355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Мигдал » ПОИСКИ ИСТИНЫ » Текст книги (страница 5)
ПОИСКИ ИСТИНЫ
  • Текст добавлен: 24 сентября 2016, 01:06

Текст книги "ПОИСКИ ИСТИНЫ"


Автор книги: Александр Мигдал


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 5 (всего у книги 18 страниц)

Но это объяснение отвергалось теоретиками – ведь электрон большой энергии движется в жидкости с постоянной скоростью, а заряженная частица излучает, только ускоряясь или замедляясь. Электрон излучает электромагнитные волны в каждой точке своей траектории, но когда он движется по прямой с постоянной скоростью, всегда найдутся такие участки траектории, которые дают волны в противофазе, погашающие друг друга. Если электрон изменяет свое направление в результате столкновения или при движении в электромагнитном поле, волны, испущенные до и после поглощения, перестают погашать друг друга, и возникает тормозное излучение.

Так объяснялось, почему электрон не излучает, двигаясь без изменения скорости. Но в этом рассуждении было одно незаметное предположение: скорость электрона предполагалась меньшей, чем скорость света. В пустоте это условие всегда выполнено. Ведь согласно теории относительности, как бы ни была велика энергия частиц, скорость их меньше скорости света. Но в жидкости энергичный электрон движется со скоростью, близкой к скорости света, а электромагнитные волны распространяются со скоростью с', заметно меньшей: с' = с/п, где п – показатель преломления (для видимого света ns? 1,5).

Нетрудно сообразить, что в случае, когда v›c', есть такой угол излучения, при котором волны, идущие от всех участков траектории, складываются. Угол 0 просто связан со скоростью электрона и показателем преломления: cos в = c'/v. Именно под этим углом и происходит излучение Черенкова – Вавилова.

Подобное явление, но не для света, а для звука, было обнаружено в прошлом веке Эрнстом Махом. Пуля, движущаяся со сверхзвуковой скоростью, излучает звук под углом, косинус которого равняется отношению скорости звука к скорости пули (угол Маха). Такое же излучение звука происходит и при движении сверхзвуковых самолетов.

В 1937 году Игорь Евгеньевич Тамм и Илья Михайлович Франк поняли, в чем физическая причина явления, названного излучением Черенкова – Вавилова, и построили его количественную теорию. Определяя угол, под которым происходит излучение, можно найти скорость заряженной частицы. Поэтому излучение Черенкова – Вавилова оказало большое влияние на экспериментальную физику высоких энергий – появился способ определять с большой точностью энергию, например,

протонов, участвующих в столкновениях элементарных частиц.

В 1958 году И. Тамм, И. Франк и П. Черенков получили Нобелевскую премию «за открытие и интерпретацию эффекта Черенкова».

А вот как было открыто явление сверхтекучести академиком Петром Леонидовичем Капицей в Институте физических проблем АН СССР в 1937 году.

Изучались свойства жидкого гелия при низких температурах. Было известно, что при температурах, меньших 2,2 градуса Кельвина (-270,8 градуса Цельсия), жидкий гелий переходит в другую модификацию – гелий II, с совершенно другими свойствами. Голландский физик Биллем Кеезом обнаружил, что гелий II имеет теплопроводность в Ю6 большую, чем медь, что уже само по себе очень странно. Затем обнаружилось, что у гелия II аномально малая вязкость – в 103 раз меньшая, чем у воды. А микроскопический механизм теплопроводности и вязкости очень схож, и при большой теплопроводности всегда возникает и большая вязкость. Теплопроводность определяется скоростью передачи от слоя к слою тепловой энергии, а вязкость – скоростью передачи количества движения. Чем больше одно, тем больше и другое, а у гелия все получалось наоборот.

Размышления над этим парадоксом привели Капицу к идее, что никакой «сверхтеплопроводности» нет, что большая теплопроводность, обнаруженная Кеезомом, обусловлена потоками, возникающими в гелии II из-за того, что он находится в состоянии сверхтекучести. В этом состоянии жидкий гелий может проходить через трубки без всякого трения. Поэтому достаточно самой малой неоднородности плотности, возникающей при разности температур, чтобы под влиянием силы тяжести появились потоки, переносящие тепло.

Чтобы эта идея превратилась в достоверную истину, Капице понадобилось поставить десятки тончайших экспериментов. Первоклассный экспериментатор, он обсуждал свои опыты с первоклассным теоретиком Львом Давыдовичем Ландау. Теория и эксперимент стимулировали друг друга. Благодаря этому взаимодействию Ландау создал одну из лучших своих работ – теорию жидкого гелия II, с помощью которой удалось количественно описать все обнаруженные Капицей экспериментальные факты.

