355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЦЕ) » Текст книги (страница 24)
Большая Советская Энциклопедия (ЦЕ)
  • Текст добавлен: 22 сентября 2016, 10:40

Текст книги "Большая Советская Энциклопедия (ЦЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 24 (всего у книги 30 страниц)

Цепи питания

Це'пи пита'ния, пищевые, или трофические, цепи, ряды видов растений, животных, грибов и микроорганизмов, связанных друг с другом отношениями: пища – потребитель. Организмы последующего звена поедают организмы предыдущего звена и т. о. осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80—90%) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в Ц. п. ограничено и не превышает обычно

4—5.

  Основу каждой Ц. п. составляют виды-продуценты – автотрофные организмы , преимущественно зелёные растения, синтезирующие органическое вещество (строят своё тело из воды, неорганических солей и углекислоты, ассимилируя энергию солнечного излучения; см. Фотосинтез ), а также серные, водородные и другие бактерии, использующие для синтеза органических веществ энергию окисления химических веществ (см. Хемосинтез ). Следующие звенья Ц. п. занимают виды-консументы – гетеротрофные организмы , потребляющие органические вещества. Первичными консументами являются растительноядные животные, питающиеся травой, семенами, плодами, подземными частями растений – корнями, клубнями, луковицами и даже древесиной (некоторые насекомые). Ко вторичным консументам относят плотоядных животных, в свою очередь подразделяющихся на две группы: питающихся массовой мелкой добычей и активных хищников, нападающих нередко на добычу крупнее самого хищника. В подавляющем большинстве случаев питание этих консументов носит смешанный характер, включая и некоторое количество растительной пищи. Так, численность куниц и соболей зависит не только от обилия мелких млекопитающих и птиц, но и от урожая плодов и семян, в частности – кедровых орешков. Вместе с тем и растительноядные животные потребляют какое-то количество животной пищи, получая этим путём необходимые им незаменимые аминокислоты животного происхождения. Наконец, организмы, называемые сапрофитами , преимущественно грибы и бактерии, получают необходимую энергию, разлагая мёртвое органическое вещество. Личинки и взрослые особи животных, для которых характерен метаморфоз, имеют разный тип питания и занимают различное положение в Ц. п. Положение вида (или отдельных фаз его развития) в Ц. п. и его отношения с партнёрами, представляющими собой выше– и нижележащие звенья в Ц. п., определяют его экологическую нишу. Один вид может своими отдельными популяциями или возрастными группами входить в несколько Ц. п., объединяя их в более сложные комплексы.

  В биоценозах существуют 2 основных типа Ц. п. – т. н. «пастбищные» и «детритные». Первые начинаются с фотосинтезирующих зелёных растений и обычно составляют основу биоценоза, вторые – с организмов (сапрофитов), которые используют энергию, освобождающуюся при разложении ими мёртвого органического вещества (грибы и многие микроорганизмы). Совокупность обоих типов Ц. п. обеспечивает 3 основные этапа круговорота веществ, отражённого в существовании трёх трофических уровней: 1) продуценты – растения; 2) консументы первичные (растительноядные животные) и вторичные (плотоядные); 3) сапротрофы-редуценты, разрушающие органическое вещество. Такая трофическая классификация делит на группы не виды, а типы их жизнедеятельности: популяция одного вида может занимать один или несколько трофических уровней, смотря по тому, какие источники энергии она использует. Поток энергии через трофический уровень равен общей ассимиляции на этом уровне, а общая ассимиляция, в свою очередь, равна продукции биомассы плюс дыхание.

  В сообществах организмов (биоценозах) обычно существует ряд параллельных Ц. п., например, травянистая растительность – грызуны – мелкие хищники; травянистая растительность – копытные – крупные хищники. Параллельные Ц. п. нередко объединяют обитателей разных ярусов (почвы, травянистого покрова, древесного яруса), но и между ними могут существовать связи. Сложная структура Ц. п. обеспечивает не только целостность, но и динамичность биоценоза. Сокращение численности особей одного вида – звена в Ц. п., вызванное деятельностью человека или др. причинами, неизбежно приводит к нарушениям целостности биоценоза.

  Лит.: Наумов Н. П., Экология животных, 2 изд., М., 1963; Одум Ю., Основы экологии, пер. с англ., М., 1975; Уильямсон М., Анализ биологических популяций, пер. с англ., М., 1975.

