355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Штейнгауз » Девять цветов радуги » Текст книги (страница 13)
Девять цветов радуги
  • Текст добавлен: 13 июня 2017, 22:30

Текст книги "Девять цветов радуги"


Автор книги: Александр Штейнгауз



сообщить о нарушении

Текущая страница: 13 (всего у книги 23 страниц)

«Острота зрения» телескопа с диаметром зеркала 508 сантиметров в 1200 раз выше, чем у глаза. Это означает, что наименьший объект, форму которого еще можно различить, должен иметь угловой размер не менее 0,05', что на поверхности Луны будет соответствовать линейному размеру 50 метров, а на поверхности Марса – 8 километрам. Можно видеть и меньшие предметы, но форму их определить окажется невозможным: круг, квадрат, прямоугольник или любая другая фигура при этом становятся неотличимыми друг от друга, представляя собой некие расплывчатые пятнышки. Наибольшее полезное увеличение 508-сантиметрового рефлектора, как мы уже говорили, равно примерно 1200, но поле четкого зрения у него очень мало – всего лишь 0,25° в поперечнике; в него не поместится целиком даже Луна.

При чрезмерно большом увеличении наблюдению светил начинает препятствовать явление дифракции. На снимке приведено изображение Сириуса; лучи, расходящиеся в стороны, возникли за счет дифракции.

Предел увеличению ставит и яркость наблюдаемых объектов. При повышении увеличения яркость изображения в телескопе будет падать. Это и понятно – ведь количество фотонов, попадающих в глаз или на пластинку, определяется только яркостью самого объекта, расстоянием до него и диаметром объектива телескопа, но не зависит от увеличения. С ростом же увеличения растет размер изображения, и то же самое количество фотонов должно будет распределиться на большей площади. Следовательно, на каждое зернышко эмульсии или на каждую светочувствительную клетку на сетчатке глаза придется меньшее количество фотонов. Такое падение освещенности фотопластинки или сетчатки при наблюдении объектов малой яркости может оказаться недопустимым[27]27
  Не следует забывать, что все эти рассуждения относятся только к случаю наблюдения объектов первой категории. При наблюдении объектов второй категории, которые представляют собой точечные светящиеся тела, об увеличении нет смысла говорить. Можно лишь интересоваться дальностью видимости точечных источников света. Как мы помним, глаз может заметить свечу (теоретически) на расстоянии 30 километров. При использовании 500-сантиметрового телескопа это расстояние достигнет 18 750 километров. Но при этом мы не увидим ни свечи, ни язычка пламени – мы увидим только светлую точку. Но разрешающая способность важна и в этом случае: чем она больше, тем легче удается различить отдельные звезды в скоплениях.


[Закрыть]
.

Если первые две причины, ограничивающие увеличение, определялись диаметром телескопа, то есть так или иначе зависели от человека, то третья, весьма существенная причина имеет совсем иную природу и совершенно не подчиняется нашей воле. Эта причина – состояние атмосферы.

В контейнере установлены два телескопа: большой – для фотографирования светил, а с помощью малого телескопа и специального автомата осуществляется наводка большого телескопа на заданное светило (малый телескоп спереди).

Оказывается, наша атмосфера не столь уж прозрачна и однородна, как мы привыкли считать. И дело вовсе не только в облаках, туманах и пыли. Есть другие не менее неприятные помехи для астрономических наблюдений. Речь идет о тех малозаметных мельчайших изменениях плотности атмосферы, которые обычно можно наблюдать над разогретыми поверхностями: над асфальтовой лентой шоссе, над большими полями или над степью. Если смотреть сквозь толщу воздуха над такими поверхностями, то мы увидим, что воздух струится и дрожит от мелких токов, словно густой сахарный сироп, растворяемый в воде.

Такие колебания атмосферы, даже выраженные в гораздо меньшей степени, – страшные враги астрономов. Они мешают им вести наблюдения, потому что приводят к непрерывным и неконтролируемым изменениям резкости изображений небесных тел. Они сказываются тем сильнее, чем больше увеличение телескопа. Поднимать его выше определенной величины нет смысла – изображение от этого только ухудшится. Чтобы избавиться от таких помех, астрономы поднимаются высоко в горы, где воздух не только чище, но и гораздо спокойнее. Так, в СССР Абастуманская и Бюраканская обсерватории построены в горах на высоте 2000 метров над уровнем моря.

