Текст книги "Девять цветов радуги"
Автор книги: Александр Штейнгауз
сообщить о нарушении
Текущая страница: 7 (всего у книги 23 страниц)
После кризиса
В конце прошлого и начале нашего столетия были сделаны не только перечисленные открытия. В эти годы количество новых фактов, собранных физиками, было особенно велико. Многие новые факты имели не только частное значение, а затрагивали основы наук.
Здесь не стоит перечислять открытия тех времен. Достаточно лишь сказать, что они положили начало современному расцвету физики. Казалось бы, эти открытия должны были вдохновлять ученых на новые, еще более энергичные поиски. И, конечно, так оно и было. Но в то же время все оказывалось очень трудным и сложным.
Новые открытия не укладывались в рамки детально разработанных, проверенных жизнью, признанных всеми теорий – тех теорий, которые многие ученые считали незыблемыми и даже абсолютно верными. И вот на их глазах эти теории рушились. Многие ученые считали, что новые факты не оставляют камня на камне даже от величественного здания классической механики. И некоторые из ученых, видя происходящее, но не умея правильно объяснить его, высказывали даже мнение, что верную теорию вообще невозможно создать, что все и всяческие теории, как бы хороши они ни были, не что иное, как порождение нашего ума, и совершенно не отражают и принципиально не могут правильно отражать явления окружающего нас мира.
Это было «смутное время», и его принято называть кризисом физики.
Когда вы будете изучать книгу В. И. Ленина «Материализм и эмпириокритицизм» и особенно главу «Новейшая революция в естествознании и философский идеализм», вы увидите, сколь глубоким был этот кризис, какой болезненной оказалась ломка старых представлений в сознании многих физиков.
К счастью, все выдающиеся ученые обладают очень важным свойством; его можно назвать одним словом – бесстрашием. Бесстрашием перед фактами, каковы бы они ни были. И это свойство неизбежно приводило большинство из них к правильным выводам, которые помогали им выходить из самых трудных положений и развивать науку. При этом они сознательно, а иногда не отдавая себе отчета, принимали единственно верную философскую основу науки – материализм.
Именно поэтому было преодолено временное смятение, постигшее физиков во время кризиса. И, когда оно осталось позади, стало ясно, что в физике совершилась подлинная революция.
Максвелл закончил свой знаменитый «Трактат» в 1873 году. В нем он доказал, что свет представляет собой электромагнитное явление. Но это было далеко не все. Хотя сам Максвелл, создавая свою теорию, исходил из того, что эфир существует, эта теория не являлась доказательством его существования. Она оставалась справедливой и в том случае, если считать, что для распространения света не требуется никакой промежуточной среды, потому что одним из свойств электромагнитных колебаний является их способность поддерживать самих себя и благодаря этому распространяться в абсолютной пустоте. Иными словами, можно было отказаться от гипотезы о существовании эфира. Однако даже самому Максвеллу эта сторона его теории была не вполне ясна.
Теоретические положения Максвелла удалось подтвердить прямым экспериментом только в 1888 году. Но уже гораздо ранее, в 1881 году, гипотезе о существовании эфира был нанесен первый сокрушительный удар.
То, что теория Максвелла остается справедливой и при отказе от эфира, физики поняли не сразу и продолжали верить в существование эфира. В числе их были голландский физик Гендрик Антон Лоренц (1853–1928) и Герц. Тот самый Герц, которому суждено было через несколько лет первым подтвердить правильность электродинамики Максвелла. И Герц и Лоренц создали свои теории, объяснявшие взаимодействие электромагнитных колебаний и эфира. Основным различием этих теорий было следующее: Герц считал, что движущиеся материальные тела увлекают за собой эфир, а Лоренц был сторонником неподвижного, неувлекаемого эфира.
