Текст книги "Логика"
Автор книги: Александр Ивин
сообщить о нарушении
Текущая страница: 2 (всего у книги 28 страниц) [доступный отрывок для чтения: 11 страниц]
4. ИНТУИТИВНАЯ ЛОГИКА
Под интуитивной логикой обычно понимают интуитивные представления о правильности рассуждений, сложившиеся стихийно в процессе повседневной практики мышления.
Интуитивная логика, как правило, успешно справляется со своими задачами в повседневной жизни, но совершенно недостаточна для критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: «Если бы барий был металлом, он проводил бы электрический ток; барий проводит электрический ток; следовательно, он металл?». Чаще всего на основе логической интуиции отвечают: правильно, барий металл, и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа связи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуждение построено по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Такая схема от истинных исходных положений может вести не только к истинному, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении: «Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура» обе посылки могут быть истинными, а заключение ложным: многие болезни протекают без повышения температуры. Другой пример: «Если бы шёл дождь, земля была бы мокрой; но дождя нет; значит, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идёт по неправильной схеме: «Если первое, то второе; но первого нет; значит, нет и второго». Эта схема может привести от истинных посылок к ошибочному заключению: «Если человек художник, он рисует; человек рисует; значит, человек художник». Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадёжной.
Обычно мы применяем логические законы, не задумываясь о них, нередко не подозревая о самом их существовании. Но бывает, что использование даже простой схемы сталкивается с известными трудностями.
Эксперименты, проводившиеся психологами с целью сопоставления мышления людей разных культур, наглядно показывают, что чаще всего причина трудностей в том, что схема рассуждения, его форма не выделяется в чистом виде. Вместо этого для решения вопроса о правильности рассуждения привлекаются не относящиеся к делу содержательные соображения. Обычно они связаны с какой-то конкретной ситуацией.
Вот как описывают ход одного из экспериментов, проводившихся в Африке, М.Коул и С.Скрибнер в книге «Культура и мышление».
Экспериментатор. Однажды паук пошёл на праздничный обед, ему сказали, что прежде чем приступить к еде, он должен ответить на один вопрос. Вопрос такой: «Паук и чёрный олень всегда едят вместе. Паук ест. Ест ли олень?»
Испытуемый. Они были в лесу?
Экспериментатор. Да.
Испытуемый. Они вместе ели?
Экспериментатор. Паук и олень всегда едят вместе. Паук ест. Ест ли олень?
Испытуемый. Но меня там не было. Как я могу ответить на такой вопрос?
Экспериментатор. Не можете ответить? Даже если вас там не было, вы можете ответить на этот вопрос. (Повторяет вопрос.)
Испытуемый. Да, да, чёрный олень ест.
Экспериментатор. Почему вы говорите, что чёрный олень ест?
Испытуемый. Потому что чёрный олень всегда весь день ходит по лесу и ест зеленые листья. Потом он немного отдыхает и снова встаёт, чтобы поесть.
Здесь очевидная ошибка. У испытуемого нет общего представления о логической правильности вывода. Чтобы дать ответ, он стремится опереться на какие-то факты, а когда экспериментатор отказывается помочь ему в поисках таких фактов, сам придумывает их.
Ещё пример из этого же исследования.
Экспериментатор. Если Флюмо или Йакпало пьют сок тростника, староста деревни сердится. Флюмо не пьёт сока тростника. Йакпало пьёт сок тростника. Сердится ли староста деревни?
Испытуемый. Люди не сердятся на других людей.
Экспериментатор повторяет задачу.
Испытуемый. Староста деревни в тот день не сердился.
Экспериментатор. Староста деревни не сердился? Почему?
Испытуемый. Потому что он не любит Флюмо.
Экспериментатор. Он не любит Флюмо? Скажи почему?
Испытуемый. Потому что, когда Флюмо пьёт сок тростника, это плохо. Поэтому староста деревни сердится, когда Флюмо так делает. А когда Йакпало иногда пьёт сок тростника, он ничего плохого не делает людям. Он идёт и ложится спать. Поэтому люди на него не сердятся. Но тех, кто напьётся сока тростника и начинает драться, староста не может терпеть в деревне».
Испытуемый имеет в виду скорее всего каких-то конкретных людей или просто выдумал их. Первую посылку задачи он отбросил и заменил её другим утверждением: люди не сердятся на других людей. Затем он ввёл в задачу новые данные, касающиеся поведения Флюмо и Йакпало. Ответ испытуемого на экспериментальную задачу был неправилен. Но он был результатом вполне логичных рассуждений на основе новых посылок.
