355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Штейнгауз » Девять цветов радуги » Текст книги (страница 15)
Девять цветов радуги
  • Текст добавлен: 13 июня 2017, 22:30

Текст книги "Девять цветов радуги"


Автор книги: Александр Штейнгауз



сообщить о нарушении

Текущая страница: 15 (всего у книги 23 страниц)

Фотоны, серебро и химия

Светочувствительный слой современных пленок и пластинок представляет собой эмульсию, взвесь микроскопических кристаллов светочувствительного бромистого серебра в желатине.

Эта эмульсия с помощью специальных машин поливается тонким слоем на пленку, стекло или бумагу, а затем просушивается. Сухой слой очень тонок. В фотоматериалах общего применения он в среднем равен 16 микронам. Но кристаллы бромистого серебра столь малы, что в 16-микронной толще они лежат в 20–40 слоев. На квадратном сантиметре пленки таких кристаллов насчитывается от 50 до 500 миллионов.

Но, несмотря на такое количество, кристаллы в большинстве своем не соприкасаются друг с другом, они как бы заключены в мельчайшие желатиновые капсулы.

Кристаллическая решетка химического соединения брома и серебра имеет форму куба, в вершинах которого находятся ионы брома и серебра. Любой кристалл бромистого серебра имеет форму куба и сложен из отдельных мельчайших кубиков.

При соединении с серебром атом брома отбирает с внешней орбиты атома серебра один электрон. Получающиеся при реакции ионы брома имеют отрицательный заряд, а ионы серебра – положительный. Разноименно заряженные ионы притягиваются друг к другу и благодаря этой силе притяжения удерживаются в кристаллической решетке. Во внутренних ее частях каждый ион серебра связан с шестью ионами брома, а каждый ион брома – с шестью ионами серебра.

Так схематически выглядит кристаллическая решетка бромистого серебра.

Что же происходит, когда на фотоэмульсию падают лучи света?

На этот вопрос можно ответить, если вспомнить то, что уже известно нам о природе света и об одном из видов взаимодействия света с веществом. Многие читатели уже, наверное, догадались, о чем пойдет речь. Конечно, о фотонах. Только с их помощью можно объяснить, почему свет оставляет свои следы на фотоэмульсии, или, иными словами, дать теорию фотографического процесса.

Фотоны, проникая в кристаллическую решетку, как и в случае фотоэффекта, отдают свою энергию электронам. В первую очередь ее получают электроны, «отнятые» у атомов серебра. Вернее сказать, требуется меньше всего энергии, чтобы освободить эти электроны, отобрать их у ионов брома. Отдав электрон, ион брома превращается в электрически нейтральный атом брома. А электрон тем временем начинает перемещаться в пространстве кристаллической решетки, испытывая притяжение со стороны положительных ионов серебра и отталкивание со стороны отрицательных ионов брома. В конце концов он будет притянут одним из ионов серебра и займет место на пустовавшей орбите. Положительно заряженный ион серебра при этом восстановится в электрически нейтральный атом. Сила притяжения, связывавшая разноименно заряженный ион серебра и ион брома, исчезнет. Нарушится и одна из множества связей в каркасе кристалла, и тем уменьшится его прочность.

Если свет будет интенсивным, а время его действия на фотоэмульсию длительным, в каждый из кристаллов попадет достаточно много фотонов, и под их воздействием химические связи будут полностью нарушены. Бромистое серебро при этом разложится на составляющие: бром и непрозрачное металлическое серебро. Эмульсия почернеет и тоже станет непрозрачной.

Если же на поверхность пластинки проектируется изображение, то различные ее участки освещены по-разному. Количество фотонов, попавших на тот или иной участок, тоже будет различным. И, следовательно, степень потемнения окажется неодинаковой: более освещенные участки потемнеют сильнее, чем слабо освещенные. Таким путем можно получать фотографии, даже не проявляя их. Но для этого необходимы очень большие выдержки. Подобным образом еще совсем недавно делали отпечатки на так называемой дневной фотобумаге. Листок такой бумаги закладывали под негатив и выставляли на яркое солнце. Отпечатки имели очень приятный коричневый цвет. После печати их можно было закреплять прямо на свету. На снимке вы можете видеть, как делались фотографические отпечатки в мастерской Фокса Тальбота.

В мастерской Тальбота, 1845 год. Мастерская могла работать только в ясные, солнечные дни.