  Н. П. Наумов.

Цепкопалые

Цепкопа'лые, семейство ящериц; то же, что гекконы .

Цепкохвостые обезьяны

Цепкохво'стые обезья'ны, то же, что цебусовые .

Цеплице-Слёнске-Здруй

Цепли'це-Слёнске-Здруй (Cieplice Ślaskie Zdrój), бальнеогрязевой и климатический курорт в Польше (Еленягурское воеводство). Расположен в Еленягурской долине, в предгорьях Крконош, на высоте 350 м, к Ю. от г. Еленя-Гура. Зима мягкая (средняя температура января —2 °С), лето тёплое (средняя температура июня 15 °С); осадков около 700 мм в год. Лечебные средства: 6 минеральных (t до 44 °С) источников, сульфатно-гидрокарбонатно-хлоридно-натриевые воды (с содержанием кремниевой кислоты) которых используют для купаний в бассейнах, ванн, орошений, ингаляций и питья. Торфогрязелечение. Лечение заболеваний органов движения и опоры, периферической нервной системы, гинекологических. Бальнеогрязелечебница, санатории.

Цепная дробь

Цепна'я дробь, см. Непрерывная дробь .

Цепная линия

Цепна'я ли'ния, см. Линия .

Цепная передача

Цепна'я переда'ча, механизм, в котором передача механической энергии на расстояние осуществляется цепью , охватывающей звёздочки (цепные зубчатые колёса). Ц. п. различаются по конструкции применяемых цепей, количеству звёздочек (простые – с двумя, сложные – с тремя и большим числом звёздочек, в том числе одна или несколько ведомых и натяжных); направлению вращения ведомых звёздочек (прямое и обратное); расположению контура цепи в пространстве (вертикально-замкнутые, горизонтально-замкнутые, пространственные – со скрещивающимися осями звёздочек); расположению линии, соединяющей центры звёздочек (горизонтальные, вертикальные, наклонные); расположению ведущей (рабочей) ветви (верхнее и нижнее); способу преобразования частоты вращения ведущего вала (понижающие и повышающие; см. Передаточное отношение ); количеству параллельных контуров цепей; способу регулирования натяжения цепи; способу защиты цепей от загрязнения (открытые и закрытые кожухом, картером, чехлом); способу смазки (с ручной смазкой – при скорости до 2 м/сек, с капельной смазкой – при скорости до 6 м/сек, с масляной ванной – при скорости до 8 м/сек, с циркуляционной смазкой – при скорости свыше 8 м/сек ); компоновке (Ц. п., встроенные в машины, и цепные редукторы). Широкое применение Ц. п. началось с появлением втулочных и прецизионных втулочно-роликовых цепей, обеспечивающих передачу мощности до 5000 квт при высоких скоростях движения (до 35 м/сек ), больших усилиях (до 70 000 кгс, или 700 Мн в Ц. п. с несколькими параллельными контурами многорядных цепей), значительных передаточных отношениях (до 12 в одной Ц. п.) и высоком кпд (до 0,99). При особо лёгких режимах работы (малые скорости и нагрузки) применяют крючковые цепи.

  Ц. п. универсальны, просты и экономичны. По сравнению с зубчатыми передачами они менее чувствительны к неточностям расположения валов, ударным нагрузкам, допускают практически неограниченные межцентровые расстояния, обеспечивают более простую компоновку. В сравнении с ремёнными передачами они характеризуются следующими достоинствами: отсутствие проскальзывания и постоянство среднего передаточного отношения; отсутствие предварительного натяжения и связанных с ним дополнительных нагрузок на валы и подшипники; передача большой мощности как при высоких, так и при низких скоростях; сохранение удовлетворительной работоспособности при высоких и низких температурах; приспособление к любым изменениям конструкции удалением или добавлением звеньев.

  Недостатки Ц. п.: неравномерность хода, возрастающая по мере уменьшения числа зубьев звёздочек и увеличения шага звеньев; повышенный шум и износ цепи при неправильном выборе конструкции, небрежном монтаже и плохом уходе; необходимость в смазке и устранении провисания холостой ветви по мере износа цепи.