Ощущение красоты

Из этих примеров видно, какую роль в науке играет способность удивляться. Но, что еще более важно, они дают некоторое представление о красоте науки! Из незаметных на первый взгляд фактов после глубоких размышлений возникают неожиданные и важнейшие следствия. Слабое свечение неба заставляет пересмотреть наши взгляды на геометрию мира; закон сохранения энергии и равномерность хода времени оказываются теснейшим образом связанными; к электромагнитному полю применяются законы, найденные при изучении атомов нагретого газа, и это приводит к заключению, совершенно чуждому классической механике, – энергия электромагнитного колебания может изменяться только дискретными порциями…

Логическую взаимосвязанность результатов науки выразил выдающийся немецкий математик Давид Гильберт: «Разрешите мне принять, что дважды два – пять, и я докажу, что из печной трубы вылетает ведьма». Красота науки и в логической стройности, и в богатстве связей. Ощущение красоты помогает проверять правильность результатов и отыскивать новые законы. Это ощущение – отражение в нашем сознании гармонии, существующей в природе.

Понятие красоты настолько важно в науке, что мы еще много раз будем к нему возвращаться.

Умение чувствовать красоту вместе со способностью удивляться должно определять выбор научной профессии.

Нильс Бор сказал: «Специалист – это тот, кто знает некоторые привычные ошибки в данной области и умеет их избегать».

ПОДВОДНЫЕ КАМНИ

Господь Бог изощрен, но не злонамерен.

Надпись на камине у Эйнштейна

Поговорим о самых распространенных и существенных психологических ошибках, затрудняющих научную работу.

«Важнее как размышлять, чем о чем размышлять» (И.-В. Гёте)

На первой стадии работы, когда надо раздуть пламя, которое вот-вот погаснет, поиски доводов, подтверждающих принятую точку зрения, иногда необходимы. Но как только работа начала оформляться, успокаивающие соображения приносят только вред. И главной становится задача найти опровергающие факты. Доводы «за» находятся сами собой, без сознательных усилий.

Стремление обязательно сделать открытие очень часто приводит к выискиванию успокоительных аргументов и даже к невольной подтасовке фактов.

Вот случай, когда ничтожная недобросовестность в обработке экспериментальных данных, накапливаясь, привела к совершенно неправильному результату. Изучалось распределение по энергиям числа альфа-частиц, вылетающих из ядер при альфа-распаде. Или, иными словами, – энергетический спектр альфа-частиц. Он состоит из резких максимумов. Нетрудно сообразить, что разница между энергиями максимумов дает возможные значения энергии возбуждения ядра, получающегося после альфа-распада (дочернее ядро).

В эксперименте обнаружились равностоящие по энергии группы альфа-частиц. Это означало, что одинаковы интервалы между соседними энергетическими уровнями дочернего ядра. Результат был полной неожиданностью и противоречил существующим представлениям о структуре ядра.

Экспериментаторы попросили теоретиков дать объяснение. Это был один из тех редких случаев, когда можно гордиться, что теорию не удалось построить – дальнейшая проверка не подтвердила полученного экспериментаторами результата. Оказалось, что в начале измерений случайно получились кривые с равноотстоящими энергиями альфа-частиц. Необычный результат так взволновал экспериментаторов, что каждый раз, когда он не подтверждался, они проверяли напряжение в сети, и если оно отличалось от нормы, отбрасывали результат измерений. Такая проверка делалась только при получении нежелательного результата. Благодаря большой статистике небольшая дискриминация привела к равноотстоящим с большой точностью значениям энергии альфа-частиц. Случилось это в лаборатории экспериментатора, завоевавшего себе имя добросовестными работами, а в этом случае потерявшего контроль над действиями менее опытных сотрудников. Не бывает добросовестности первого или второго сорта, добросовестность одна – безупречная. Как говорил Воланд в «Мастере и Маргарите» Булгакова: «…свежесть бывает только одна – первая, она же и последняя».

Признаки «великого открытия»

Стремление во что бы то ни стало сделать открытие, совершить переворот в науке часто уводит человека за пределы его реальных возможностей и порой кончается грустно, а то и трагически. Известно, что физические институты выделяют дежурных сотрудников для ответов авторам «великих открытий». Эти «открытия» имеют общие черты:

1. Перевороту подвергается не какой-либо один вопрос, а сразу все результаты современной науки.

2. Автор не имеет профессиональных знаний в данной области.

