Текст книги "Девять цветов радуги"
Автор книги: Александр Штейнгауз
сообщить о нарушении
Текущая страница: 4 (всего у книги 23 страниц)
Тень и свет
И все же явление интерференции не оказалось единственным доказательством, с помощью которого удалось установить истинность волновой теории света.
Решающим доводом явилось открытое тем же Гримальди явление дифракции, то есть явление непрямолинейного распространения света возле препятствий, явление «захода» света в область тени.
Но и на этот факт, упомянутый в книге Гримальди, не обратили внимания или не знали о нем ни Ньютон, ни Гюйгенс. После смерти Ньютона и Гюйгенса спор о природе света прекратился как бы сам собой. В течение многих лет (до начала XIX века) в науке господствовала корпускулярная теория, хотя где-то на полках библиотек академий и университетов пылился и истлевал забытый всеми трактат Гримальди. Авторитет величайшего физика, вполне заслуженный Ньютоном, стал тем решающим доводом, который использовали его не столь выдающиеся, как он, последователи для доказательства справедливости корпускулярной теории.
Но не только случайность привела к тому, что факты, подтверждающие волновую природу света, были забыты. Действительно, они были установлены Гримальди, но только очень приближенно, в самой общей и не очень определенной форме, еще до того, как были проведены исследования Ньютона и Гюйгенса.
Не менее важно и то, что при проведении опытов по исследованию интерференции и дифракции света физику-экспериментатору приходится иметь дело с чрезвычайно точными измерениями расстояний и размеров. Измерения в некоторых случаях должны проводиться с точностью до длины или даже доли длины волны света. А эта величина необычайно мала.
Во времена Ньютона и Гюйгенса техника точных измерений была очень несовершенной, точная механика только-только зарождалась. Но дело было не только в этом. Ученые тех времен не знали и вряд ли предполагали, что длина световых волн крайне мала. Тем более, что им уже было известно, с какой огромной скоростью распространяется свет. А длина волны тем больше, чем выше скорость распространения. Возможно, что благодаря этому факту они могли предполагать, что световые волны, если они существуют, очень длинные.
Впоследствии, когда ученым удалось осуществить измерения, результаты оказались необыкновенными. Выяснилось, что самые короткие волны, еще воспринимаемые глазом человека (волны фиолетового света), имеют длину, равную 0,00038 миллиметра, или 380 миллимикронов, а самые длинные (волны красного света)—0,00078 миллиметра, или 780 миллимикронов.
Воспользовавшись формулой, связывающей длину волны с частотой колебаний и скоростью распространения, получим цифры, которые, возможно, могли бы устрашить ранних сторонников Гюйгенса. Частота фиолетового света равна примерно 800·1012 колебаний в одну секунду, а красного – 387·1012 колебаний в одну секунду!
Своим вторым рождением волновая теория обязана многим физикам, но в первую очередь французскому ученому Огюстену Жаку Френелю (1788–1827) и английскому ученому Томасу Юнгу (1773–1829), которые провели важнейшие исследования явлений интерференции и дифракции света и дали их объяснение. Именно их труды превратили еще не проверенную опытом смелую научную догадку – гипотезу Гюйгенса – в строгую, обоснованную точными фактами теорию. А она, в свою очередь, позволила открыть и объяснить многие новые научные факты.
В чем же заключается явление дифракции? Как оно проявляется?
Мы можем очень примитивно, чисто качественно, воспроизвести явление дифракции света. В этом мы будем очень близки к Гримальди, но не к Френелю и Юнгу; ведь так же, как и он, мы не располагаем никакими точными научными приборами. Да они и не потребуются для наших целей. Все оказывается крайне просто.
Вечером, когда стемнеет и на улице включат освещение, выберем один из дальних, но достаточно ярких фонарей. Он кажется нам яркой золотистой точкой. Посмотрим на него сквозь неплотно сжатые пальцы или, что лучше, сквозь тонкую прорезь в листе плотной бумаги, сделанную лезвием безопасной бритвы.