  Ц. п. применяются в с.-х. машинах, велосипедах, мотоциклах, автомобилях, строительно-дорожных машинах, в нефтяном оборудовании и т.д. Преимущественное распространение имеют открытые Ц. п., работающие без смазки, или с периодической ручной смазкой, с однорядными втулочно-роликовыми цепями, непосредственно встроенные в машины.

  Лит. см. при ст. Цепи .

  И. И. Ивашков, А. А. Пархоменко.

Цепная передача с трехрядной цепью.

Цепная передача с однорядной цепью.

Цепная схема

Цепна'я схе'ма, цепочечная схема, электрическая цепь, состоящая из сочетания последовательно и параллельно включенных элементов (резисторов , индуктивности катушек , конденсаторов электрических ). Ц. с. может быть представлена в виде каскадного соединения ряда симметричных Т– и П-образных четырехполюсников ; в этом случае, если все четырехполюсники одинаковы, Ц. с. называется однородной, если различны – неоднородной. Наибольшее распространение получили однородные Ц. с., представляющие собой электрические модели систем с распределёнными параметрами: электрических линий, волноводов, трубопроводов и т.п. Используя Ц. с., рассчитывают распределение напряжений в гирляндах изоляторов, в обмотках электрических машин и трансформаторов, в механически и тепловых системах с распределёнными параметрами.

  Ц. с., состоящие из реактивных элементов (катушек индуктивности и конденсаторов), применяют в качестве искусственных линий задержки , в которых сигнал на выходе отстаёт от сигнала на входе (время задержки определяется параметрами схемы). Ц. с. используют также в качестве электрических фильтров .

  Лит.: Основы теории цепей, 4 изд., М., 1975.

  А. В. Нетушил.

Цепни

Це'пни, солитёры (Cyclophyllidea), отряд ленточных червей . Для Ц. характерно наличие на головке четырёх присосок, а у некоторых также хоботка с крючками. Паразитируют Ц. в кишечнике позвоночных животных, за исключением рыб, иногда у человека (основные хозяева), личинки – в полости тела, мышцах и др. органах позвоночных и членистоногих (промежуточные хозяева). Переход от личиночной стадии к взрослой связан обычно со сменой хозяев. Ц. вызывают тяжёлые заболевания человека и животных. Ц. вооружённый, или свиной солитёр (Taenia solium), паразитирует в кишечнике человека; длина его 2—3 м, иногда до 8 м; личинки – онкосферы, заключённые в зрелых члениках солитёра, выводятся с экскрементами хозяина наружу, попадают в желудок промежуточного хозяина (свинья, собака, кошка), откуда проникают в кровеносные сосуды и оседают затем главным образом в мышцах животного, превращаясь в финки; человек заражается, съедая непроваренное или непрожаренное свиное мясо, содержащее финки. Ц. невооружённый, или бычий солитёр (Taeniarhynchus saginatus), имеет длину до 10 м ; его промежуточный хозяин – крупный рогатый скот, окончательный – человек. Опасными паразитами человека являются также Ц. карликовый (Hymenolepis nana) и эхинококк (Echinococcus granulosus). Все Ц. сильно истощают организм человека и животных, что иногда может приводить к смерти. О мерах борьбы с Ц. см. Цистицеркоз .

  А. В. Иванов.

Цепное правило

Цепно'е пра'вило, приём в старых учебниках арифметики для перевода мер одной системы в меры другой при посредстве третьей системы.

  Пример. Сколько вершков содержится в 3 футах, если 1 фут равен 12 дюймам, а 28 дюймов равны 16 вершкам? Для применения Ц. п. переписывают условие задачи по следующей форме:

х вершков 3 фута

1 фут 12 дюймов

28 дюймов 16 вершков

  В ответе прямо пишут произведение всех чисел правого столбца, деленное на произведение известных столбца, т. е.

.

Цепной стежок

Цепно'й стежо'к в швейном производстве, часть ниточной строчки между двумя проколами иглы, полученная с помощью петлителя. В строчках, полученных из Ц. с. (т. н. цепных строчках), переплетение нитей происходит на одной стороне сшиваемых материалов; вид строчки на лицевой и нижней стороне различен. Ц. с. бывает одно-, двух– и многониточным. Ц. с. допускает значительное удлинение вдоль строчки и поэтому обычно используется при сшивании эластичных (например, трикотажных) материалов. Главные недостатки – распускаемость и больший расход ниток, чем при использовании строчек из челночных стежков . На рис. приведена последовательность образования простейшего (однониточного) Ц. с.

