гнезде; гнездо резко сотрясается – отец-грач, прилетевший с пищей, сел на его край; птенцы раскрывают клювы; пища вкладывается в клюв; возбуждаются органы пищеварительного тракта; переваривается пища.
Здесь не отмечены еще многие факты, реально предшествующие перечисленным явлениям. Дело в том, что отец-грач прилетает с кормом и садится на дерево так, чтобы он оказался в пределах зрительного поля матери, сидящей на птенцах. Мать, завидя отца, дает начало всему ряду явлений, о котором уже говорилось.
Раздражение кожи птенца движущимся воздухом является одним из промежуточных этапов данного ряда событий. Движение воздуха воздействует на нервную систему птенца наряду с другими факторами (звук «кар-р-р», сотрясение гнезда). Само раздражение кожи не является, как уже говорилось, пищевым раздражителем. Но возбуждение от него благодаря многовековому опыту предшествующих кормлений с огромной скоростью по готовым (врожденным) нервным связям доходит до пищевого центра – птенец поднимает голову и раскрывает клюв. Здесь природа дала исключительно наглядный пример опережающего отражения последовательных событий внешнего мира и его приспособительного значения в эволюции.
Как видим, даже единичные раздражители из привычной цепи событий «включают» всю цепь реакций организма, не дожидаясь, пока на птенца окажут влияние остальные звенья этой цепи. Такое опережающее действительность распространение возбуждения зафиксировано наследственностью в нервных структурах. Оно приобрело решающее приспособительное значение для птенцов. Если же у птенца к моменту появления на свет не созрела нервная связь между раздражением кожи от колебания воздуха и «пищевым центром» нервной системы, такой птенец должен быть немедленно отброшен естественным отбором. Он погибнет.
Интересно, что тщательные исследования нервных клеток привели к тому же самому выводу. Эти исследования показали: к моменту вылупления птенца из яйца созрели лишь те нервные клетки, которые способны воспринимать звук «кар-р-р».
Можно привести поразительные примеры опережающих отражений внешних событий другими организмами. Например, птица мухоловка-пеструшка выводит своих птенцов в дупле, куда лучи света поступают лишь через маленькое отверстие. Именно через это отверстие должны пролезать мать или отец, прежде чем кормить птенцов. Естественно, что когда мать или отец просовывают голову в дупло, исходная небольшая освещенность дупла исчезает и на какой-то момент воцаряется полная темнота. Родители не имеют никакой физической возможности сохранить свет. Временная темнота как раз и служит сильным стимулом для птенцов дуплянки: они немедленно все вытягивают шеи, раскрывают клювы и таким образом оказываются готовыми к приему будущей пищи.
В том, что именно временное и неизбежное исчезновение луча света стало здесь важнейшим фактором подготовки к кормлению, подтверждает и еще одна деталь. Птенцы кормятся регулярно потому, что они сами перемещаются по кругу против солнца. При этом, разумеется, в зоне луча оказывается поочередно каждый алчущий. Мать в темноте не может разобраться, кого кормит. Такое поведение птенцов хорошо компенсирует эту особенность семейной жизни: поел – и в сторону. Однако если птенцов заставить несколько поголодать, то есть повысить их пищевую возбудимость, между ними начнется борьба за то место, на которое падает луч света через отверстие дупла. Птенцы предвидят, что свет несет им пищу.
Чтобы представить себе, сколь сложные экспериментальные методы приходится применять, изучая механизмы предвидения и приспособления, целесообразно обратиться к работе американского ученого Кенеса Д. Роеда, который поставил ряд интереснейших опытов с ночными мотыльками.
УЛЬТРАЗВУК И МОТЫЛЬКИ
Для того чтобы защищаться от нападения, всякий представитель животного мира должен уметь быстро распознавать сигналы, поступающие из внешней среды, и быстро реагировать на них. Какие нервные механизмы позволяют живым существам осуществлять этот процесс?
Те из них, которые имеют центральную нервную систему, получают сигналы через специальные органы, связанные с мозгом многими тысячами нервных волокон. Исполнительные сигналы в виде последовательных импульсов передаются нервными волокнами двигательным мышцам, мускулам. В этих сложнейших процессах соприкасаются явления, которые изучаются многими отраслями зоологии, физиологии и психологии.