Теория Герца не получила широкого распространения, потому что к моменту ее создания были известны уже проверенные опытные данные, опровергавшие ее. Что же касается теории Лоренца, то она была более совершенной и не расходилась с известными в то время опытными данными. Однако ее следовало проверить в самом главном. Она утверждала, что скорость света будет различной в случае, если свет излучается в направлении, совпадающем с движением Земли в пространстве, и в случае, когда направление света перпендикулярно этому движению.
Но провести такой опыт было куда труднее, чем Левше из рассказа Лескова подковать знаменитую «аглицкую» блоху. Точность, требовавшаяся от эксперимента, была необыкновенно высокой. Это объясняется тем, что скорость Земли в пространстве составляет всего лишь одну десятитысячную долю от скорости света. И все же необходимый эксперимент был проведен. Впервые это удалось американскому профессору физики Альберту Абрахаму Майкельсону (1852–1931). Результаты опыта показали, что скорость света не зависит от направления движения и скорости источника света.
Опыт Майкельсона явился смертным приговором гипотезам о существовании эфира.
Если бы последствия этого опыта ограничились только такими выводами, то и тогда их можно было бы считать крайне значительными для науки. Однако последствия были куда более важными: факт, установленный Майкельсоном, привел к пересмотру всей классической механики, законы которой, как выяснилось, справедливы только при малых скоростях тел.
И недаром в 1887 году Майкельсон совместно с физиком Морли вновь повторил эксперимент, а затем в течение долгих лет его снова и снова со все возрастающей точностью проводили многие ученые. Некоторые из них, быть может, проводили его с тайной надеждой опровергнуть полученные результаты. Но постоянство скорости света неизменно подтверждалось.
Ученые понимали, какие серьезные последствия мог повлечь за собой этот факт. Они видели, что он подрывает не только теории сами по себе, но и основы мировоззрения, складывавшиеся веками.
Выход из создавшегося положения нашел ученый Эйнштейн. В 1905 году он опубликовал свою революционную теорию относительности. За основными постулатами и формулами этой теории возникала необыкновенная картина окружающего нас мира.
Это был мир, в котором время уже не являлось универсальным пульсом беспредельной Вселенной. Часы в нем меняли свой темп в зависимости от скорости перемещения. В этом мире не было постоянных размеров: одно и то же движущееся тело имело различные размеры для разных наблюдателей. И даже масса – нечто, всегда казавшееся прочным, неизменным и неисчезающим, – приобретала новые неожиданные свойства: она тоже зависела от скорости движения тела. И, что не менее важно, масса таила в себе колоссальные запасы энергии. Массу и энергию уже нельзя было рассматривать независимо друг от друга, потому что между ними была обнаружена непосредственная связь.
Эта новая, фантастическая и не освоенная еще сознанием картина мира куда вернее отражала реальный мир, чем та, которую рисовали себе физики предыдущих поколений. К счастью, новооткрытые черты природы не противоречили старым – они лишь дополняли их и проявлялись только в тех случаях, когда скорости тел становились сравнимыми со скоростью света. При обычных же скоростях эти новые свойства можно было обнаружить с помощью самых чувствительных приборов, да и то в особых случаях; и мир снова превращался в обжитой и уютный ньютоновский мир. Классическая механика по-прежнему оставалась в нем законодательницей. Но теперь ученым были уже известны пределы ее владений: она оставалась справедливой только при скоростях, значительно меньше световых. Когда же скорость тел становилась сравнимой со скоростью света, следовало пользоваться новыми, открытыми Эйнштейном законами.
Теория относительности – великое завоевание человеческого ума, и всемирная слава не зря сопутствовала выдающемуся физику-мыслителю на протяжении всей его жизни. Но Эйнштейн создал не только теорию относительности. В том же 1905 году он, опираясь на закон Столетова и на известную нам работу Планка, объяснил явление фотоэффекта и тем самым положил начало новому пониманию процессов взаимодействия света с веществом. Если бы Эйнштейн за всю свою жизнь не дал бы науке ничего, кроме формулы фотоэффекта и ее толкования, то и этого было бы достаточно, чтобы его заслуги перед наукой не уступали заслугам многих ученых, навсегда оставивших по себе память в истории физики.