Если делать отпечатки подобным образом еще допустимо, то фотографировать невозможно. И уже с давних пор фотографический процесс ведется иначе.

Фотолюбители знают, что проэкспонированная фотопластинка или фотобумага по внешнему виду совершенно не отличается от неиспользованной. Ее поверхность такая же ровная и чистая, как и до экспозиции. Мы не видим на ней даже малейших следов изображения. Но разница между неиспользованной и отснятой пластинками станет заметной вскоре после того, как их положат в ванночку с проявителем. На чистой светлой поверхности отснятой пластинки начнут проступать темные пятна. Сперва еле заметные, они постепенно будут темнеть все больше и больше, становиться все более контрастными, и уже через несколько минут на фотоэмульсии появится невидимое прежде изображение. Неиспользованная же пластинка еще долгое время будет оставаться все такой же светлой, но со временем и она равномерно потемнеет.

Невидимое изображение, хранившееся в фотоэмульсии отснятой пластинки, называется скрытым. Для получения такого изображения можно делать значительно меньшие выдержки. Так, известно, что в чувствительных эмульсиях для получения одного проявимого фотографического зерна, которое состоит из большого количества расположенных близко друг к другу кристалликов, требуется примерно 1000 фотонов. При получении скрытого изображения уже не нужно, чтобы свет восстанавливал большое число ионов серебра в атомы. Достаточно лишь того, чтобы в каждом из засвеченных кристалликов появилось несколько «брешей», пробитых фотонами. Остальное доделают некоторые химические вещества, которые вступают в реакцию с кристаллами бромистого серебра. Именно такие вещества содержатся в проявителе.

Когда мы погружаем в ванночку с проявителем пластинку, эмульсия которой уже подверглась фотонной бомбардировке, проявляющее вещество проникает через тонкие желатиновые перегородки и вступает в сложную химическую реакцию с кристаллами бромистого серебра. В ходе этой реакции оно, как и под воздействием света, разлагается на составляющие: бром и серебро. Но скорость этой реакции неодинакова в различных участках эмульсии. Она протекает тем быстрее, чем больше нарушено связей в кристалле, чем меньшей стала его химическая прочность. В тех кристаллах, где таких нарушений было мало, реакция восстановления металлического серебра протекает гораздо медленнее. Однако, если бы мы оставили пластинку в проявителе на очень долгое время, эмульсия потемнела бы вся сплошь и изображение исчезло бы.

Но мы никогда так не поступаем. Мы позволяем реакции идти лишь до той стадии, когда появляется проработанное во всех деталях изображение. Затем мы прерываем ее, смывая проявляющее вещество в воде, и переходим к следующему этапу обработки – к закреплению. В растворе закрепителя все остатки неразложившегося бромистого серебра удаляются из эмульсии. И тогда уже пластинке, пленке или фотобумаге не будет страшным последующее действие света.

Зная причины фотоэффекта и квантовые свойства света, мы можем предсказать и такое свойство фотоэмульсии, как зависимость ее чувствительности от длины волны. Мы помним, что энергия фотона тем меньше, чем длиннее волна света. А чем меньше энергия, тем труднее освободить электрон, захваченный ионом брома. И, следовательно, при некоторой длине волны фотоны и вовсе не в состоянии будут выбивать электроны. Поэтому у фотоэмульсий, как и у фотоэлементов, есть красная граница светочувствительности. И именно благодаря наличию такой границы ортохроматические пластинки, фотопленку, фотобумагу можно проявлять при ярком красном и даже оранжевом свете без риска их засветить.

Фотолюбители знают, что есть и другие сорта фотоматериалов, которые можно обрабатывать только в полной темноте, так как в них красная граница чувствительности передвинута в область более длинных световых волн. В настоящее время выпускаются специальные сорта негативной пленки, чувствительные к инфракрасным лучам, правда с не очень большой длиной волны.

Зато к синим, фиолетовым и ультрафиолетовым лучам, не говоря уже о рентгеновских и гамма-лучах, чувствительны все пластинки. Правда, короткие ультрафиолетовые лучи не воздействуют на обычные эмульсии, изготовленные на желатиновой основе. Это объясняется тем, что желатина непрозрачна для таких лучей. Съемку в ультрафиолете ведут на эмульсиях, не содержащих желатины.