Последовательность образования однониточного стежка машиной с вращающимся петлителем: 1 – нить; 2 – игловодитель (нитепритягиватель); 3 – игла с ушком на конце; 4 – прошиваемый материал; 5 – петлитель.

Цепной экскаватор

Цепно'й экскава'тор, многоковшовый экскаватор , рабочий орган которого представляет собой черпаковую раму (жёсткую или шарнирную) с бесконечной цепью и ковшами (черпаками). Применяется для разработки мягких пород в карьерах, в мелиорации и т.д.

Цепные реакции

Цепны'е реа'кции, химические и ядерные реакции, в которых появление промежуточной активной частицы (свободного радикала, атома или возбуждённой молекулы – в химических, нейтрона – в ядерных процессах) вызывает большое число (цепь) превращений исходных молекул или ядер вследствие регенерации активной частицы в каждом элементарном акте реакции (в каждом звене цепи). О ядерных процессах см. Ядерные цепные реакции .

  В изученных неразветвлённых химических Ц. р. активные центры – свободные атомы и радикалы, способные легко, с малой энергией активации реагировать с исходными молекулами, порождая наряду с молекулой продукта также новый активный центр. В разветвленных химических Ц. р. в качестве активных центров могут выступать также возбуждённые молекулы, а в т. н. вырожденно-разветвлённых реакциях (см. ниже) – также нестабильные молекулы промежуточных веществ.

  Неразветвлённые Ц. р. Химические процессы с неразветвлёнными цепями можно рассмотреть на примере фотохимической реакции между водородом и хлором. В этой Ц. р. молекула хлора, поглощая квант света, распадается на два атома. Каждый из образовавшихся атомов хлора начинает цепь химических превращений; в этой цепи атомы хлора и водорода выступают в качестве активных частиц. Длина цепи может быть очень большой – число повторяющихся элементарных реакций продолжения цепи на один зародившийся активный центр может достигать десятков и сотен тысяч. Обрыв цепей происходит в результате рекомбинации атомов в объёме реактора, захвата атомов его стенкой с последующей рекомбинацией на стенке, образования неактивного радикала при реакции активных центров с молекулами всегда присутствующих примесей [например, при реакции между атомарным водородом и молекулами кислорода (примесями) с образованием радикала HO2 ; этот радикал в условиях не очень высоких температур не реагирует с исходными молекулами].

  Реакцию между H2 и Cl2 , вызванную действием кванта света h n, можно представить схемой:

 – зарождение цепи

 – продолжение цепи

– обрыв цепи

  В последних двух стадиях М – любая третья частица (атом или молекула), которая нужна для того, чтобы отнять часть энергии у образующихся частиц Cl2 и HO2 и тем самым сделать невозможным их обратный распад.

  Скорость Ц. р. чрезвычайно чувствительна к скоростям зарождения и обрыва и поэтому зависит от наличия химических примесей, от материала и состояния стенок реакционного сосуда, а также от его размера и формы.

  Скорость реакций с неразветвлёнными цепями (W) равна

W = w n = w0 Wп /Woбр

где w скорость зарождения цепей, n – длина цепей, Wп и Woбр – соответственно скорости продолжения и обрыва цепей (Woбр может быть составной величиной, отражающей различные пути обрыва цепи).

  По неразветвлённо-цепному механизму протекает большое число практически важных реакций, в частности хлорирование , ряд реакций жидкофазного окисления органических соединений, термический крекинг . Своеобразным процессом с неразветвлёнными цепями является также полимеризация , при которой цепь реакций одновременно определяет и длину полимерной молекулы.