Для того чтобы отличать кванты световой энергии от прочих квантов, их назвали фотонами. Энергия фотонов (или величина квантов излучаемой энергии) меняется в зависимости от длины волны излучаемого света. В то же время она строго неизменна для данной длины волны. Мы помним также, что исследования фотоэффекта показали, что скорость выбитого из фотокатода электрона зависит только от длины волны падающего света, но не зависит от его интенсивности. Этот факт полностью противоречил волновой теории и, в частности, математическому определению энергии света, вытекающему из этой теории.
Эйнштейн, объясняя явление фотоэффекта, отказался от волновой теории – он понимал, что никакие искусственные построения не смогут спасти ее. Он пошел по другому пути, который, возможно, подсказала удивительная общность между фактами излучения энергии черным телом и фактами, обнаруженными при исследовании фотоэффекта.
Вот эти уже известные нам факты:
1. Энергия (или скорость) электрона, выбитого светом из фотокатода, при освещении монохроматическим светом неизменной длины волны всегда одна и та же. Чем короче длина волны падающего света, тем больше энергия (или скорость) электрона.
2. Энергия излученного фотона при неизменной длине волны всегда одна и та же. Энергия фотона тем выше, чем короче длина волны излучаемого света.
Вот выводы, к которым пришел Эйнштейн, проанализировав эти факты:
1. Энергия фотона, проникшего в вещество фотокатода, целиком и полностью отдается только одному из электронов, находящемуся в веществе фотокатода.
2. Повышение энергии электрона, выражающееся в повышении его скорости, приводит при достаточной величине энергии фотона к вылету электрона из фотокатода. Чем выше энергия фотона, тем больше энергия (скорость) вылетевшего электрона. Последнее на языке волновой теории выражается так: чем короче волна падающего света, тем выше энергия (скорость) выбитого из фотокатода электрона.
3. Чем выше интенсивность света, тем, следовательно, больше фотонов в единицу времени падает на фотокатод, тем больше выбивается из него электронов, то есть тем больше ток.
Именно эти выводы и положены в основу объяснения явления фотоэффекта. Они позволяют создать не только качественную, но и количественную теорию этого явления.
Однако это далеко не все. Определение светового кванта – фотона, данное Планком чисто математически, ничего не говорило о физической сущности фотона; оно описывало только его энергию. Но о том, как ведет себя фотон в пространстве, каким, хотя бы очень приближенно, следует представлять его, никто до Эйнштейна не говорил. Пояснить понятие фотона Эйнштейну помогла созданная им теория относительности.
Один из важных выводов этой теории говорит, что фотон обладает массой. Правда, в отличие от обычных тел, фотон не имеет массы покоя. Его вообще нельзя мыслить неподвижным – он может перемещаться в пространстве только со скоростью света, ибо он и есть свет, вернее, частица его. Но не та ньютоновская корпускула, которая представлялась как некое мельчайшее зернышко, как некое абсолютно упругое тельце и которую вполне можно представить себе неподвижной в пространстве и неизменной во времени. Нет, фотон совсем не таков: он весь в движении, он не может существовать вне его.
И все же, несмотря на такие необычайные свойства фотона, многие признаки дали ученым право отнести его к разряду частиц и, следовательно, вновь пересмотреть свои воззрения на природу света.
В наши дни свет уже не считается волновым явлением в классическом смысле этого слова.