Конкуренты или друзья

Фотография чрезвычайно быстро распространилась в Европе. Фотограф вошел в число непременных участников экспедиций и путешествий, исторических событий и скромных семейных торжеств. Фотоаппарат занял почетное место в лаборатории ученого, стал предметом страстного увлечения множества энтузиастов. Новое изобретение породило много новых профессий, и вскоре на улицах больших, а затем и малых городов стали привычными фигура бродящего фотографа и вывески фотоателье.

Так когда-то выглядел фотограф-турист.

Пожалуй, фотография была одним из немногих изобретений, не имевших серьезных врагов в пору своего становления. Даже художники не особенно встревожились ее появлением, хотя у них более, чем у кого-либо, могли быть основания для беспокойства – ведь с самых первых дней некоторые пророки предвещали ей полную победу над живописью.

Старинная английская карикатура на уличного фотографа.

Художественная фотография действительно возникла и вскоре добилась выдающихся успехов. Каждый из нас видел великолепные снимки пейзажей, жанровых сцен, исключительные по выразительности портретные снимки – подлинные образцы высокого искусства.

И все-таки живопись нисколько от этого не пострадала. Несомненно, фотография оказала огромное влияние на нее. Она заставила живописцев и графиков искать совершенно новые, недоступные фотографии выразительные средства, новый подход к трактовке натуры и, что особенно важно, по-новому взглянуть на задачи изобразительного искусства – подлиннее искусство выстояло в соревновании с фотографией. Художники поняли, что глупо и неверно конкурировать с фотографией в тех областях, где самый заурядный фотограф может и умеет больше, чем самый гениальный живописец. И они нашли новые пути, новые области, которые никогда не сумеет подчинить себе фотография. Живопись, графика вышли из этого соревнования обновленными, еще более выразительными и прекрасными.

Совсем недавно эти фотографии были опубликованы в газетах. Но теперь они уже стали историческими. Благодаря им мы знаем, как выглядели герои-космонавты Ю. А. Гагарин и Г. С. Титов в своих скафандрах, как выглядит Земля, когда на нее смотрят с космической высоты.

Художественная фотография не убила живопись, но все же живописи и особенно графике пришлось уступить целый ряд областей, в которых раньше они безраздельно господствовали. Так, почти исчезло когда-то широко распространенное искусство портретной миниатюры: «вымерли» художники-моменталисты, снабжавшие газеты и журналы зарисовками; иллюстрирование научных, научно-популярных и технических книг во многом перешло в руки фотографов.

Но если вдуматься, изобразительное искусство уступило фотографии только те области, где оно, по существу, переставало быть искусством и становилось ремеслом; где от него в первую очередь требовалась документальная достоверность; где оно играло роль хроникера и пояснителя или ублаготворяло заказчиков, создавая их портреты, «как живые».

Работать с фотоаппаратом гораздо легче, чем рисовать. Хороших рисовальщиков во всем мире не так уж много, может быть, тысяча или две. Фотографов – сколько угодно. Жизнь человечества, жизнь нашей планеты богата разнообразнейшими и интереснейшими событиями.

Это тоже исторический снимок. Он донес до нас изображение событий 1871 года в Париже, когда в дни Парижской коммуны была повержена Вандомская колонна.

Но свидетелями их обычно бывают немногие. Остальным приходится довольствоваться не весьма точными и подчас противоречивыми рассказами очевидцев. Если среди них случается быть художнику, то он с натуры или под свежим впечатлением зарисовывает происшедшее. И тогда все, кто увидит его рисунок, могут значительно лучше и полнее представить себе то, о чем говорят очевидцы.

Но художников слишком мало, и если бы все они только и делали, что зарисовывали различные события, то и тогда не сумели бы охватить даже важнейших. Кроме того, зарисовка требует много времени, а его-то часто и не оказывается в распоряжении участника или наблюдателя события. А рисунок по памяти теряет в главном – в точности.

Фотографы (и профессионалы и любители) теперь есть во всех уголках земли, и каждому из них современная техника фотографии позволяет очень быстро сделать множество снимков. И любой снимок, даже не очень удачный, по своей точности, подробности и достоверности во много раз превзойдет самый лучший документальный рисунок.

Вот эти два свойства фотографии – массовость и подлинная документальность – являются исключительно важными. Именно благодаря им знания человечества и представления об окружающем мире неизмеримо расширились.

Такой снимок до недавнего времени было очень трудно получить. Крылья многих насекомых колеблются столь быстро, что сфотографировать их можно только при очень короткой выдержке. На снимке вы видите летящую цикаду. Никакой художник не сумел бы сделать такого рисунка с натуры.