Даже высшие, последние достижения технической мысли позволяют создать аппаратуру, при помощи которой можно изучить импульсы всего лишь пяти или десяти (из многих тысяч) типов нервных волокон, связанных с мозгом млекопитающих. Попытки сделать на этой базе какие-то обобщения о характере получения и переработки информации всей нервной системой животного подобны изучению общественного мнения жителей большой страны на основе двух-трех интервью. (Кстати, если продолжить сравнение, то процесс выработки сигнала к действию на основе полученной информации можно уподобить формированию общественного мнения, которое складывается из различных взглядов, но в котором побеждает мнение большинства).
Дальнейший прогресс техники эксперимента может дать нам возможность исследовать сигналы в тысячах разных нервных волокон. В то же время не менее важно изучение живых организмов, обладающих простейшей системой нервного возбуждения.
Кенес Д. Роед и его коллеги долгое время изучали связь уха и центральной нервной системы ночного мотылька, который имеет всего лишь по два чувствительных нервных окончания в каждом ухе.
Многое в поведении этих насекомых не изучено. Исследования носили поисковый характер и сулили многое: ведь предстояло познать «механизм выживания» мотылька, который только благодаря своим ушам, своевременному распознаванию сигнала опасности и предвидению следующих за сигналом действий может уцелеть в борьбе за существование со своим главным врагом – насекомоядной летучей мышью.
Нужно сказать, что летучие мыши способны обнаружить свою жертву во время полета в полной темноте. Эти ночные хищники испускают серию ультразвуковых сигналов и по характеру их отражения от предметов («ультразвуковая локация») определяют местоположение, направление полета и расстояние до возможного объекта нападения.
Механизм «ультразвуковой локации» мыши настолько совершенен, что она может обнаружить насекомое много меньше москита.
Некоторые ночные мотыльки имеют уши, способные различать ультразвуковые сигналы мыши. Эти насекомые, услышав приближение врага, резко меняют направление своего полета, начинают петлять или взмывают вверх с огромной скоростью, удаляясь от источника ультразвука. Любопытно отметить, что такое насекомое меняет направление своего полета раньше, чем ультразвуковой сигнал, отразившийся от его тельца, возвращается обратно к мыши.
Слуховые органы мотылька размещены на задней части его грудной клетки и имеют выходные отверстия в районе сужения между брюшком и грудной клеткой. Каждое ухо выглядит, как маленькая раковина, внутри которой ясно видна барабанная перепонка, закрывающая воздушную полость. Внешние сигналы, воспринимаемые барабанной перепонкой через воздушную полость, передаются в центральную нервную систему мотылька к нервным волокнам, поддерживающим скелет, по тончайшему каналу. Внутри этого канала размещаются два акустических нервных волокна, известные, как А-волокна. Они-то и передают «волну ощущений» от барабанной перепонки к скелетным нервным волокнам. (Используя техническую терминологию, можно сказать, что два А-волокна собирают всю информацию о звуках и передают ее в центральную нервную систему.) Рядом с двумя А-волокнами в том же канале расположено неакустическое В-волокно. Все эти волокна продолжаются как «барабанный нерв» внутри центральной нервной системы.
Нервные импульсы в простом нервном волокне проявляются как электрическая «разность потенциалов» в несколько милливольт, возникающая на доли миллисекунды последовательно между отдельными точками волокна.
Скорость распространения этих сигналов может быть охарактеризована одной цифрой: по А-волокну от чувствительного органа до центральной нервной системы сигнал проходит менее чем за 2 миллисекунды.
Продвижение электрического сигнала по нервному волокну может быть воспринято специальным тончайшим электродом и передано затем на осциллограф, на экране которого возникает при этом характерная «пика».
Делается это следующим образом. Одна из мышц мотылька рассекается под микроскопом, и из нее выделяется «барабанный нерв». Тончайшие серебряные электроды соединяются с нервом. Они передают электрические сигналы, проходящие по нервным волокнам, на осциллограф. С мотыльками, подготовленными таким образом, и проводили эксперименты в импровизированной лаборатории на открытом воздухе.