Атмосфера Земли создает и другие помехи – она оказывается неодинаково прозрачной в различных участках спектра. На некоторых длинах волн она поглощает почти весь свет. И это свойство атмосферы очень мешает астрономам при исследовании спектров Солнца и звезд. До последнего времени астрономам приходилось бороться с этой трудностью только косвенными методами. Но несколько лет назад в иностранных журналах появилось сообщение, что американским инженерам удалось помочь ученым: они сумели поднять телескоп над атмосферой. Такой подъем осуществляют двумя способами.

Первый – это подъем контейнера с телескопом и другой аппаратурой на стратостате.

Стратостат такого типа, как изображенный на фотографии, способен подняться настолько высоко, что под ним остается практически вся атмосфера.

Контейнер с телескопом поднимается над плотными слоями атмосферы с помощью стратостата.

Эти прекрасные снимки Солнца были сделаны со стратостата.

На такой высоте (20 километров и более) телескоп автоматически наводится на Солнце и опять-таки с помощью автоматов производится фотографирование Солнца в различных лучах спектра и снимаются спектрограммы. Одна из фотографий, сделанных со стратостата, и приведена здесь.

Второй способ – это подъем телескопа на высотной ракете. Конечно, телескоп на ней можно установить только очень небольшой. Зато атмосфера уже не помешает повысить увеличение. Как и на стратостате, фотографирование и другие исследования производятся автоматически. При возвращении ракеты в атмосферу отсек с установленной в нем аппаратурой спасается с помощью парашютов. Снимки Солнца, сделанные с борта высотной ракеты, вы тоже можете здесь увидеть.

Поверхность Солнца, сфотографированная при большом увеличении телескопа. Телескоп был установлен на борту ракеты.

Ракетные исследования верхних слоев атмосферы и солнечного излучения ведутся уже более десяти лет. Как известно, метеорологические и геофизические ракеты использовались наукой еще за несколько лет до запуска первого спутника.

Но вот 4 октября 1957 года над Землей закружился первый искусственный спутник. Он был еще очень мал – небольшой шар весом примерно 80 килограммов, но сигналы его радиопередатчиков, знаменитые «бип-бип», всколыхнули весь мир, возвестив человечеству начало новой эпохи.

Для точного определения траектории спутника его фотографируют в полете с помощью специальных киноустановок. Пунктирная линия – след спутника в небе. Слева, внизу, фотографируется шкала очень точных часов, что позволяет точно определять время полета спутника.

Вот как выглядели на экране осциллографа сигналы первого искусственного спутника Земли, его знаменитые «бип-бип».

Первые спутники Земли были предназначены для исследования околоземного пространства, о котором ученые в то время знали гораздо меньше, чем теперь. Так, им еще не были точно известны границы земной атмосферы, и они не могли даже достаточно точно предсказать, сколько времени просуществует на орбите первый спутник.

После запуска первых трех спутников наука получила очень ценные сведения о метеоритной опасности, о космическом излучении; она открыла пояса интенсивной радиации, окружающие Землю, уточнила свои знания об атмосфере. Не менее ценные знания получила и техника. Опыт по созданию и запуску спутников позволил вскоре перейти к решению более сложной проблемы. 2 января 1959 года был дан старт первой космической ракете, которая стала первой искусственной планетой солнечной системы. Осенью того же года была запущена новая космическая ракета, достигшая Луны. А через два года после запуска первого спутника советские люди послали новую ракету.

Отделившаяся от этой ракеты межпланетная станция облетела Луну и, приблизившись к Земле, передала с помощью телевизионных устройств фотографии неведомой дотоле обратной стороны Луны. Это был новый триумф на пути прямых исследований солнечной системы[28]28
  12 апреля 1961 года сбылась мечта человечества – первый космонавт, советский летчик Ю. А. Гагарин, облетел Землю на корабле-спутнике «Восток»; 6 августа 1961 года совершил 25-часовой полет второй космонавт Г. С. Титов; а 11 и 12 августа 1962 года уже два советских космонавта А. Г. Николаев и Π. Р. Попович совершили групповой полет.


[Закрыть]
.

Современная техника вооружила астрономов еще одним мощным инструментом для исследования Вселенной.

Последовательные снимки искусственной кометы – облака натрия, которое было вы пущено в космосе автоматической межпланетной станцией, сфотографировавшей Луну.