Глядя через узкую щель на тот же фонарь, мы не увидим яркой точки, а обнаружим светлую полосу с темными поперечными линиями, причем эта полоса будет направлена перпендикулярно прорези[4]4
Очень хорошо наблюдать явление дифракции, глядя сквозь очень мелкую металлическую сетку. Сетка такого рода (бронзовая или латунная) часто применяется во всякого рода фильтрах.
[Закрыть].
Объяснить этот факт можно, лишь согласившись с тем, что, встречаясь с небольшим препятствием (края щели), свет огибает его и распространяется в ту область, где, по утверждениям последователей Ньютона, должна быть сплошная тень. Иными словами, следует признать, что при встрече с малыми (величина которых сравнима с длиной воли света) препятствиями свет перестает распространяться прямолинейно и может огибать такие препятствия.
Кстати, волны на поверхности воды тоже не всегда огибают препятствия. Если их длина значительно меньше размеров препятствия, можно наблюдать волновую тень за этим препятствием. В этом смысле разница между световыми волнами и волнами на воде заключается лишь в длине волны, а следовательно, и в размерах препятствия.
Дифракция света приводит и к другим интересным и неожиданным на первый взгляд явлениям. Если на пути света поместить шарик, то тень, падающая от него на достаточно удаленный экран, не будет выглядеть однородным темным кружочком. Она будет представлять собой ряд концентрических чередующихся темных и светлых колец. Подобная картина получится, если на пути света окажется не шарик, а диск или круглое небольшое отверстие в непрозрачном экране.
На двух верхних снимках показана интерференция света. На двух нижних – дифракция света на прямоугольном и круглом отверстиях.
Волновая теория завоевала признание не без борьбы.
Интересен один из ее эпизодов. На заседании Парижской академии наук физик Френель зачитал перед учеными свой «мемуар», в котором описывал опыты и исследования, подтверждавшие правильность волновой теории света. В числе тех, кто не был согласен с Френелем, оказался знаменитый математик Пуассон. Он очень хорошо изучил работы Френеля и хотел поразить своего противника его же оружием.
Пользуясь методом Френеля, он провел вычисления, из которых следовало, что в центре тени от шарика должно оказаться светлое пятнышко. К тому времени, когда были проделаны эти вычисления, подобный факт еще не был известен. И это, по мнению математика, давало ему право считать волновую теорию неверной.
Но ему не пришлось долго торжествовать. Один из сторонников волновой теории, физик Араго, поставил специальный опыт и воспроизвел то, что предсказывали теория и расчеты. И правота Пуассона была полностью доказана… но именно в том, что в центре тени от шарика действительно имеется светлое пятно.
Недаром, видно, некоторые математики любят в шутку повторять, что «формулы умнее нас».
Явления интерференции и дифракции, чрезвычайно важные с теоретической точки зрения, уже давно приносят и практическую пользу. На основе этих явлений созданы многие важные приборы, позволяющие производить необыкновенно точные измерения и исследования.
Так, явление дифракции дало возможность создать один из видов спектроскопов – приборов, с помощью которых исследуют спектральный состав света, излучаемого самыми различными источниками, начиная от света светлячка, кончая светом самых отдаленных звезд. Спектроскоп позволяет определять химический состав самых разнообразных веществ.
Для спектроскопов такого рода изготавливают специальные дифракционные решетки. Количество щелей в современных решетках достигает 25 тысяч на сантиметр.
Свет и электричество
Почти через полтора века смелая научная гипотеза Гюйгенса была проверена и подтверждена экспериментом. Она стала признанной теорией. И вскоре среди ученых уже не осталось сторонников и последователей Ньютона, ибо какие бы опыты ни ставились с целью проверки и даже опровержения этой теории, все они приводили к одному: волновая природа света неизменно подтверждалась.
Ну, а эфир – странная неуловимая материя с удивительными, даже невероятными свойствами? Как же эфир?
Его существование тоже вынуждены признать ученые, хотя эфир, как среда, как вещество, не стал понятнее. Более того, после некоторых исследований, связанных с так называемой поляризацией света, свойства, которые ученым приходилось приписывать эфиру, оказались еще более невероятными.