3. Никогда не цитируются современные научные работы, по-видимому, потому, что автор с ними незнаком.

4. Авторы заявляют, что их работа – плод многолетних усилий, однако видно, что время потрачено не на математические выкладки, не на эксперименты и даже не на анализ известных фактов, а лишь на самоуспокоение.

5. Никаких других работ меньшего масштаба у автора не было.

По этим признакам работа «зановообоснователя» и «основополагателя» (терминология, введенная для таких случаев еще Вольфгангом Паули) безошибочно распознается независимо от деталей. Между тем истинный переворот в науке непосредственно затрагивает сравнительно узкую область явлений и происходит на прочной основе имеющихся достижений науки, всех остальных областей. Современная наука так специализирована, что требует громадного арсенала технических знаний, которые приобретаются длительной, упорной, добросовестной работой.

К сожалению, иногда подобные «труды» находят поддержку людей с учеными званиями и публикуются в статьях и книгах. Сторонники научных сенсаций, несмотря на свои степени и звания, имеют такое же малое отношение к науке, как и авторы «открытий». Было бы хорошо, если бы редакторы, не имеющие достаточной научной квалификации, руководствовались в своих оценках списком признаков «великого открытия».

Суеверия и легенды

Недостаточно строгая обработка статистических данных неизбежно приводит к ошибкам и возникновению суеверий. Каждый человек переживал что-то необычное, что надо было бы объяснять телепатией. Но до сих пор, как мы уже говорили, не существует серьезного ее доказательства. Несмотря на многолетние поиски, нет экспериментов, которые с убедительной статистикой давали бы повторяющиеся результаты. Но та же самая научная добросовестность не позволяет утверждать, что телепатии не существует. Можно только сказать, что

явление не обнаружено и поэтому его существование маловероятно.

Наш разговор начался с того, как труден переход от догадок к достоверной научной истине. С мучительными усилиями, двигаясь шаг за шагом, как альпинист по отвесной стене, ученый добывает истину.

Всех людей, хоть сколько-нибудь причастных к науке, огорчил фильм «Воспоминание о будущем». С необычайной легкостью из фактов, имеющих десятки простых объяснений, делается заключение о следах астронавтов, прилетевших на Землю с других планет. Схема подтасовки фактов следующая: если на старинном изображении у человека на голове горшок, то это шлем астронавта, а если горшка нет – то он упал при торможении космического корабля, на котором этот астронавт прилетел. Авторы не задаются вопросом, почему астронавты с других планет должны быть похожи на наших, почему их снаряжение должно быть похоже на земное, и так далее, но главное не в этом. Авторы фильма не понимают или делают вид, что не понимают, какая громадная разница между догадкой, даже правдоподобной, и достоверно доказанной истиной, когда категорически исключены все возможные объяснения, кроме одного.

Есть и более серьезные примеры «суеверий» – распространенных заблуждений, возникших без достаточных оснований. Представление о тепловой энергии как о некой жидкости (теплород), перетекающей от нагретого тела к холодному, было неизбежным и плодотворным, но после создания кинетической теории газов теплород перешел в разряд суеверий, как и эфир прошлого века после создания теории относительности.

В XX веке научные заблуждения если и возникают, то держатся очень недолго. Однако и в наши дни сохранили значение слова немецкого физика и философа XVIII века Георга Лихтенберга: «Не грубые заблуждения, а тонкие неверные теории – вот что тормозит обнаружение научной истины».

Надо ли понимать заранее?

Существует заколдованный круг, из которого, кажется, нет выхода: нельзя сделать научную работу без ясного понимания, но ясное понимание возникает только в конце (и то не всегда). В этом одна из главных трудностей научной работы. В каждой сделанной работе преодолевается это противоречие. Происходит это обычно не скачком – по мере понимания исследование продвигается вперед, что, в свою очередь, позволяет продвинуться и в понимании.

Часто в начале работы откладываешь нерешенные вопросы или задачи, которые обязательно нужно решить, но которые пока не мешают продвинуться дальше. Иногда листок с большим перечнем таких задач теряется среди бумаг. Когда он снова находится, с удивлением видишь, что почти все неясные места прояснились сами собой при решении основной задачи.