Мы уже знаем, что принципиальной разницы между радио и световыми волнами нет. Она заключается лишь в том, что самые длинные световые волны значительно короче самых коротких радиоволн. Поэтому и на радиоволнах можно создать некое устройство, которое по своему назначению будет похоже на телескоп. Такое устройство должно улавливать не световые волны, а радиоволны, излучаемые небесными телами. По аналогии с телескопом его назвали «радиотелескоп».

И это не поверхностная аналогия. Между оптическим и радиотелескопом действительно очень много общего. По существу, радиотелескоп очень похож на телескоп-рефлектор. Так же как и в рефлекторе, в радиотелескопе используется параболическое собирающее зеркало. Правда, оно отличается от оптических зеркал. Его поверхность делают из листов металла или даже из металлической сетки. Для световых волн она не является зеркалом, но радиоволны великолепно отражаются не только от листов металла, но и от металлической сетки, при условии, что размеры сторон каждой из ее ячеек будут меньше наикратчайшей из принимаемых радиоволн.

Этот радиотелескоп сравнительно невелик – диаметр его антенны всего лишь 25 метров.

Сетка в параболических зеркалах для радиоволн применяется для того, чтобы облегчить вес зеркала и уменьшить давление ветра на него. На первый взгляд это может показаться странным, но станет понятным, если назвать размеры зеркала. Они очень велики. У среднего радиотелескопа диаметр зеркала достигает 20–25 метров, а у самого большого из существующих он равен 76 метрам, то есть в 15 раз больше, чем у самого крупного оптического телескопа.

Известный радиотелескоп в Джодрел Бэнк, Англия. Диаметр параболического зеркала этого телескопа равен 76 метрам.

Такие огромные зеркала радиотелескопов строятся с той же самой целью, что и в оптике, – собрать как можно большую энергию радиоизлучений и сфокусировать ее. В фокусе параболического зеркала устанавливается антенна сравнительно небольшого размера. Она предназначена для преобразования энергии электромагнитных волн в пропорциональные по величине электрическое напряжение и ток.

В оптических системах в качестве приемников световой энергии используются глаз, фотопластинка, фотоэлемент и некоторые другие типы приемников света. В радиотелескопах эти приемники не применимы. Их заменяет сверхчувствительный радиоприемник, к которому подводится из антенны электрическое напряжение радиочастоты. Но это не единственное различие между оптическим телескопом и радиотелескопом. Очень важное различие состоит в том, что в радиотелескопе не создается какого-либо изображения в том смысле, в котором мы привыкли понимать его. Вся энергия радиоволн концентрируется в очень малом объеме – в фокусе зеркала. Здесь она захватывается антенной и практически целиком подводится к радиоприемнику.

Разрешающая способность радиотелескопов гораздо хуже, чем у оптических, несмотря на столь большие размеры зеркал. Это, оказывается, зависит от того, что отношение диаметра зеркала к длине волны в радиотелескопах во много раз меньше, чем в оптических.

Вид радиотелескопа в Джодрел Бэнк с самолета.

В настоящее время в США приступили к постройке радиотелескопа, у которого диаметр зеркала будет равен 180 метрам. Высота этого гигантского телескопа будет такой же, как у 66-этажного небоскреба. Вес стальных и алюминиевых конструкций составляет 20 тысяч тонн.

Но даже его разрешающая способность будет все же очень мала. Например, при работе на волне длиной 21 сантиметр этот радиотелескоп сможет различить два источника радиоизлучения, находящиеся на Луне, только при условии, если расстояние между ними будет не менее 480 километров. А оптический телескоп с диаметром зеркала 5 метров различит два источника света на Луне, если они будут разделены расстоянием всего в 50 метров.

Проект гигантского радиотелескопа с диаметром зеркала 180 метров.

Радиотелескопы значительно увеличили возможности астрономов и позволили им открыть многое из того, что раньше оставалось совершенно недоступным.

Так, радиоастрономические исследования позволили проникнуть сквозь плотный атмосферный покров Венеры и измерить температуру ее поверхности. Подобным же образом исследуют и Юпитер. Не меньший интерес для науки представляет и радиоизлучение Солнца, звезд и галактик.