Чтобы сделать точные измерения электрических явлений в нервах, был нужен контрольный источник ультразвуковых импульсов, подобных сигналам летучих мышей. Искусственный ультразвуковой электронный стимулятор в точности воспроизводил такие сигналы.
Используя электронную аппаратуру для выявления последующих ответных реакций А-волокон, удалось определить, какая акустическая информация доступна мотыльку. Ухо мотылька передавало к осциллографу такие импульсы, которые оно обычно посылает в центральную систему. А именно это интересовало исследователей.
Оказалось, что чувствительность слуховых органов мотылька примерно в 100 раз выше, чем у человека. Так, например, на расстоянии более 200 метров мотылек может слышать ультразвуковые сигналы мыши, чего человек не может вовсе.
Ухо мотылька принимает сигналы с частотой 10 килоциклов так же хорошо, как с частотой 100 килоциклов, одинаково хорошо воспринимает звуковые и ультразвуковые колебания. И еще: мотылек обладает свойством воспринимать чрезвычайно короткие звуковые сигналы, подлинные взрывы звуков.
Реакция А-волокна на искусственный или естественный сигнал-раздражитель отражалась на экране осциллографа в виде кривой с пиками, характеризующей электрический поток в нервных волокнах. Анализ кривых позволил установить, что насекомые пользуются четырьмя видами акустической информации.
Первый вид. Возникновение «пик» на экране осциллографа, что свидетельствует о наличии источника звука. Этот вид информации нельзя признать достаточным, так как пики, возникающие от длинных «вялых» криков далеко летящей, и потому безопасной мыши, могут быть похожи на пики коротких сильных сигналов приблизившегося хищника.
Поэтому мотылек должен «учитывать» и второй вид информации – частоту «пик». Чем чаще эти «пики», тем ближе мышь к мотыльку, ибо по мере их сближения на орган слуха насекомого действуют уже не только слышимые, но и «неслышимые» ультразвуковые колебания.
Третий вид информации характеризует непосредственную опасность. Если раньше в обоих рассмотренных случаях работало только одно А-волокно в каждом ухе, то после «опасного» сближения мотылька и мыши интенсивность сигналов становится так велика, что их воспринимают уже оба А-волокна.
И наконец, четвертый вид информации указывает, откуда приближается опасность: «пики», возникающие от действия звуков в одном ухе, появляются раньше, нежели подобные «пики» от звуков в другом ухе.
Эти выводы требовали экспериментальной проверки. Исследователи совместили «атаку звуками» от громкоговорителя со специальной фотографией, которая позволила зафиксировать, как мотылек в поле меняет направление полета в момент подачи сигнала.
Было установлено, например, что мотыльки, которые летели на большой высоте над источником звука, после подачи сигнала, меняли направление своего полета в горизонтальной плоскости. Те же, которые двигались непосредственно над источником звука, взмывали прямо вверх или резко поворачивались под острым углом к первоначальному пути. (Изменение полета в горизонтальной плоскости, очевидно, было связано с тем, что одно ухо мотылька воспринимало сигнал раньше другого).
Однако оставался нерешенным вопрос: как мотылек, имеющий только четыре А-волокна, то есть обладая очень примитивными органами чувств, точно ориентируется и по горизонтальным, и по вертикальным осям в зависимости от сигнала опасности?
Результаты опытов позволяют предположить, что существует взаимосвязь между положением крыльев мотылька и раздражением А-волокон акустическими сигналами. В зависимости от того, в каком положении находятся крылья мотылька – горизонтальном или вертикальном, – изменяется и степень «легкости» получения звуковой информации. Звук доходит до слуховых органов насекомого, преодолевая большие или меньшие помехи, создаваемые крыльями. А это, в свою очередь, определяет вертикальное направление его полета. Так, отсутствие различий между акустической информацией левого и правого уха, наличие четких колебаний в левом и правом «барабанных нервах» в момент взмаха крыльев сигнализируют мотыльку, что мышь – над ним. Если же различия в восприятии звуковых сигналов обоими ушами нет – значит, мышь ниже или сзади мотылька (заметим, что мотылек делает крыльями 30–40 взмахов в секунду; следовательно, информация о необходимости изменить или сохранить прежним направление полета по вертикали поступает в его нервную систему практически непрерывно).