Стремление с самого начала понять все до конца, а потом уже работать – частая причина неудач. Однако есть люди, которые по своему складу не способны блуждать в потемках, работать без полного понимания. С такими научными работниками крайне полезно обсуждать работы. Трудно переоценить их роль в развитии науки – она гораздо больше, чем можно заключить, изучая их собственные труды, как бы значительны они ни были. Очень хороший физик с даром глубокого понимания, ныне покойный профессор Илья Миронович Шмушкевич принадлежал к этому типу. Каждый из знавших его стремился в конце или даже в середине работы услышать его критику. Это называлось «пропустить через Шмушкевича». После такой операции все сомнительные и недодуманные места выступали наружу. Если же работу удавалось «пропустить» без замечаний – значит, все в порядке.

В более завуалированной форме нелюбовь к блужданию в потемках проявляется в желании делать только достоверные работы. Как недостоверные отбрасываются все исследования, которые нельзя сделать без необоснованных, но правдоподобных предположений. Эта черта иногда вредит даже физикам самого высокого класса. Эйнштейн писал в некрологе, посвященном очень глубокому физику Паулю Эренфесту: «Он постоянно страдал от того, что его способности критические опережали способности конструктивные».

«Служенье муз не терпит суеты…»

(А. С. Пушкин)

Противоположный недостаток – желание «схватывать на лету», угадать результат, минуя процесс понимания. Назовем его «вундеркиндством». Воспитание или самовоспитание научного работника должно начинаться с полного устранения всех следов вундеркиндства. Ландау, которого отличала поразительная широта охвата всех областей физики и совсем уже поразительная скорость мысли, никогда не допускал никаких проявлений вундеркиндства, а старался довести вопрос до полной ясности, до предельной простоты. И говорил шутя: «Я – гениальный тривиализатор».

Существует замечательное явление – глубокая научная мысль выигрывает от упрощения. В искусстве – наоборот, законченное произведение не может быть упрощено, попытка упрощения уничтожит образ. Слова «Пьяной горечью Фалерна чашу мне наполни, мальчик!» после упрощения превращаются в просьбу: «Мальчик, налей-ка мне вина». Можно анализировать элементы, которые создают очарование, но образ произведения искусства нельзя свести к элементам, он воспринимается как целое. В науке сведение к элементам возможно.

До понимания значительных явлений в искусстве нужно подняться, дорасти, а достижения науки можно

«опустить», сделать доступными для «пешеходов». Это требует таких же творческих усилий, как и научная работа. Поэтому многие глубокие научно-популярные книги, написанные выдающимися учеными, дают не меньший толчок развитию науки, чем их оригинальные работы. Чтение таких книг иногда требует больших усилий, но зато в них не обходятся трудные места и упрощение не переходит в вульгаризацию.

В научной работе не должно быть спешки и суеты, но недостаточно активная работа не только отнимает много времени, но малоэффективна. Впрочем, это относится ко всем видам человеческой деятельности.

Еще одна психологическая черта, которая мешает творчеству, – вера в собственную непогрешимость. Конечно, нельзя сделать ничего серьезного без веры в свои силы. Но убеждение в непогрешимости приводит только к тому, что научный работник, раз выбрав неверное направление, будет упорно его держаться.

Должна быть найдена правильная мера уверенности и сомнения, колебания и непреклонности, гибкости и несгибаемости.

Сколько ангелов поместится на кончике иголки?

Часто работа тормозится обсуждением антинаучных или вненаучных проблем. Иногда антинаучность видна сразу, как в схоластических спорах об ангелах на кончике иголки или когда спор касается не существа дела, а терминологии. Но очень часто вненаучность не так уж очевидна.

Имеет ли научный смысл, например, утверждение, что рядом с нашим миром есть еще один, но мы его не замечаем, потому что он не взаимодействует с нашим? Способа проверить это утверждение нет – значит, оно лежит вне науки.

Можно ли сомневаться в правильности, скажем, квантовой механики? Конечно, нет таких истин, в которых нельзя усомниться, но лучше не делать этого без достаточных оснований – без бережного отношения к хорошо установленным истинам наука не могла бы развиваться.

Квантовая механика и теория относительности особенно часто подвергались ненаучной критике. Чаще всего она сводилась к попыткам иначе объяснить явления, уже предсказанные и объясненные прежними теориями.

Но покуда не указаны эксперименты, позволяющие доказать справедливость новой точки зрения или ошибочность старой, обсуждение не относится к области науки и в лучшем случае может иметь только педагогическую ценность.

Есть безусловный критерий различия научных и ненаучных вопросов. Ненаучными называются все утверждения, которые не допускают хотя бы принципиальной проверки. Этот критерий вытекает из «принципа наблюдаемости», о котором шла речь в главе «Инструменты познания». Должна быть не обязательно реальная, но хотя бы мысленная возможность проверки. Объектом изучения может быть теория, возможно, и не описывающая наш мир, но логически допустимая, как, скажем, геометрия Лобачевского. Ее можно назвать научной, если следствия теории можно проверить мысленно, делая опыты в том воображаемом мире, который она описывает, или, короче, – если она приводит к определенным соотношениям между входящими в нее величинами.