Одним из очень интересных открытий, сделанных с помощью радиотелескопов, является открытие радиогалактики в созвездии Лебедя. Радиоволны от нее идут к Земле 650 миллионов лет. Но, несмотря на невероятно большое расстояние, радиоизлучение этой галактики по мощности сравнимо с солнечным. О существовании такой галактики астрономы раньше не знали, потому что в обычные телескопы она почти не видна. И только когда радиотелескопы указали, где ее искать, была сделана фотография, на которой эта галактика получилась очень бледной, так как ее световое излучение очень мало. Зато ее радиоизлучение очень интенсивно, и именно поэтому она называется радиогалактикой.

Ученые предполагают, что она представляет собой «взорвавшуюся» звездную систему.

Радиотелескопы позволили также исследовать скопления межзвездного вещества. На одной из приведенных здесь фотографий вы можете увидеть рисунок распределения гигантских облаков водорода в нашей Галактике.

Скопление облаков водорода в нашей Галактике. Крестиком отмечен центр Галактики.

Микроскопы

Граммофонную пластинку или магнитофонную ленту можно проигрывать только в одном направлении. Если же пустить их в противоположную сторону, раздадутся совершенно немузыкальные звуки. Правда, два величайших гения, Бах и Моцарт, сочинили несколько пьес, одинаково звучащих при проигрывании с начала и с конца. Но это не более, чем курьез; не более, чем исключение, подтверждающее правило.

И даже не правило, а закон. Закон, повинуясь которому наш мир является несимметричным во времени. Мы можем заложить металлическую заготовку в токарный станок и путем обработки придать ей нужную форму. Но нет такого станка, нет таких средств, которые помогли бы из выточенной детали и снятой стружки вновь воссоздать ту же самую заготовку.

Есть законы другого типа. Они, разумеется, не нарушают соотношения причины и следствия, потому что действуют в иной области. Основываясь на этих законах, можно создать устройства, в которых определенные процессы могут оказаться обратимыми. Так, некоторые виды электрических машин могут быть источниками электрической энергии, если их роторы вращать с помощью двигателей, но могут, в свою очередь, обратиться в двигатели, если их подключить к источнику электроэнергии. О таких машинах говорят, что они обратимы.

В оптике тоже есть обратимые устройства. Одним из них является собирающая линза. Пучок параллельных лучей, пропущенный сквозь нее, соберется в одной точке – в фокусе. И, наоборот, пучок лучей, расходящийся от точечного источника света, установленного в фокусе, пройдя через линзу, превратится в пучок параллельных лучей. Правда, в данном случае обратимость имеет несколько иной смысл, потому что она относится не к процессу, а к ходу лучей.

Нечто подобное происходит и в других оптических устройствах. Наведя фотоаппарат на какую-либо плоскостную картину, мы получим ее изображение на матовом стекле аппарата. Если же вместо матового стекла вставить диапозитив с изображением картины, а на место картины повесить экран, то наш фотоаппарат превратится в проекционный: на экране мы увидим изображение, нарисованное светом, прошедшим сквозь диапозитив и объектив фотоаппарата.

Микроскоп по своей оптической схеме ничем не отличается от трубы Кеплера. Принципиальное отличие состоит лишь в том, что свет в микроскопе движется в противоположном направлении. Длиннофокусный объектив телескопа обращается в окуляр микроскопа, а окуляр телескопа – в короткофокусный объектив микроскопа.

Заглянув впервые в такой перевернутый телескоп, вы, скорее всего, не согласитесь со сказанным, потому что все предметы будут иметь уменьшенные размеры, будут казаться удаленными. Это не должно вас смущать. Увеличения вы добьетесь сразу же, как только поднесете рассматриваемый предмет поближе к объективу. Его надо поместить на дистанции, не превышающей двух, но несколько большей одного фокусного расстояния.

Те, кому удалось соорудить телескоп по рецепту, приведенному в книге, могут легко проверить это. И тогда они убедятся, что сделали не только телескоп, но и микроскоп.

Оптическая схема и ход лучей в микроскопе.

Итак, одна и та же оптическая схема позволяет создать и телескоп и микроскоп. Разница же состоит в том, что в первом случае объект находится на расстоянии, в гигантское число раз превышающем фокусное расстояние длиннофокусного объектива; а во втором – на очень малом расстоянии (между одним и двумя фокусными расстояниями) от короткофокусного объектива. А отсюда вытекает и еще одно различие: в телескопе видимое изображение много меньше удаленных объектов (очень близкие объекты телескоп может и увеличить), а в микроскопе изображение всегда много больше самих объектов.