Конечно, все сказанное здесь несколько идеализирует реальную природную ситуацию. Взаимодействия мыши и мотылька очень сложны. Мотылек может опознать врага на большем расстоянии, нежели мышь свою жертву. Но мыши передвигаются с большей скоростью.
Если мотылек быстро среагировал на опасность, раньше чем его заметила мышь, у него много шансов спастись. Если же мышь «засекла» мотылька и получила отраженный сигнал от своей мишени, мотылек подвергается огромной опасности. Хотя и в этом случае положение не безнадежно – мотылек маневреннее «противника» и может проделать фигуры высшего пилотажа, которые сбивают мышь с толку.
Прибавьте к этому умение некоторых видов мотыльков издавать лапками ультразвуковые колебания, слышимые мышью. Мотылек как бы говорит мыши: «Приди и съешь меня». Это кажется невероятным. Ученым еще предстоит разгадать цель этого сигнала.
Сейчас исследована лишь часть комплекса проблем, лежащих в основе изучения акустических систем мотылька.
Описанная работа американских исследователей представляет большой интерес для разных отраслей науки. Прежде всего нужно отметить высокую технику эксперимента: ввести в лапку мотылька крошечное передающее устройство, позволяющее следить за работой акустического нерва насекомого в свободном полете, – чрезвычайно сложная задача. Однако здесь техника не ради техники. Физиологи давно мечтали о возможности изучать различные процессы живых организмов в привычной, а не в искусственной среде. Для этого нужны были сигнальные устройства, которые не мешали бы исследуемому объекту жить обычной жизнью. Работа американских ученых наглядно показала возможность создания микроминиатюрных датчиков, источников сигналов, не нарушающих обычной деятельности даже таких «хрупких» подопытных объектов, как насекомые. Подобные наблюдения могут быть расширены и с успехом применены для изучения процессов жизнедеятельности многих животных.
И наконец, знание структуры слуховых органов мотылька принесет немалую пользу инженерам, работающим в области ультразвуковых устройств. Ведь ухо мотылька «сконструировано» поразительно просто. Технические устройства, созданные людьми для подобных целей, много сложнее.
Нельзя не отметить здесь и замечательное явление природы: организм в процессе борьбы за существование может с поразительной точностью отразить в своей структуре внешние факторы, имеющие существенное значение для жизни. Нападающий в процессе естественного отбора «изощряется» в средствах поиска и нападения (локация мыши), а защищающийся (мотылек) в ответ на это развивает еще более совершенные средства защиты (органы чувств).
В рассматриваемом примере видно величие природы, которая использует все возможные средства материи, лишь бы выжить и продолжить в своем потомстве существующие виды.
ЧЕРЕЗ ОКЕАН СЛЕЗ
Кто-то из философов однажды образно сказал: «Только человек считает для себя приемлемым переплыть океан слез, чтобы приобрести каплю радости». Сказано красиво и возразить как будто трудно. Но опыты, связанные с проблемой предвидения, убеждают нас в неточности этого высказывания. Вот один характерный пример. В мозг крысы вводились электроды, по которым сама крыса, нажимая педаль-включатель, периодически подавала слабый электрический ток. При определенном положении электродов в мозгу электрическое воздействие, видимо, доставляло крысе наслаждение. Животное предвидело, что нажим на педаль вызовет в ее мозгу приятное раздражение, и замыкало цепь с поразительной интенсивностью до 1400 раз в час.
Затем опыт был усложнен. Между крысой и включателем поместили раскаленные прутья. Зверек бежал по этим прутьям, пренебрегая болью от ожогов, бежал к вожделенной кнопке, чтобы включить ток.
Мозговое вещество является материальным воплощением основной закономерности живой материи: опережающего отражения внешнего мира. Но каковы сходства и различия предвидения на уровне примитивной жизни и на уровне условного рефлекса?
Развитие органов чувств у животных связано с необходимостью более совершенного приспособления к внешнему миру. Органы чувств переводят различные (по видам энергии) внешние раздражители в единый химический процесс организма. Смысл этого состоит в том, что даже в ответ на одиночный раздражитель создается определенная, состоящая по крайней мере из миллиона микроочагов система реакций нервной системы. Эта система имеет сложную архитектуру и дает обширную информацию целому организму не только о том, «как» и «какое» раздражение было нанесено, но и о том, «где» и «когда» оно было нанесено.