Большинству из нас не приходится путешествовать. И хотя это очень досадно, но за всю жизнь нам удается повидать не так уж много разных сел, городов и, тем более, разных стран. Однако мы знаем о нашей планете очень многое. Мы можем представить себе Москву и Ленинград, Лондон и Париж; нам знакомы чудеса китайской и индийской архитектуры; мы не раз видели безлюдные пустыни и огромные валы океанского прибоя. Нам известно, как выглядят, как одеты, как живут и трудятся разные народы, как они отдыхают, веселятся и горюют. И иногда нам даже снится то, что наяву мы никогда не видели. Вот этим глубоко укоренившимся в нас знанием мы обязаны фотографии.

Всевидящее око

До сих пор мы говорили о съемке того, что происходит в местах, доступных человеку. Но фотография позволяет заглянуть и туда, куда «обычному смертному» нет доступа: она запечатлевает Землю с ракеты, атомный взрыв, действия летчика-испытателя в сложных условиях полета…

В последние годы широкий размах приобрела подводная фотография. На небольшие глубины фотографы опускаются в аквалангах и скафандрах. Для исследования глубин до 300 метров совсем недавно была создана легкая и подвижная подводная лодка, прозванная «ныряющим блюдцем». В ней помещаются два человека – штурман и наблюдатель. Оборудована эта лодка по последнему слову техники. У нее на борту имеются гирокомпас, трехмерный гидролокатор, радиотелефон, магнитофон и целый комплекс фото– и киноаппаратуры. Есть у «ныряющего блюдца» и рука – гидравлический захват, управляемый из кабины, с помощью которого можно брать пробы почвы, собирать со дна различные предметы.

Для исследования больших глубин в последние годы были построены специальные плавательные аппараты, называемые батискафами[32]32
  От греческого «батос» – глубина и «скафе» – ладья.


[Закрыть]
. Они свободно могут опускаться на глубину в несколько тысяч метров. А недавно, 23 января 1959 года, батискаф «Триест» опустился на 10-километровую глубину, в самую глубокую из известных в настоящее время подводных впадин – в Марианский «желоб».

«Ныряющее блюдце».

Батискаф «Триест» представляет собой огромный стальной поплавок, к нижней части которого прикреплена сферическая стальная камера с иллюминаторами из толстого плексигласа. Поплавок заполняется легкой жидкостью (чаще всего бензином), предохраняющей его от смятия страшным давлением океанских глубин. В стальной сфере располагаются два наблюдателя и аппаратура. Батискаф снабжен несколькими сильными прожекторами, позволяющими вести наблюдение и фотографирование на больших глубинах, где царит вечный мрак.

Батискаф «Триест».

Опускается батискаф под воздействием веса стальных грузов, которые удерживаются электромагнитами. Когда приходит время всплывать, электромагниты выключаются, стальной балласт остается на дне, и облегченный аппарат всплывает. Каждое погружение батискафа – очень опасное и сложное предприятие. Риск очень велик. Если хотя бы один из грузов не отпадет от корпуса, люди навеки останутся на дне – ведь никаких глубоководных спасательных средств еще не существует. И надо признать, что первые батинавты должны были иметь большое мужество.

Кальмар – морской моллюск. Гигантские кальмары достигают длины 18 метров. Обратите внимание на его глаза.

Дно океана на большой глубине видели пока что несколько пар глаз. И если бы не было фотографии, только обладатели этих глаз и могли бы по-настоящему представлять себе жизнь на больших глубинах. Примерно так и было два десятка лет назад, когда профессор Бийб погружался в батисфере на глубину до 2 километров. По каким-то причинам журнал, поместивший рассказ профессора Бийба (кажется, это был «Пионер»), привел всего лишь два или три рисунка, но не поместил ни одной фотографии. Возможно, что их и не было. И мы только по рассказу (очень интересному) могли судить о жизни на этой таинственной глубине. Но фотографии, сделанные с борта батискафа, имеются. И вы, не опускаясь в батискафе и не рискуя жизнью, можете заглянуть на океанское дно. Одна из фотографий, сделанная батинавтами «Триеста» на глубине 7000 метров, приводится здесь. На ней вы видите глубоководную рыбу.

Глубоководная рыба, которая ходит по дну на своих плавниках.