Однако не надо думать, что какой-либо даже самый лучший телескоп может одновременно быть и отличным микроскопом, а микроскоп телескопом. Это, конечно, не так. На практике и конструкция, и оптические детали телескопов и микроскопов сильно отличаются по своему выполнению, потому что рассчитываются для получения наилучшего изображения для конкретного случая применения. А применение у этих инструментов совершенно различное.

Велики различия в оптике и у разных микроскопов, хотя схема у всех одинакова. Эти различия опять-таки диктуются несходством областей применения микроскопов. Конечно, имеются и универсальные инструменты, которые можно применять даже в очень отличающихся друг от друга условиях. Но этот путь не всегда дает наилучшие результаты. Часто совсем простой, но специально предназначенный для определенных наблюдений микроскоп оказывается более полезным.

Телескопы выполняются в настоящее время по трем оптическим схемам. Микроскопы, практически все, – по одной: по схеме «перевернутой» трубы Кеплера. Таким образом, все они являются рефракторами. Можно было бы делать и микроскопы-рефлекторы. Еще Ньютон собирался построить такой микроскоп, но по каким-то причинам не осуществил своего замысла. Рефлекторы не делались и в последующие годы, так как они не давали никаких преимуществ в сравнении с линзовыми. Только в наше время, вскоре после войны, было построено некоторое количество микроскопов-рефлекторов специально для работы в области коротких ультрафиолетовых лучей. Однако широкого распространения такие микроскопы не получили. Их вытеснили появившиеся в те же годы электронные микроскопы.

Астрономия как наука существовала задолго до изобретения телескопа. После того как он был изобретен, ученые смогли неизмеримо расширить свои познания о Вселенной. Микроскоп позволил сделать большее – открыть мир, о котором люди даже не подозревали. И это открытие вызвало к жизни множество чрезвычайно важных наук.

Первые микроскопы были столь же несовершенны, как и первые телескопы, но все же довольно скоро их удалось улучшить. Знаменитый голландец Антони Левенгук (1632–1723), первый в истории микробиолог, не был профессиональным ученым. Но именно ему удалось построить очень хорошие по тому времени (около 1677 года) микроскопы, дававшие увеличение до 300 раз. С их помощью он впервые наблюдал движение крови в капиллярах, красные кровяные тельца, строение мышц и хрусталика глаза; он открыл и изучил многие микроорганизмы.

Шли годы, многие оптики трудились над усовершенствованием микроскопов. Качество их становилось все лучшим. Ученые добились устранения окрашивания предметов, свели практически к нулю искажения формы изображения, значительно повысили увеличение и разрешающую силу, то есть различимость мелких деталей изображений. За эти же годы расширилась и сфера применения этих инструментов. Они оказались незаменимыми не только в микробиологии – наука с успехом использует их в самых различных областях. В наши дни микроскоп можно увидеть на рабочем столе биолога и медика, химика и физика, геолога и металлурга, археолога и криминалиста и многих других.

Не менее прочное положение заняли микроскопы и в промышленности. Разные производственные процессы и операции технического контроля при изготовлении особо точных и ответственных механических деталей, узлов электронных ламп, транзисторов ведутся с помощью микроскопов. Часто совместно с ними используется фотографическая и даже кинокамера.

Современные микроскопы представляют собой необыкновенно точные и совершенные оптические приборы. Типы и конструкции их весьма разнообразны и определяются областью применения.

Наиболее привычные по виду и, пожалуй, наиболее распространенные микроскопы показаны на первой фотографии. Это так называемые биологические микроскопы, хотя, разумеется, их можно применять и во всех других областях, где это позволяет конструкция осветителя и предметного столика.

На следующей фотографии вы видите микроскоп, используемый на заводах для контрольных и измерительных операций.

Современные универсальные микроскопы.

Обратите внимание на конструкцию предметного столика: на две микрометрические головки, смещающие столик в двух взаимно-перпендикулярных направлениях, и на угломерный круг с нониусом, позволяющий точно отсчитывать углы поворота столика.

Другим видом микроскопа, применяемого в промышленности, является измерительный микропроектор. Он позволяет проектировать на круглый экран изображения (чаще всего профильные) различных мелких деталей. Размеры изображения могут быть от 5 до 100 раз больше самой детали. На таких проекторах проверяется точность выполнения профиля прецизионных[29]29
  Прецизионный – отличающийся высокой точностью.