Но что оставалось делать? Без наличия эфира никто не мог объяснить, почему свет распространяется в пространстве. И этот факт служил единственным доказательством существования эфира. Единственным потому, что никакие, даже самые остроумнейшие и тончайшие опыты не позволяли непосредственно обнаружить присутствие эфира – он был неуловим.
Ученым пришлось согласиться с существованием таинственного эфира, так как без него они не могли объяснить совершенно очевидный факт распространения света. Они считали, что свет есть колебательное движение эфира. Но первопричину, источник таких колебаний ученые не знали. Вернее, им было отлично известно, что всякое раскаленное тело испускает свет, но как и почему – это было для них тайной.
Оставалась непознанной и связь световых явлений с другими физическими процессами. Так, физика света и физика электричества казались разделенными глубочайшей пропастью. И не было ни малейших признаков того, что когда-нибудь в будущем между ними будет обнаружена общность или, тем более, теснейшая связь. Первым, кому удалось перекинуть «мостик» между светом и магнетизмом, оказался английский физик Майкл Фарадей (1791–1867), сделавший в области электричества столько же, сколько Ньютон в механике и математике. В 1846 году в одном из своих опытов Фарадей обнаружил, что под воздействием поля магнита изменяется направление поляризации света. «Мне удалось намагнитить и наэлектризовать луч света», – записал он в рабочем журнале. Фактически явление было несколько иным, чем считал ученый, но ценность опыта от этого не уменьшилась. Для науки она была громадной, ибо впервые было установлено, что между световыми и магнитными, а следовательно, и электрическими явлениями есть связь.
В 1862 году Фарадей поставил значительно более совершенный опыт, который в случае удачи показал бы с еще большей очевидностью связь света и электричества. Но положительных результатов достигнуть не удалось.
Только потому, что «вооружение» ученого было крайне несовершенно: спектроскоп был слишком нечувствительным, а магнит чересчур слабым.
Удачно провести этот опыт удалось голландскому физику Зееману уже после смерти Фарадея, в 1896 году. Он принес ученым столь важные сведения, что на их основании была сделана первая попытка создания теоретической модели атома.
Найти тесную связь между светом и электричеством суждено было выдающемуся английскому физику Джемсу Клерку Максвеллу (1831–1879).
Его теоретические исследования, сила и глубина которых и по настоящий день приводят в восхищение специалистов, показали, что распространение электромагнитных колебаний также является волновым процессом.
Выяснил Максвелл и другое чрезвычайно важное обстоятельство: скорость распространения электромагнитных колебаний оказывалась равной скорости света. Развивая свою теорию, Максвелл в 1873 году пришел к неизбежному выводу: свет по своей природе также относится к области электромагнитных колебаний.
В представлении многих подлинный ученый – человек, наделенный некиими особыми свойствами и качествами характера. Такое понятие неверно, но каждый ученый имеет свой стиль работы. Это особенно ясно можно показать на примере Ньютона, Фарадея и Максвелла.
Ньютон был в равной степени великим математиком и великим физиком. Он был блестящим экспериментатором, и все его теории, которые он при необходимости облекал в математическую форму, в той или иной степени были основаны на проделанной им же самим экспериментальной работе.
Совсем иным был Фарадей. Сам он почти не прибегал к помощи математики. Его представления об исследуемых процессах были почти осязаемо образны: он буквально ощущал то, что исследовал. И именно поэтому его эксперименты всегда так наглядны и понятны. Это свойство Фарадея отмечал его последователь Максвелл.
Зато сам Максвелл, в противоположность своему предшественнику, не прибегал в личной работе к эксперименту. Он был сугубым теоретиком и выдающимся математиком. Некоторые даже считают, что его роль в физике электричества заключалась в основном в том, что всю сумму знаний и идей, установленных и высказанных главным образом Фарадеем, он систематизировал и изложил на языке математики. Да и сам Максвелл высказывался примерно так же:
«Я предпринял специально эту работу в надежде, что мне удастся придать его (то есть Фарадея. – А. Ш.) идеям и методам математическое выражение».