Для анализа задачи, поставленной в первом эксперименте, переформулируем её так, чтобы были выявлены логические связи утверждений: «Если ест паук, то ест и олень; если ест олень, то ест и паук; паук ест; следовательно, олень тоже ест». Здесь три посылки. Вытекает ли из двух («Если ест паук, олень также ест» и «Паук ест») заключение «Олень ест?». Конечно. Рассуждение идёт по упоминавшейся уже схеме: «Если есть первое, то есть второе; есть первое; значит, есть второе». Она представляет собой логический закон. Правильность этого рассуждения не зависит, разумеется, от того, происходит ли все в лесу, присутствовал ли при этом испытуемый и т.п.
Несколько сложнее схема, по которой идёт рассуждение во второй задаче: «Если Флюмо или Йакпало пьют сок тростника, староста деревни сердится. Флюмо не пьёт сок тростника. Йакпало пьёт сок тростника. Сердится ли староста деревни?» Отвлекаясь от конкретного содержания, выявляем схему рассуждения: «Если есть первое или второе, то есть третье; первого нет, но есть второе; следовательно, есть третье». Эта схема является логическим законом, и, значит, рассуждение правильно. Схема близка указанной ранее схеме: «Если есть первое, то есть второе; есть первое; следовательно, есть второе». Различие только в том, что в качестве «первого» в более сложном рассуждении указываются две альтернативы, одна из которых тут же исключается.
Навык правильного мышления не предполагает каких-либо теоретических знаний, умения объяснить, почему что-то делается именно так, а не иначе. К тому же сама интуитивная логика, как правило, беззащитна перед лицом критики.
Усвоение языка есть одновременно и усвоение общечеловеческой, не зависящей от конкретных языков, логики. Без неё, как и без грамматики, нет, в сущности, владения языком. В дальнейшем стихийно сложившееся знание грамматики систематизируется и шлифуется в процессе школьного обучения. На логику же специального внимания обычно не обращается, её совершенствование остаётся стихийным процессом. Нет поэтому ничего странного в том, что, научившись на практике последовательно и доказательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяснить, какая логическая ошибка допущена. Это под силу только теории логики.
5. НЕКОТОРЫЕ СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ
В правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.
Логические законы лежат, таким образом, в основе логически совершённого мышления. Рассуждать логически правильно – значит рассуждать в соответствии с законами логики.
Число схем правильного рассуждения (логических законов) бесконечно. Многие известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчёта, что в каждом правильно проведённом умозаключении мы используем тот или иной логический закон.
Вот некоторые, наиболее часто используемые, схемы.
Если есть первое, то есть второе; есть первое; следовательно, есть второе. Эта схема позволяет от утверждения условного высказывания и утверждения его основания перейти к утверждению следствия. По этой схеме протекает, в частности, рассуждение: «Если лёд нагревают, он тает; лёд нагревают; значит, он тает».
Это логически корректное движение мысли иногда путается со сходным, но логически неправильным её движением от утверждения следствия условного высказывания к утверждению его основания: «Если есть первое, то есть второе; есть второе; значит, есть первое». Последняя схема не является логическим законом, от истинных посылок она может привести к ложному заключению. Скажем, идущее по этой схеме рассуждение «Если человеку восемьдесят лет, он стар; человек стар; следовательно, человеку восемьдесят лет» ведёт к ошибочному заключению, что старику ровно восемьдесят лет.
Если есть первое, то есть второе; но второго нет; значит, нет первого. Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания. Например: «Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил». Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: «Если есть первое, есть и второе; но первого нет; значит, нет и второго».
Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого. Эта схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания «Если есть гром, есть также молния» получается высказывание «Если нет молнии, то нет и грома».
Есть по меньшей мере или первое или второе; но первого нет; значит, есть второе. Например: «Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день».
Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы. Например: «Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» Бандит говорит: «Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на рассматриваемую схему.
Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот. Используя данные схемы, от утверждения «Неверно, что сегодня ветер и дождь» можно перейти к утверждению «Неверно, что сегодня ветер или неверно, что сегодня дождь» и от утверждения «Амундсен или Скотт был первым на Южном полюсе» перейти к утверждению «Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе».
Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики.
6. ТРАДИЦИОННАЯ И СОВРЕМЕННАЯ ЛОГИКА
История логики охватывает около двух с половиной тысячелетий. «Старше» формальной логики, пожалуй, только философия и математика.
В длинной и богатой событиями истории развития логики отчётливо выделяются два основных этапа. Первый – от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй – с этого времени до наших дней.
На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных ещё Аристотелем. Это дало повод немецкому философу И.Канту (1724-1804) в своё время придти к выводу, что формальная логика является завершённой наукой, не продвинувшейся со времени Аристотеля ни на один шаг.
Кант не заметил, что ещё с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.
Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».
Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.
Немецкий математик и логик Г.Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убеждён, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования». Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге – провозвестник всех нынешних теорий правильного рассуждения.
Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872-1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.
В России в конце прошлого – начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внёсшие в её развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей. Но его идеи оказали в конечном счёте существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. Порецкий первым в России начал читать лекции по современной логике, о которой он говорил, что это «по предмету своему есть логика, а по методу математика». Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни.