[Закрыть]
резьб, миниатюрных штампованных деталей и тому подобное. Многие мерительные приборы, обеспечивающие точность отсчета размеров порядка 0,001 миллиметра и выше, включают в свою конструкцию микроскоп.

Современный микроскоп для производственных нужд.

Итак, современный микроскоп доведен до высокой степени совершенства. Но, подобно телескопу, его возможности не беспредельны. Более того, они уже в основном исчерпаны. И ждать резкого улучшения оптических микроскопов в будущем вряд ли следует, ибо границы их возможностям установлены самими свойствами света.

При наблюдении в телескопы одним из ограничивающих полезное увеличение факторов является атмосфера. Для микроскопистов этот фактор не имеет значения. Зато явление дифракции в данном случае играет даже большую роль, чем прежде. Как известно, в телескопах с дифракцией можно бороться путем увеличения диаметра объектива. В принципе это влияние можно свести до сколь угодно малого. Но на практике этому препятствуют огромные технические трудности, возникающие при изготовлении объективов большого диаметра. Эти трудности, однако, не являются принципиально непреодолимыми. То, чего техника не могла сделать в прошлом, сейчас выполняется сравнительно легко, и поэтому можно ожидать, что техника будущего, если потребуется, сумеет еще больше увеличить размеры телескопических объективов.

Микропроектор.

Что касается наблюдений микроскопических объектов, то здесь полностью устранить дифракционные явления невозможно даже в принципе.

Их можно только ослабить. Влияние дифракции в этом случае не уменьшается беспредельно с увеличением диаметра объектива.

Второй метод борьбы с дифракционными явлениями, также дающий лишь ограниченный выигрыш, заключается в том, что объектив микроскопа помещается в прозрачную среду с большим коэффициентом преломления.

Для этого используются вода и кедровое масло. Микроскопы, у которых объектив находится в сильно преломляющей среде, называются иммерсионными.

Применив все доступные методы борьбы с дифракцией, можно создать микроскопы (и они уже существуют), которые позволят рассматривать объекты с линейными размерами не менее 0,3λ, где λ—длина волны света, в лучах которого рассматривается объект.

Наш глаз реагирует на свет с длинами волн от 380 до 770 миллимикронов.

Фотография сетчатки глаза человека, полученная с помощью микроскопа.

Микроскоп помог изучить и строение ствола зрительного нерва. На снимке можно различить даже отдельные волокна зрительного нерва рыбы.

Освещая объект самыми короткими фиолетовыми лучами, мы сможем различить форму объекта с линейными размерами не менее 125 миллимикронов. Обычно в микроскопах используется не монохроматический, а белый свет. Поэтому для оценки влияния дифракции ориентируются на некую среднюю длину волны и полагают, что разрешающая способность соответствует примерно 200 миллимикронам, или 2·1-сантиметра. Это предельно малый размер микроскопического объекта, форму которого еще можно определить. К сожалению, он примерно в 2000 раз больше размера молекулы, и, следовательно, увидеть ее когда-либо с помощью оптического микроскопа не представляется возможным.

Сильно увеличенный глаз краба, он сходен с глазом насекомых, в частности стрекозы, и называется фасеточным глазом.

Стоит сказать также что в микроскопе могут быть видны и частицы, имеющие размеры даже в 5 миллимикронов. Для их обнаружения применяется ультрамикроскоп. От обычного он отличается лишь конструкцией осветителя, который освещает частицы боковым светом. При таком освещении эти частицы кажутся яркими точками на темном фоне. Но о форме их по полученному изображению мы судить не можем. Однако часто и такие наблюдения оказываются необыкновенно ценными. Ведь и звезды мы наблюдаем точно такими же.

Вероятно, все помнят, откуда это:

«Стали все подходить и смотреть: блоха действительно была на – все ноги подкована на настоящие подковы, а левша доложил, что и это еще не все удивительное.

– Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидеть, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал.

– И твое имя тут есть? – спросил государь.

– Никак нет, – отвечает левша, – моего одного и нет.

– Почему же?

– А потому, – говорит, – что я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, – там уже никакой мелкоскоп взять не может.

Государь спросил:

– Где же ваш мелкоскоп, с которым вы могли произвести это удивление?

А левша ответил:

– Мы люди бедные и по бедности своей мелкоскопа не имеем, а у нас глаз и так пристрелявши».

Так выглядят под микроскопом клетки.

Как это ни странно, преувеличивать возможности микроскопа свойственно не только художественной литературе. Даже в наше время очень многие продолжают считать, что микроскоп может увеличивать во много тысяч раз. Такое мнение неверно.