Как же быть в таком случае с волновыми представлениями? Неужели волновая теория неверна и от нее следует отказаться? К счастью, нет. Не только не следует, но и невозможно перечеркнуть волновую теорию. Ибо она по-прежнему верно отражает и объясняет огромное количество фактов, широкое многообразие проявлений света. Но не все. Теперь мы знаем, что волновая теория хоть и верна, но не всеобъемлюща. Иными словами, она не является универсальной теорией, так как не в состоянии объяснить, например, такое явление, как фотоэффект. Точно так же не была универсальной и теория света, в создании которой участвовал Эйнштейн. Новая корпускулярная, или квантовая, теория, дав объяснение фотоэффекта и других явлений и даже предсказав новые важные факты, столкнулась с непреодолимыми трудностями при попытке объяснить с помощью новых понятий явления интерференции и дифракции.
Вот какое положение сложилось в оптике после возникновения новой теории света.
В одних случаях ученым по-прежнему приходилось пользоваться волновой теорией, в других – новыми представлениями, новой теорией. Правда, между двумя этими теориями не было «непроходимой пропасти»; целый ряд фактов, таких, например, как давление света, не противоречил обеим теориям. И это давало надежду создать такую теорию, которая с равным успехом была бы применима как для объяснения явлений интерференции и дифракции, так и явлений излучения черного тела и фотоэффекта.
И действительно, в годы последовавшего бурного развития было сделано многое, для того чтобы осмыслить и устранить подобную двойственность теорий, двойственность понимания природы света.
В эти годы учеными был открыт поразительный факт, показывавший, что электрон, подобно свету, может в отдельных случаях толковаться как частица, а в других случаях – как волна. Иными словами, они открыли, что в некоторых условиях электрон ведет себя как волна.
Длина волны, связанной с электроном, зависит от его скорости. Чем скорость выше, тем короче волна. Так, при ускорении электрона в электростатическом поле конденсатора, к обкладкам которого приложено напряжение 25 тысяч вольт, длина волны, связанной с электроном, будет равна 0,0075 миллимикрона, или 7,5 ангстрема. Движущийся электрон, встречаясь на своем пути с малым (сравнимым с длиной волны) препятствием, так же, как и свет, испытывает дифракцию. А это ли не самое очевидное доказательство его волновых свойств?!
Проявление электроном столь, казалось бы, противоположных свойств подтверждает гениальное высказывание Владимира Ильича Ленина, который в книге «Материализм и эмпириокритицизм» писал:
«„Сущность“ вещей или „субстанция“ тоже относительны; они выражают только углубление человеческого познания объектов, и если вчера это углубление не шло дальше атома, сегодня – дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом…»
Иногда понимают это утверждение Ленина как прямое указание на дальнейшую «механистическую» делимость электрона. Отрицать в настоящее время возможность такого разделения когда-либо в будущем, видимо, нельзя. Но Владимир Ильич говорил не об этом – он утверждал лишь неисчерпаемость электрона как объект человеческого познания. И правота его слов теперь блестяще подтверждена уже известными ступенями познания электрона: лучи – частица – волна. И, чем глубже мы будем проникать в тайны природы, тем больше различных свойств того же электрона будет нам открываться.
Это в полной мере относится и к познанию света. Современным уровнем знаний никоим образом не исчерпывается история развития физических представлений о свете. Они будут обогащаться и углубляться, пока будет развиваться сама физика, ибо свет – один из самых важных объектов этой науки.
* * *
Итак, рассказ о природе света закончен, вернее, прерван на том месте, где следовало бы перейти к самым современным, значительно более полным и точным воззрениям на природу света. Можно было бы продолжить рассказ дальше, но тем не менее здесь это не будет сделано.
И вот по каким причинам.
Прежде всего потому, что современная теория света оперирует такими понятиями, которые коренным образом отличаются от понятий и явлений, воспринимаемых непосредственно нашими чувствами. Говоря о современных понятиях теории света, советский физик, академик Сергей Иванович Вавилов (1891–1951) указывал, что они не могут быть представлены в воображении или описаны словами, – описать их можно только языком математики.
«Наши механистические понятия, – писал он, – не в состоянии полностью охватить реальность, для этого не хватает наглядных образов».