  Образование активных частиц, необходимых для зарождения цепей, происходит при разрыве одной из связей в молекуле и всегда сопряжено с затратой энергии. Свободные радикалы можно получать за счёт внешних источников энергии, например кванта света, поглощаемого молекулой при фотохимической реакции, а также энергии электронов, образующихся в электрическом разряде или воздействии a-, b– и g-излучения. Наиболее важно в практическом отношении образование свободных радикалов за счёт внутренней тепловой энергии системы. Но энергия связи в большинстве молекул велика и, значительно велика энергия их прямой диссоциации на радикалы, поэтому путём непосредственного распада исходных молекул Ц. р. инициируются лишь при более или менее высоких температурах. Часто, однако, зарождение цепей происходит при участии различных примесей-инициаторов. Такими примесями могут быть молекулы со слабой связью, при распаде которых легко образуются радикалы, начинающие цепи, или молекулы, легко вступающие в окислительно-восстановительные реакции, например Fe2+ + H2 O2 ® Fe3+ + OH- + OH. Инициирование может происходить также на стенке реакционного сосуда. Энергия активации при этом понижается благодаря тому, что в системе используется энергия адсорбции одного из радикалов. Цепи могут зарождаться и в результате реакций между молекулами. Некоторые из таких реакций протекают достаточно быстро даже при невысоких температурах, например F2 + C2 H4 ® F + C2 H4 F.

  Концепция неразветвлённых Ц. р. возникла в результате работ немецкого учёного М. Боденштейна, обнаружившего (1913), что в ряде фотохимических реакций один поглощённый квант света вызывает превращение многих молекул. В частности, при образовании HCl из H2 и Cl2 в среднем на каждый поглощённый квант образуется до 1 000 000 молекул HCl. Поскольку один квант может активировать только одну молекулу, остальные вступают в реакцию без непосредственного воздействия света. Механизм этой реакции предложил В. Нернст (1916).

  Современная теория реакций с неразветвлёнными цепями была создана и развита школой Боденштейна, а также трудами советских учёных.

  Реакции с разветвленными цепями. Совершенно особыми свойствами обладают реакции, в которых цепи разветвляются. Эти реакции были обнаружены в 1926—28 группой ленинградских физиков на примере окисления паров фосфора. Было установлено, что при малом изменении какого-либо параметра реакционной системы (концентрации реагентов, температуры, размера сосуда, примесей специфических веществ) и даже при разбавлении инертным газом практически незаметная реакция скачкообразно переходит в быстрый, самоускоряющийся процесс типа самовоспламенения . Это явление имеет место даже при низких температурах, когда скорость зарождения подобных процессов чрезвычайно мала, а также в условиях, когда тепловой взрыв невозможен. Поэтому вне области воспламенения (см. рис. ) реакция практически не идёт. Н. Н. Семёновым с сотрудниками впервые было дано объяснение этого парадоксального факта и создана количественная теория разветвленных Ц. р. Значительный вклад в развитие представлений о разветвленных Ц. р. внесли также пионерские работы С. Н. Хиншелвуда с сотрудниками по изучению верхнего предела воспламенения. За исследования механизма химических реакций Семёнову и Хиншелвуду была присуждена в 1956 Нобелевская премия.

  В ходе разветвленных Ц. р. при взаимодействии одного из активных центров возникает более чем один (часто – три) новый активный центр, т. е. происходит размножение цепей.

  Примером разветвленной Ц. р. может служить окисление водорода, где разветвление и продолжение цепей происходит по схеме:

(1) Н + O2 ® OH + О – разветвление

 – продолжение

или в сумме Н + 3H2 + O2 = 2H2 O + 3H.

  Наряду с образующимися в реакциях 1—3 активными центрами Н и OH, обеспечивающими развитие неразветвлённой цепи, в реакции (1) образуется атом кислорода, формально обладающий двумя свободными валентностями и способный легко входить в реакцию (3) с образованием Н и OH – ещё двух носителей цепей. Такой тип разветвления был назван материальным.

  В реакциях с т. н. энергетическим разветвлением размножение цепей осуществляется за счёт возбуждённых частиц – продуктов экзотермических реакций развития цепи. Например, при взаимодействии фтора с водородом развитие цепей происходит по схеме:

(1) F2 ® 2F

(2) F + H2 ® HF* + Н

(3) Н + F2 ® HF* +F

(4) HF* + H2 ® HF + H2 *

(5) H2 * + F2 ® HF + H + F

  В реакциях (2) и (3) наряду с атомами Н и F образуются колебательно-возбуждённые молекулы HF*, которые передают избыток энергии молекуле H2 [реакция (4)]. В результате столкновения обогащенной энергией молекулы H2 * с молекулой F2 образуется молекула HF и атомы Н и F [реакция (5)], начинающие новые цепи (энергетическое разветвление). В СССР получены экспериментальные данные (1970-е гг.), которые, по-видимому, можно рассматривать как подтверждение высказанной Семеновым идеи (1934) о возможности энергетического разветвления с участием электронно-возбуждённых частиц.