Одним из первых (ещё в 1910 г.) сомнения в неограниченной приложимости логического закона противоречия, о котором пойдёт речь далее, высказал логик Н.А.Васильев. «Предположите, – говорил он, – мир осуществлённого противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?» Васильев, подобно Ломоносову, наряду с научными статьями, писал порой и стихи. В них своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:
… Мне грезится безвестная планета,
Где все идёт иначе, чем у нас.
В качестве логики воображаемого мира он предложил свою теорию без закона противоречия, долгое время считавшегося центральным принципом логики. Васильев полагал необходимым ограничить и действие закона исключённого третьего, о котором также говорится в дальнейшем. В этом смысле Васильев явился одним из идейных предшественников логики наших дней. Идеи Васильева при его жизни подвергались жёсткой критике, в результате он оставил занятия логикой. Потребовалось полвека, прежде чем его «воображаемая логика» без законов противоречия и исключённого третьего была оценена по достоинству. Идеи, касающиеся ограниченной приложимости закона исключённого третьего и близких ему способов математического доказательства, были развиты математиками А.Н.Колмогоровым, В.А.Гливенко, А.А.Марковым и др. В результате возникла так называемая конструктивная логика, считающая неправомерным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.
Известный русский физик П.Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике. В 1910 г. он писал:
«Символическая формулировка даёт возможность „вычислять“ следствия из таких сложных систем посылок, в которых при словесном изложении почти или совершенно невозможно разобраться. Дело в том, что в физике и технике действительно существуют такие сложные системы посылок. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое „или-или“, воплощённое в эбоните и латуни; все вместе – система чисто качественных (сети слабого тока, поэтому не количественных) „посылок“, ничего не оставляющая желать в отношении сложности и запутанности. Следует ли при решении этих вопросов раз и навсегда удовлетвориться рутинным способом преобразования на графике? Правда ли, что, несмотря на существование уже разработанной алгебры логики, своего рода „алгебра распределительных схем“ должна считаться утопией?»
В дальнейшем гипотеза Эренфеста получила воплощение в теории релейно-контактных систем.
В общем, оглядываясь на историю распространения логики, можно сказать, что лучшие русские логики всегда стремились стоять на уровне современных им мировых теорий и концепций, органически чуждаясь всякого рода логического сектантства и сепаратизма.
Современную логику нередко называют математической, подчёркивая тем самым своеобразие новых её методов в сравнении с использовавшимися ранее в традиционной логике.
Одна из характерных черт этих методов – широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев ещё Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.
Широкое использование символических средств послужило основанием того, что, новую логику стали называть символической. Названия «математическая логика» и «символическая логика», обычно употребляемые и сейчас, обозначают одно и то же – современную формальную логику. Она занимается тем же, чем всегда занималась логика – исследованием правильных способов рассуждения.
7. СОВРЕМЕННАЯ ЛОГИКА И ДРУГИЕ НАУКИ
С момента своего возникновения логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно психологии, одной из «философских наук». И только во второй половине xix в. формальная – к этому времени уже математическая – логика «отпочковалась», как принято выражаться, от философии. Примерно в это же время от философии отделилась и стала самостоятельной научной дисциплиной психология. Но если отделение психологии было связано прежде всего с проникновением в неё опыта и эксперимента и сближением её с другими эмпирическими науками, то в отделении логики решающую роль сыграло проникновение в неё математических методов и сближение с математикой.
Математическая логика возникла, в сущности, на стыке двух столь разных наук, как философия, или точнее – философская логика, и математика. И тем не менее, взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики несомненно способствует более ясному пониманию самих философских понятий, принципов и проблем.
Тесная связь современной логики с математикой придаёт особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайних, ведущих в общем-то к тому же самому конечному результату – объединению математики и логики в единую научную дисциплину, сведению их в одну науку.
Согласно Г.Фреге, Б.Расселу и их последователям, математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить её истинную и наиболее глубокую природу. Этот подход к обоснованию математики получил название логицизма.
Сторонники логицизма добились определённых успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом логицизм оказался утопической концепцией. Математика не сводима к логике, поскольку для построения математики необходимы аксиомы, устанавливающие существование в реальности определённых объектов. Но такие аксиомы имеют уже внелогическую природу.
Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас ещё считают главной – если не единственной – задачей математической логики уточнение понятия математического доказательства.
Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и её интересует связь между посылками и следствиями в любых областях рассуждения и познания.
Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики, американский математик Н.Винер не без оснований подчёркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника, применяемые в кибернетике, были бы невозможны без использования алгебры логики – этого возникшего первым раздела современной логики. В управляющих системах, применяемых в кибернетике, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов.
Помимо кибернетики современная логика находит широкие приложения и во многих других областях науки и техники.