В какой-то мере это отражает истину, но в действительности Максвелл сделал гораздо большее. На основании своих уравнений он смог прийти к утверждению теснейшей связи света и электромагнитных колебаний. Важность такого открытия трудно переоценить. Максвелл был чистый теоретик. Вероятно, он был абсолютно убежден в правильности созданной им теории. Но не так ее воспринимали многие ученые. В течение долгих лет даже очень известные физики не могли понять ее и считали неправильной. Для того чтобы ее признали, необходимо было поставить специальные опыты, установить или опровергнуть на практике справедливость новых теоретических построений. Но Максвелл сам не мог этого сделать – ему оставалось лишь ждать помощи от других.
Долго никто не знал, как, каким путем провести требуемые эксперименты. И только через пятнадцать лет после того, как открытие было сделано «на бумаге», и через десять лет после смерти автора, в 1888 году, его удалось воспроизвести в реальном эксперименте. Сделал это немецкий физик Генрих Рудольф Герц (1857–1894). Именно его опыты позволили русскому ученому Александру Степановичу Попову (1859–1905) изобрести радиосвязь.
В своих опытах Герц получал электромагнитные колебания с длиной волны от 60 сантиметров до нескольких метров. Русский ученый Петр Николаевич Лебедев (1866–1912), воспроизводя опыты Герца, получил волны значительно более короткие (до 6 миллиметров), а в 1926 году А. М. Левитская построила особую систему вибраторов, с помощью которой генерировались колебания в спектре длин волн от 30 до 915 микронов.
После опытов Герца никто уже не сомневался в справедливости теории Максвелла. И некоторым физикам даже показалось, что природа света раскрыта до конца, что о свете известно все самое основное. Быть может, их продолжала немного беспокоить недостаточная стройность теории эфира, но они надеялись, что в будущем этот недостаток будет устранен. Эти ученые считали, что в конце концов природа эфира станет ясной. Но хотя они и понимали, какие трудности связаны с теорией эфира, все же его существование не вызывало у них сомнений.
Два открытия
Еще в 1836 году Фарадей детально исследовал протекание тока в электрических растворах и сформулировал два закона электролиза. Кроме того, он установил, что носителями тока в этом случае являются ионы: положительно заряженные катионы и отрицательно заряженные анионы. Как мы знаем, электрический ток имеет место не только в электролитах. Он протекает в металлах, ему обязаны своим существованием все виды электрического разряда в газах. Однако механизм электропроводности в металлах и газах в те времена был совершенно неизвестен. Не были известны и носители тока. Фарадей ожидал, что тщательное изучение разряда в газах принесет науке ценнейшие сведения. Но сам он не занимался этой проблемой, а свое основное внимание уделял исследованию электромагнитных явлений.
Протекание тока в разреженном газе исследовали многие ученые. Теперь это явление хорошо изучено, и здесь не стоило бы специально останавливаться на нем, если бы первые исследователи попутно не сделали одного чрезвычайно важного наблюдения. А оно, в свою очередь, привело к открытию, которое, говоря без преувеличения, определяет жизнь и судьбы современного человечества. Это – открытие электрона.
Исследования разряда в газе первыми предприняли Плюккер и Гитторф в Германии и Уильям Крукс в Англии. Все трое обратили внимание на одно и то же явление, однако Круксу удалось наиболее подробно его исследовать.
Для изучения разряда использовалась трубка Гейслера – баллон, представляющий собой удлиненную стеклянную колбу с запаянными концами, названный так в честь искусного стеклодува Генриха Гейслера. Внутрь трубки вводились две металлические пластины, два электрода – анод и катод. К аноду присоединялся положительный, а к катоду – отрицательный полюс источника электрического напряжения. Помимо этого, трубка имела стеклянный отросток, через который откачивали газ, заполнявший внутренность трубки.