У нее очень длинные и узкие плавники. Ученые довольно хорошо знали эту рыбу еще до того, как она была сфотографирована с борта батискафа. Ее не раз вылавливали с помощью глубоководного трала. Однако ученые не могли точно установить назначение столь длинных плавников. По их предположениям, рыба должна была пользоваться ими как щупальцами. Но они ошибались. Наблюдения и фотографирование этой рыбы в естественных условиях открыли правду: с помощью этих плавников рыба ходит по дну, вернее, скачет, как кузнечик.

Эту рыбу увидели хотя бы две пары человеческих глаз.

Так передвигаются морские звезды.

Фотография же может видеть такое, что в принципе недоступно воочию видеть человеку.

На стр. 196 – фотографии звездного неба. Они очень разные. На одной звезд видно сравнительно мало, а на другой – великое множество. А между тем это фотографии одного и того же участка неба, сделанные в один и тот же момент времени с помощью сдвоенного телескопа. В чем же разница? Она заключается в том, что одна фотография снята в голубых, видимых глазом лучах, а другая – в инфракрасных.

Один и тот же участок неба. Разница между фотографиями заключается в том, что левая была получена на обычной пластинке, а правая – на пластинке, чувствительной к инфракрасным лучам.

Инфракрасные лучи имеют весьма замечательное свойство. Оно целиком объясняется сравнительно большими длинами волн этих лучей. Именно благодаря этому они меньше рассеиваются в облаках межзвездной пыли и газа, свободнее проходят через них. А коротковолновые лучи рассеиваются в таких межзвездных скоплениях и сильно ослабляются. И звезды уже не смогут быть обнаружены глазом даже в самый сильный телескоп. Их помогла обнаружить фотопластинка, но не простая, а чувствительная к инфракрасным лучам. Если бы ученые не создали таких пластинок, мы гораздо меньше знали бы о многих отдаленных частях Вселенной.

Но не только в астрономии полезна инфракрасная фотография. Не менее нужна она и для многих земных дел. Очень часто удаленные объекты скрывает от нас легкая туманная дымка. Устранить влияние такой дымки позволяет фотография в инфракрасных лучах. Отдаленные предметы на таких фотографиях становятся видными лучше, чем в самый ясный день. Правда, все окружающее выглядит очень странным: небо совершенно черное, на нем видны только очень плотные облака; листва деревьев, хорошо отражающая инфракрасные лучи, белая, трава тоже белая.

Однако для научных исследований такая искаженная цветопередача не только не помеха, но часто огромное подспорье, позволяющее увидеть то, что неразличимо при обычном свете. По отражению растениями инфракрасных лучей можно легко отличить здоровые растения от больных. Неодинаковость отражения инфракрасных лучей разными породами деревьев позволяет легко узнать распределение растительности в лесных массивах по инфракрасным аэрофотоснимкам.

В иностранных журналах неоднократно писали, что инфракрасная фотография оказывает большую помощь и воздушной разведке, так как позволяет легко отличить зелень растительности и зеленую защитную краску, потому что последняя совсем по-иному отражает световые лучи в длинноволновой части спектра световых волн. Более того, в этих лучах даже срезанные ветки, срубленные деревца, которыми часто маскируются воинские части, очень скоро становятся отличимыми от своих оставшихся в живых собратьев.

Левый снимок получен на обычной пленке, а правый – на пленке, чувствительной к инфракрасным лучам. Обратите внимание на различие в изображении неба, листвы деревьев и заднего плана.

Очень интересны ночные снимки в инфракрасных лучах. Часто они делаются при подсветке с помощью невидимого луча инфракрасного прожектора и тогда мало отличаются от дневных снимков. Если же вести фотографию без подсветки, то на снимке будут видны только те объекты или их части, температура которых достаточно высока. Так, будут видны фабричные трубы, разогретые части автомобилей, танков, самолетов и кораблей.

Максимальная длина волны, к которой чувствительны современные инфракрасные пластинки, не очень велика – порядка 1 микрона. Но получение изображения в более длинноволновом участке спектра очень интересует технику. И в настоящее время уже разработаны методы, позволяющие получать изображения в инфракрасных лучах с очень большими длинами волн. А пока стоит лишь сказать, что на волнах порядка 7–8 микронов можно получать тепловой портрет человека, потому что в этом диапазоне волн человек представляет собой светящееся тело, то есть излучает собственный свет. С помощью таких фотографий удается обнаруживать даже злокачественные опухоли, так как температура кожи над ними на малые доли градуса выше, чем на всей остальной поверхности тела.