  Скорость разветвлённо-цепного процесса в газовой фазе в начальных стадиях (вплоть до выгорания 30—40% газа) выражается формулой

где k – константа скорости реакции активного центра с исходным веществом, [А] – концентрация исходного вещества, w скорость зарождения цепей, f и g соответственно эффективные константы скорости разветвления и обрыва, e — основание натурального логарифма, t — время.

  В условиях, когда (fg ) > 0, концентрация активных центров и скорость W растут лавинообразно во времени. Если же (f – g ) < 0, то концентрации активных центров и соответственно скорость реакции очень малы, т.к. мала скорость зарождения цепей wo . Переход от одного режима реакции к другому осуществляется практически скачком при критическом условии (f g ) = 0.

  Скорость разветвления цепей пропорциональна концентрации молекулярного реагента, вступающего в эту реакцию с активным центром. В то же время скорость гетерогенного обрыва цепей на стенке сосуда в зависимости от состояния его поверхности может не зависеть от концентрации или уменьшаться с ростом концентрации газофазной смеси. Поэтому при повышении давления, начиная с определённого его значения (первый предел), f становится больше g и происходит самовоспламенение смеси. Если обрыв цепей протекает при тройных столкновениях, то его скорость пропорциональна произведению суммарной концентрации смеси и концентрации исходного реагента, образующего с активным центром малоактивный радикал. При дальнейшем повышении давления, начиная с определённого его значения (верхний предел), обрыв превалирует над разветвлением (f < g ), и воспламенения не происходит. Давление, при котором f = g, называется критическим давлением.

  По аналогичным причинам для разветвленных Ц. р. существует и критическая температура самовоспламенения. Поскольку скорость разветвления зависит от температуры сильнее, чем скорости обрыва, с повышением температуры область воспламенения расширяется.

  Кривые, выражающие критическое давление как функцию температуры, имеют вид т. н. полуострова цепного воспламенения (см. рис. ). В качестве примера приведены полуострова воспламенения для окисления силана при различном его содержании в кислороде. Аналогичная картина наблюдается практически для всех реакций окисления и многих реакций фторирования. Экспериментально наблюдаемые зависимости полностью соответствуют теории.

  При гетерогенном обрыве величина g, а значит и скорость гибели активных центров, пропорциональна отношению внутренней поверхности сосуда к его объёму, т. е. обратно пропорциональна диаметру сосуда. Соответственно существует критический диаметр. При диаметрах чуть больших критического реакция идёт с воспламенением, при меньших – реакция фактически отсутствует. Если для смесей значения f и g близки друг к другу, но всё же f < g, то такие смеси можно воспламенить, добавляя инертный газ. Добавление инертного газа при неизменной концентрации реагентов затрудняет диффузию активных центров к стенкам сосуда и этим уменьшает скорость обрыва (величину g ).

  Если в системе присутствует примесь вещества, в реакции с которым активные центры погибают, то выше некоторой критической концентрации этого вещества обрыв цепей превалирует над разветвлением и смесь не воспламеняется. Ниже этой критической концентрации примеси может происходить воспламенение смеси. Теория позволяет рассчитать изменение концентраций активных центров во времени. Расчёты показывают, что вблизи максимума скорости цепного процесса концентрации активных центров могут достигать огромных величин, намного превышающих их термодинамически равновесные концентрации (очевидно, что к концу процесса концентрации активных центров становятся исчезающе малыми из-за рекомбинации атомов и радикалов). Действительно, в соответствии с теорией в различных разветвленных Ц. р. непосредственно обнаружены атомы и радикалы в концентрациях, сравнимых с концентрациями исходных веществ. Так, в процессе распада NCl3 при комнатной температуре и низких давлениях концентрации промежуточных активных частиц – атомов хлора – достигают 40% от начального содержания NCI3 .