При нормальном давлении газа электрический разряд не наблюдался. Лишь после того, как начиналась откачка и давление понижалось, возникал разряд. Газ начинал светиться, причем картина свечения непрерывно менялась, по мере того как давление падало. Сперва свечение сосредоточивалось возле анода, затем светящийся столб удлинялся и трубка заполнялась светом: фиолетовым, если в ней находился воздух, лиловым в атмосфере азота и розоватым, когда в ней находился водород. При дальнейшей откачке свечение постепенно меркло и вовсе исчезало.
Тем не менее любознательность, свойственная ученым, заставила их продолжать откачку даже после полного исчезновения свечения газа. И именно благодаря этому они столкнулись с новым, непонятным явлением. Свечение возникало вновь, но на этот раз светились не ничтожные остатки газа. Желто-зеленое свечение исходило с поверхности стекла трубки, но не со всей, а только с той ее части, которая находилась против катода.
Крукс, исследуя это свечение, пришел к выводу, что оно вызывается некиими лучами, испускаемыми катодом. Он так и назвал их – «катодные лучи». Им было установлено, что эти лучи движутся с огромной скоростью по прямой линии, но отклоняются от нее под воздействием магнитного поля. Действие этих лучей проявлялось также и в заметном нагревании места падения лучей. Когда же Крукс изготовил легкую металлическую крыльчатку и поместил ее внутри трубки, на пути неведомых лучей, она начала вращаться подобно крыльям мельницы в ветреный день. В 1897 году Крукс доложил о своих опытах и наблюдениях ученым.
Хотя Крукс и назвал исследованное им явление катодными лучами, он был убежден, что фактически ему приходилось иметь дело с потоком частиц, до тех пор не известных науке. Это убеждение разделял и физик Джонстон Стоней, который первым назвал их электронами. Вскоре правильность предложений Крукса подтвердилась – электрон действительно оказался частицей, имеющей наименьший возможный отрицательный заряд и очень малую массу. Но все-таки их удалось точно измерить. Хотя столь малые цифры ничего не говорят воображению человека, их все же стоит привести. Вот они: заряд отрицательный и равен 0,000 000 000 000 000 000 160 100 кулона, а масса выражается числом с еще большим количеством нулей: 0,000 000 000 000 000 000 000 000 000 910 600 грамма, то есть примерно в 1850 раз меньшая, чем у атома водорода.
Открытие электрона показало, что атом вовсе не является неделимой частицей материи, а состоит из еще более мелких частиц. Практическим следствием открытия электрона явилось рождение атомной физики и электроники.
В ноябре 1895 года в исследование разряда в газе включился скромный и уже немолодой профессор физики в Вюрцбурге Конрад Рентген. Приступая к новым опытам, Рентген не знал, что буквально в первую же неделю работы с трубкой Гейслера он откроет новые удивительные лучи – «Х-лучи», как назвал их он сам, «лучи Рентгена», как называют их теперь все.
Свойства лучей оказались необыкновенными. Они свободно проникали через большинство непрозрачных для обычного света веществ; ослабить их могли только металлы, особенно свинец. Рентген говорил о том, что твердое тело для Х-лучей то же, что комната, наполненная табачным дымом, для обычного света. Под воздействием этих лучей электроскоп теряет свой заряд, фотоэмульсия чернеет, а некоторые химические соединения светятся, флуоресцируют. Именно такими соединениями покрывают экраны в рентгеновских аппаратах.
Этот красивый симметричный узор «нарисовали» рентгеновские лучи, продифрагировавшие на кристаллике льда.
И все же природа рентгеновских лучей, несмотря на их необычные свойства, та же, что и у видимого света. Они не несут заряда, не отклоняются ни в электростатическом, ни в магнитном поле, и все их отличия определяются и объясняются чрезвычайно малыми длинами волн, лежащими в пределах от 0,049 до 0,00001 микрона. Эти волны настолько коротки, что явление дифракции не удается наблюдать даже с помощью самых лучших дифракционных решеток, имеющих до 25 тысяч штрихов на сантиметре.
Рентгеновские лучи дифрагируют только на кристаллических структурах. В наше время эта их способность используется для изучения строения и внутренних свойств самых различных веществ.