Приведем в пример концепцию божества. Если бог представляется субстанцией духовной, не влияющей на законы природы, тогда его существование не проявляется в виде наблюдаемых соотношений, и, следова-

тельно, такой бог согласно принципу наблюдаемости – понятие вненаучное. Но если мы подразумеваем материальную силу, влияющую на законы природы, – это понятие нужно включить в сферу естественных наук. Ученый может только повторить мысль Пьера Лапласа – пока нет экспериментальных данных, требующих такого включения, – все известные законы природы удавалось объяснить без введения каких-либо сторонних воздействий.

Воздайте гениям по заслугам!

Любовь к науке немыслима без глубокого уважения к духовному подвигу предшественников.

Как же объяснить распространенное желание обнаружить недостатки гения – выискивать ошибки, приписывать заимствования, умалять значение работы?

Разумеется, иногда гениальные творения и их авторы критикуются по политическим или националистическим причинам – вспомним критику теории относительности фашистами и их последователями. Но мы говорим не об этом – этому нет оправдания, но есть хотя бы объяснение.

Гораздо труднее объяснить психологическое явление – стремление принизить гения, распространенное не только в широкой публике, но и в кругу людей, считающих себя специалистами.

Став благодаря бойкости кисти модным живописцем, гоголевский Чартков из повести «Портрет» «…утверждал, что прежним художникам уже чересчур много приписано достоинства, что все они до Рафаэля писали не фигуры, а селедки; что существует только в воображении рассматривателей мысль, будто бы видно в них присутствие какой-то святости; что сам Рафаэль даже писал не все хорошо и за многими произведениями его удержалась только по преданию слава; что Микель-Ан-жел хвастун, потому что хотел только похвастать знанием анатомии, что грациозности в нем нет никакой…».

Сколько мучительных переживаний доставалось при жизни Галилею, Пушкину, Вагнеру, Больцману, Лобачевскому; сколько душевных сил нужно было потратить Эйнштейну на защиту от нелепых придирок и обвинений! Казалось бы, современники должны радоваться, что рядом с ними кто-то пишет роман, делает открытие, создает симфонию, но именно это вызывает раздражение людей, зараженных такой болезнью.

«Знатоки» не оставляют в покое великих творцов и после их смерти. Кому только не приписывается авторство шекспировских сонетов и трагедий – от Фрэнсиса Бэкона до королевы Елизаветы; «музыковеды» заявляют, что «Реквием» написал не Моцарт, а его ученик; скульпторы делают портреты великих ученых, изображая их тупыми коротконогими уродцами…

Особенно часто таким нападкам подвергались работы Эйнштейна по частной и общей теории относительности (теории тяготения). Почти все историки науки видят в теории тяготения редчайший пример великого открытия, сделанного одним человеком. Когда все физические идеи были до конца сформулированы, великий немецкий математик Давид Гильберт уточнил эйнштейновские уравнения. Эту же поправку одновременно сделал и сам Эйнштейн. Гильберт ясно понимал, как скромна его роль в создании этой теории. Но находится «историк науки», который заявляет, что в завершении теории важную роль сыграл Гильберт. Другой говорит об Эйнштейне: «Науке очень полезны проницательные умы, способные довести до конца идеи, носящиеся в воздухе…»

Занимаясь историей науки, «знаток», принижающий гениев, говорит о великих открытиях как о чем-то обычном, обыденном. Он пытается создать представление, что открытия не возникают в результате мучительных усилий и озарений, а «становятся известными» сразу всем. Сохраняя факты, он, по существу, искажает историю, осуществляя свою, быть может, неосознанную задачу – принизить величие и поэзию научного подвига.

Что же это такое, чем вызвана болезнь – завистью, стремлением к самоутверждению, манией величия?..

Разумеется, можно возразить, что досужие домыслы проживут недолго. Эйнштейн останется Эйнштейном, Моцарт – Моцартом, но неуважение к высоким подвигам человеческого духа может заразить молодых, начинающих свой творческий путь людей жестоким ядом нигилизма.

Не нужно слепо преклоняться перед авторитетом, но нужно чтить память о людях, пришедших к великим свершениям, чтобы стали возможны свершения будущие.


    Ваша оценка произведения:

Популярные книги за неделю