По сложности распределения микроочагов химических реакций, по количеству и качеству перерабатываемой информации мозг не идет ни в какое сравнение с любой другой формой живой материи.
Достаточно напомнить, что мозг устанавливает связи и с отложенным в памяти, и с опытом прошлого, и с грандиозными планами на будущее.
Однако если оба этих явления – опережающее отражение действительности у примитивных существ и условный рефлекс у высших животных – сравнивать исключительно с точки зрения отражения последовательно развивающихся явлений внешнего мира, то можно сделать вывод: механизм формирования отражения действительности в том и в другом случае соответствует одной, уже рассмотренной схеме.
Химическое объединение реакций, возникавших раздельно, последовательно и повторно, а затем «запуск» всей этой системы с одного звена – вот что является принципиально общим для обоих столь различных уровней эволюции.
Вместе с тем это же есть историческая основа для развития всех видов сигнальных приспособлений, то есть подготовка организма к предстоящим событиям.
Рассмотренные закономерности делают еще более убедительным то положение, что условный рефлекс в его основных биологических и нейрофизиологических механизмах есть частный случай той универсальной закономерности, которая в простейшей форме появилась уже на стадии примитивных живых существ.
Накопление материалов на этом пути все больше расширяло рамки представлений об условном рефлексе. В настоящее время можно твердо сказать, что И. П. Павлов вскрыл кардинальную и всеобщую черту исторического развития и усовершенствования живого мира. Понадобились миллиарды лет, чтобы примитивная форма цепных химических реакций, присущая праорганизмам, развилась в самой совершенной форме живой материи – в нервном веществе.
Однако несмотря на весь грандиозный путь такой эволюции и значительные преобразования самих форм предвидения, ее основной закон – опережающее отражение последовательно повторяющихся рядов внешних явлений – остался в силе. Он приобрел лишь специальный аппарат – мозг, вещество которого высокоспециализировано именно на «химическое сцепление» последовательных и повторных воздействий внешнего мира. Это обстоятельство и обусловило столь широкое и совершенное овладение будущим, какое выявляется в поведении высших животных и человека. Энергетическая сторона отражения, то есть изучение превращения организмом внешних энергий (свет, тепло, химические агенты) в информацию о материальных свойствах внешнего мира, несомненно является одной из основных проблем науки. Сейчас этот «первичный узел отражения» может быть изучен на очень высоком уровне, если только будет применен весь арсенал современных достижений биофизики, теории информации, теории кодирования других смежных отраслей знаний.
Но есть и другая форма отражения – отражение в свойствах организма временной структуры мира, о которой мы уже вели речь. Мы видели, что лейтмотивом такой формы отражения служит опережающее отражение, что дает мозгу на высшем этапе развития организмов совершенно точную информацию о последовательных и повторяющихся рядах явлений внешнего мира. Здесь следует отметить, что на основе именно этого вида отражения был сформирован и специализировался сам мозг как орган психической деятельности, то есть орган всеобщего отражения мира в мыслительной деятельности человека.
Все сказанное явно убеждает, что опережающее отражение последовательного хода внешних событий – предвидение – не является чем-то исключительным, а есть лишь одна из форм отражательной способности живой материи.
Механизм предвидения основывается на химических процессах, происходящих в нервных клетках. Скорость этих химических реакций значительно выше скорости любого человеческого действия. Поэтому сигналы, которые определяют результат действия, заранее «обегают» все нужные нервные клетки.
Рассмотрим более подробно процесс, происходящий как в целом мозге, так и в одной нервной клетке. Он представляет собой суммирование, объединение всей входящей в мозг информации. Наибольшее значение имеют четыре ее вида.
Прежде всего – мотивация. Под мотивацией мы понимаем то основное состояние, которое присуще организму на стадии выработки решения о действии. Мотивационное возбуждение составляет необходимый элемент любого действия, ибо смысл всякого действия – создать достаточно благоприятные условия существования организма, исходя из данного его состояния. Всякое действие удовлетворяет какую-то потребность организма.