Вследствие дифракции увеличение микроскопов оказывается относительно небольшим. Вернее, его можно получить очень значительным, подобрав для этого соответствующий объектив. Но оно в большинстве случаев будет бесполезным. При очень большом увеличении количество различимых мелких деталей не возрастет, но зато на изображении явственно проступят дифракционные узоры. И даже опытные микроскописты, у которых «глаз пристрелявши», нередко впадают в ошибку, принимая их за изображение мелких деталей самого объекта.

Это не фотография драгоценных браслетов и ожерелий. Вы видите микрофотографию крошечных водных организмов – планктона.

Вот что пишет по этому поводу Г. Г. Слюсарев в своей книге «О возможном и невозможном в оптике»:

«…полезное увеличение микроскопа не превышает 300–500 раз. И здесь, как и в телескопических системах, можно идти на удвоение и даже на утроение этих чисел. Все же увеличения, превышающие 1000, явно бесполезны и даже вредны: в них дифракционные явления ясно выступают, добавляя свой рисунок к контурам рассматриваемых объектов и являясь причиной всяких ошибок и недоразумений.

Вообще плохое знакомство с оптикой приводит не только молодых, неопытных работников, но и ученых с мировым именем к ошибкам иногда очень крупным. Ряд объектов, имеющих огромный интерес для биологии, зоологии, цитологии (науки о клетке), имеет размеры, лежащие как раз несколько ниже наименьшего разрешаемого расстояния. При умелом обращении с микроскопом эти объекты могут быть обнаружены, но очевидно, что при этом крайне легко стать жертвой оптического обмана. Такие случаи бывали и не раз будут повторяться, до тех пор пока всем работающим с микроскопом не станет ясно, что смотреть изображение в окуляре микроскопа, не зная его теории, так же трудно, как читать книгу на малознакомом языке».

Один из способов повышения разрешающей силы микроскопа и, следовательно, максимально возможного увеличения является уменьшение длины волны света, в лучах которого исследуется объект. Первым препятствием для укорочения волны является нечувствительность нашего глаза к ультрафиолетовым излучениям. Заменяя глаз фотопластинкой, можно значительно продвинуться в область ультрафиолетовых лучей и тем самым повысить разрешающую способность и полезное увеличение микроскопа. Очень больших успехов в деле создания ультрафиолетовых микроскопов добился советский ученый Е. М. Брумберг.

Такие микроскопы довольно часто применяются учеными, но они имеют один немаловажный недостаток – исследуемый объект можно увидеть только после проявления фотографий. Поэтому в настоящее время в ультрафиолетовый микроскоп вводят еще одно важное устройство– преобразователь изображениях его помощью недоступное глазу изображение в ультрафиолетовых лучах превращается в видимое. Преобразователи такого рода основаны на хорошо известном явлении фотоэффекта.

А пока вернемся к очень интересному методу цветной ультрафиолетовой фотографии микроскопических объектов.

По существу, ни о каких естественных цветах в этом случае говорить нельзя. Но очень часто для лучшего различения мелких деталей объекта и определения оптических свойств отдельных его частей объект фотографируют в различных участках спектра ультрафиолетовых лучей. Можно условно назвать самые длинноволновые из них красными, промежуточные– зелеными, а самые коротковолновые – синими. Три негатива, полученные таким способом, можно использовать для получения цветного отпечатка. Изображение такого рода может оказаться гораздо более подробным: участки красного цвета на нем будут соответствовать тем местам изображения, где от объекта приходило много длинноволновых ультрафиолетовых лучей; зеленые цвета покажут, где приходило много промежуточных лучей, и так далее. Зная теорию смешения цветов, вы можете судить о составе лучей и в тех местах, где имеются отличные от исходных хроматические цвета. Одна из фотографий подобного рода приведена здесь.

Ультрафиолетовые микроскопы Брумберга позволяют примерно вдвое повысить разрешающую способность и полезное увеличение микроскопа. К сожалению, идти по пути еще большего укорочения световых волн затруднительно, вследствие того что большинство объектов очень сильно поглощает короткие ультрафиолетовые лучи. Кроме того, возникают трудности и иного рода. Они уже связаны с оптическими свойствами стекла: с сильным поглощением ультрафиолетовых лучей в стекле.


    Ваша оценка произведения:

Популярные книги за неделю