Ультрафиолетовая и инфракрасная фотографии оказывают большую помощь исследователям старинных картин, рукописей и документов и даже помогают изобличать всякого рода преступников. Стертые временем или небрежным обращением, или, как их называют, угасшие, тексты оживают под этими невидимыми лучами и, будучи сфотографированными, раскрывают свои секреты исследователю. Не менее заметны при таком исследовании и всякого рода подделки и фальшь в документах.

Инфракрасные и ультрафиолетовые лучи помогли восстановить древний текст. В лучах обычного света этот текст не был виден.

Почти каждому из нас приходилось бывать в рентгеновских кабинетах и, ожидая, пока подойдет очередь, заглядывать на светящийся зеленым светом экран, на котором видны очертания скелета и неясные расплывчатые тени внутренних органов человека. Если же на место экрана поставить деревянную кассету с фотографической пленкой, то такое изображение можно получить на пленке без помощи фотоаппарата и даже не открывая кассеты. Так фактически и делают рентгенограммы самых различных объектов, просвечиваемых рентгеновскими или гамма-лучами.

В последние годы стали широко применяться исследования различных животных и растительных объектов с помощью меченых атомов.

Мечеными атомами называются радиоактивные изотопы химических элементов. По своим химическим свойствам они не отличаются от обычных атомов и могут вступать в такие же самые реакции. Но они отличаются от них тем, что подвержены радиоактивному распаду. А при таком распаде атом испускает гамма-лучи.

С помощью меченых атомов ученые смогли проследить самые сокровенные, недоступные другим методам исследований, процессы обмена веществ, исследовать распределение и определить роль различных химических соединений в организме и растении. Медикам, например, очень важно знать действие лекарств на различные органы животного. Для этого им в первую очередь необходимо определить, как и какими путями расходится лекарство во внутренних органах; где оно скапливается; где его оказывается недостаточно. Эту задачу решают с помощью меченых атомов и фотографии. Правда, и на этот раз обходятся без фотоаппарата.

Здесь помещен один из снимков подобного рода. На нем видны места скопления радиоактивного пенициллина во внутренних органах мыши.

Это так называемая авторадиография, то есть фотография, полученная с помощью радиоактивных излучений. Для того чтобы получить этот снимок, в кровь мыши ввели радиоактивный пенициллин.

Для того чтобы получить такой снимок, в кровь мыши ввели не обычное, имеющееся во всех аптеках лекарство, а специально приготовленный пенициллин, в состав которого входят меченые атомы. И гамма-излучение свободно проникло через ткани животного и оставило свои следы на фотопластинке.

Огромную помощь оказывает фотография при составлении географических карт различного назначения. Без аэрофотосъемки была бы немыслима современная картография. Только благодаря ей оказалось возможным создавать столь подробные и точные карты. Она позволила быстро учитывать большие и малые изменения в лице планеты, возникающие в результате человеческой деятельности или каких-либо естественных процессов.

Этот гигантский метеоритный кратер, заболоченный и покрытый лесом, был открыт с помощью аэрофотографии совсем недавно.

Аэрофотоснимок пустыни, под которой были погребены развалины древнего города. Снято в утренние часы.

С ее помощью производится не только съемка суши – она же позволяет наиболее быстро и точно составлять карты мелководных участков морей и океанов.

Не менее полезна аэрофотосъемка и в военном деле, где быстрое получение точных сведений о расположении и перемещении войск противника, о состоянии путей сообщения, о результатах воздушных налетов и обстрелов играет первостепенное значение. И в мирной жизни (что гораздо приятнее) аэрофоторазведка оказывается неоценимым помощником людей.

С воздуха можно вести и подводную разведку и увидеть то, что не удается иными способами. Перед вами аэрофотоснимок подводного грязевого вулкана.

Широко пользуется ею современная геология. Аэрофоторазведка – один из самых быстрых методов поиска новых месторождений полезных ископаемых, определения границ их залегания. Благодарны аэрофоторазведке и археологи. Это она своим всевидящим оком различает самые незначительные неровности поверхности, самые незначительные отличия окраски растений на пашне и по ним позволяет определить места, где под слоем земли или песка скрыты остатки древних сооружений и городов.


    Ваша оценка произведения:

Популярные книги за неделю