  В 1939 В. Н. Кондратьевым с сотрудниками при изучении водородно-кислородного пламени, а затем Н. М. Эмануэлем на примере сероводородно-кислородного пламени впервые было показано, что концентрации активных центров в пламёнах на много порядков превышают их термодинамически равновесные значения. Позднее для идентификации атомов и радикалов в пламёнах В. В. Воеводским с сотрудниками был впервые успешно использован метод электронного парамагнитного резонанса. Этот метод широко применяется при изучении различных разветвленных Ц. р.

  Не исключено, что область химических процессов, протекающих по цепному разветвленному механизму, шире, чем обычно предполагается, и здесь много ещё неисследованного. Известно, например, что при большой скорости рекомбинации активных центров между собой процессы с разветвленными цепями могут имитировать закономерности реакций простых типов. В этих условиях цепной механизм нелегко установить. Это удалось сделать, например, в реакции жидкофазного окисления соединений двухвалентного олова.

  Критические явления, в известной мере аналогичные описанным выше, наблюдаются в некоторых гетерогенно-каталитических реакциях.

  Разветвленные Ц. р. – это не только химические и ядерные реакции. Явление когерентного излучения лазера, например, также относится к числу разветвленных цепных процессов.

  Вырожденно-разветвлённые Ц. р. Реакции этого типа были предсказаны, открыты и затем подробно исследованы в институте химической физики АН СССР. При развитии неразветвлённых цепей часто образуется промежуточный молекулярный продукт типа перекисей, который сравнительно легко, но всё же не слишком быстро распадается на свободные радикалы, начинающие дополнительные новые цепи. В этом случае имеет место сильно запаздывающее разветвление и идёт медленная автоускоряющаяся реакция, названная вырожденно-разветвлённой. Такие реакции сопровождаются продолжительным, иногда часовым периодом индукции (вернее, периодом скрытого автоускорения). К ним относится окисление углеводородов и многих др. органических соединений. Многим вырожденно-разветвлённым реакциям в газовой и в жидкой фазах также свойственны предельные (критические) явления, но проявляются они не столь часто, как в обычных разветвленных Ц. р. Своеобразные реакции типа вырожденно-разветвлённых протекают и в твёрдых телах, например при медленном термическом разложении кристаллов перхлората аммония. В кристаллах непосредственное разложение исходных веществ крайне затруднено и начинается на дефектах, прежде всего на дислокациях , вдоль которых образуются конечные вещества – газы или твёрдые продукты. При реакциях в дислокациях возникают механические напряжения, порождающие новые дислокации; т. о. идёт их размножение, которое можно уподобить вырожденно-разветвлённой Ц. р.

  Открытие разветвленных и вырожденно-разветвлённых Ц. р. имело исключительно большое значение для создания теории процессов горения. Было доказано, что существуют только два типа воспламенения: цепное и тепловое. Теория цепных процессов лежит в основе управления процессами горения и играет большую роль в различных областях современной техники.

  Лит.: Семенов Н. Н., Цепные реакции, [Л.], 1934; его же, О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; его же, Развитие теории цепных реакций и теплового воспламенения, М., 1969; его же. On the possible importance of excited states in the kinetics of chain reactions, в кн.: Douziéme conseil de chimie tenu a L'Université Libre de Bruxelles, N. Y. – Brux., 1962; Hinshelwood C. N., The kinetics of chemical change, Oxf., 1942; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. – Л., 1948; Эмануэль Н. М., Денисов Е. Т., Майзус З. К., Цепные реакции окисления углеводородов в жидкой фазе, М., 1965; Капралова Г. А. [и др.], Экспериментальные доказательства разветвлений в цепных реакциях молекулярного фтора, «Кинетика и катализ», 1963, т. 4, в. 4; Семенов Н. Н., Шилов А. Е., О роли возбужденных частиц в разветвленных цепных реакциях, «Кинетика и катализ», 1965, т. 6, в. 1; Кондратьев В. Н., Спектроскопическое изучение химических газовых реакций, М. – Л., 1944; Экспериментальные доказательства разветвлений в цепных реакциях молекулярного фтора. «Кинетика и катализ», 1963, т. 4, в. 4; Азатян В. В., Бородулин Р. Р., Маркович Е. А., Идентификация атомов хлора в разреженном пламени треххлористого азота, «Кинетика и катализ», 1974, т. 15, в. 6.

  Н. Н. Семенов.

Полуострова воспламенения смеси силана с кислородом.


    Ваша оценка произведения:

Популярные книги за неделю