Кроме того, нынешний этап развития теории света далеко еще не завершен, и это обстоятельство еще более усугубляет трудности популярного ее изложения.
Мы можем сказать только то, что физикам удалось если не полностью, то в значительной степени продвинуться в деле создания единой теории света, которая в равной мере правильно объясняет все известные на сегодня явления в области оптики. Эта теория одновременно позволила ученым значительно глубже понять природу света.
Стоит еще раз подчеркнуть, что современный этап развития науки о свете еще далеко не завершен. Поэтому, по мере того как будут накапливаться новые факты, открываемые благодаря совершенствованию техники экспериментов, по мере развития теоретических методов представления о свете будут становиться все более глубокими и точными.
Не следует забывать, что современный этап развития оптики не есть последний. Известно, что создать абсолютную теорию невозможно. И все то, о чем пришлось узнать читателю, подтверждало эти слова. Но эта порой очень острая борьба теорий ни в коем случае не говорит, что рано или поздно каждая теория должна отмереть полностью, а ее должна сменить новая и тоже смертная теория. Было бы неверным так понимать историю развития науки.
В самом деле. Вы можете проследить, что умершая корпускулярная теория не исчезла бесследно. Она возродилась, но уже на основе огромного количества новых знаний. Эта теория не упразднила волновую, она лишь дополнила ее. Самая же новая теория света использовала и ту и другую теорию. Во многом отличаясь от своих предшественниц, она все же объединила их, а не отбросила как негодные. И в то же время новая теория указала границы применимости старых. И в этих границах можно пользоваться ими даже с большей уверенностью, чем до того, как эти границы стали известны.
Подобное случилось и с классической механикой, законы которой вы изучаете в школе. Вначале она была единственной, и поэтому никто не знал, до каких же пределов она справедлива. Затем была создана механика, построенная на постулатах теории относительности. Это вовсе не означало, что классическая механика неверна. Нет, она правильна, но не всеобъемлюща. Не исключено, что то же самое произойдет и с теорией относительности. Со временем ее так же может заменить какая-то новая, неизвестная сейчас теория. Однако теория относительности подтверждена столькими фактами, что ее ни в коем случае не удастся отбросить как совершенно неверную.
В настоящее время в физике уже раздается критика в адрес этой теории. А некоторые ученые, даже такой известный, как Поль Дирак, вновь поднимают вопрос о существовании некоей мировой среды, которая в некотором смысле напоминает эфир. Трудно сказать, сколько правоты в нынешних критиках, и неясно, насколько обоснована точка зрения Дирака. Истина, как известно, рождается в спорах. И наука только выигрывает от споров, сосредоточенных на узловых ее вопросах, но она проигрывает, когда в ход пускается необоснованная критика. Это стоит запомнить читателям, среди которых, быть может, находится и тот, кому придется сказать новое слово в физике.
Вторая причина, которая позволяет не останавливаться подробно на современном этапе развития оптики, значительно проще.
Если этот незавершенный рассказ понятен читателю, то в подобном отсутствии завершенности нет особой беды. Ведь в этой книге история развития воззрений на природу света прервана не на первой попавшейся строке. Рассказ был окончен как раз на том состоянии вопроса, которое полностью соответствует пониманию природы света, господствующему и поныне во всех тех отраслях науки и техники, где свет широко используется, но не исследуется.
Иными словами, и по настоящий день вполне закономерно рассматривать свет либо как волновое явление, либо как квантовое, в зависимости от области его использования. Так, при разработке оптических систем для микроскопов, телескопов, фотоаппаратов и тому подобного пользуются исключительно волновой теорией света, а при разработке приборов, основанных на явлении фотоэффекта, опираются на квантовые представления о свете.
Именно так и следует рассматривать свет читателю. Подобная точка зрения не устареет в практике в течение многих лет. Насколько она верна, показывают замечательные успехи в деле практического применения и использования света. О них вы и узнаете из последующих глав.