355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (АМ) » Текст книги (страница 10)
Большая Советская Энциклопедия (АМ)
  • Текст добавлен: 10 октября 2016, 05:26

Текст книги "Большая Советская Энциклопедия (АМ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 10 (всего у книги 20 страниц)

Амилофильные растения

Амилофи'льные расте'ния (от греч. ámylon – крахмал и philéō – люблю), растения, конечным продуктом фотосинтеза которых служит крахмал, накапливающийся в листьях и др. частях растительного организма. К А. р. относится большинство зелёных растений. Ср. Сахарофильные растения.

Амимия

Амими'я (от греч. а – отрицательная частица и mímos – подражатель, актёр), ослабление или полное отсутствие мимики, наблюдающееся при некоторых заболеваниях центральной и периферической нервной системы.

Амин Ахмед

Ами'н Ахмед (1.11.1878 – 30.5.1954), египетский историк и филолог. Образование получил в мусульманском университете аль-Азхар. Автор серии многотомных работ по истории и истории общественной мысли в Халифате. Богатые сведения по истории, экономике, литературе, о нравах и обычаях египтян содержатся в его словаре-энциклопедии («Словарь египетских обычаев, нравов и выражений», 1953). Исследованию взглядов и деятельности крупнейших мусульманских мыслителей и реформаторов 2-й половины 19 – начала 20 вв. посвящено соч. А. «Видные реформаторы в новое время» (1948).

  Соч.: Зуама аль-ислах фи-ль-аср аль-хадис («Видные реформаторы в новое время»), Каир, 1948; Фаджр аль-ислам («Заря ислама»), Каир, 1950; Духа-ль-ислам («Утро ислама»), т. 1—3, Каир, 1952; Зухр аль-ислам («Полдень ислама»), т. 1—4, Каир, 1952—55: Камус аль-адат ва-т-такалид ва-т-таабир аль-мисрийя («Словарь египетских обычаев, нравов и выражений»), Каир, 1953; Хаяти («Моя жизнь»), 2 изд., Каир, 1952.

  Лит.: Крачковский И. Ю., Соч., т. 3, М.– Л., 1956 (см. указатель); Шарбатов Г. Ш., Ахмед Амин и его египетская энциклопедия, в сборнике: Краткие сообщения института востоковедения. Арабский сборник, [т.] 32, М., 1958.

  Г. Ш. Шарбатов.

Амин Касим

Ами'н Касим (1865, Каир, – 1908, там же), арабский писатель (Египет). Курд по происхождению. Получил юридическое образование во Франции. Впервые в арабской литературе выступил за предоставление равноправия арабской женщине. Его книга «Освобождение женщины» (1899) вызвала полемику во всех арабских странах и в Индии; книга «Новая женщина» (1911) содержит ответ автора оппонентам. Взгляды А. оказали влияние на развитие женского движения на арабском Востоке. Посмертно опубликован сборник «Слова Касим-бека Амина» (1908) – заметки о любви и браке.

  Соч. в рус. пер,: Новая женщина, [предисл. И. Ю. Крачковского], СПБ, 1912.

  Лит.: Борисов В. М., Современная египетская проза, М., 1961; Фахури Ханна, История арабской литературы, т. 2, М., 1961; Фуад Фарадж Сулейман, Тарих хайят аль-мархум Касим Амин, Каир, 1952.

  В. М. Борисов.

Аминазин

Аминази'н, ларгактил, плегомазин, хлорпромазин, гибернал и др., лекарственный препарат из группы нейроплегических средств. Обладает успокаивающим действием на центральную нервную систему; понижает двигательную активность, расслабляет скелетную мускулатуру, снижает кровяное давление, успокаивает рвоту и икоту. В больших дозах вызывает состояние, близкое к физиологическому сну. А. усиливает действие снотворных, наркотиков, обезболивающих средств; обладает гипотермическим действием (см. Гипотермия). Применяют А. строго по назначению врача внутрь, внутримышечно, внутривенно при лечении психических, некоторых нервных, аллергических, кожных заболеваний; при хирургических операциях; при неукротимой рвоте беременных; при лучевой терапии, лечении некоторыми химиотерапевтическими препаратами. Нельзя применять А. при заболеваниях печени, почек, нарушении кроветворения, при ревмокардите, декомпенсированных пороках сердца, гипотонии и др.

Аминирование

Амини'рование, метод введения аминогруппы —NH2 в различные органические соединения. Типичный пример А. – действие амидов щелочных металлов на гетероциклические основания. Так, взаимодействие пиридина с амидом натрия при температуре около 200°С ведёт к образованию a-аминопиридина (А. Е. Чичибабин и О. А. Зейде, 1914):

  C5H5N + NaNH2 ® C5H4N(NH2) + NaH.

  При пропускании паров бензола с аммиаком через накалённую трубку образуется (с очень низким выходом) анилин:

  C6H6 + NH3®C6H5NH2 + H2.

Аминоантрахиноновые красители

Аминоантрахино'новые краси'тели, см. Антрахиноновые красители.

Аминогруппа

Аминогру'ппа, одновалентная группа —NH2, остаток аммиака NH6. А. содержится во многих органических соединениях – аминах, аминокислотах, аминоспиртах и др.

Аминодонты

Аминодо'нты (Amynodontidae), семейство вымерших примитивных носорогов. Жили в палеогене (эоцен, олигоцен) в Евразии и Северной Америке; обитали на болотах и по берегам рек. По размеру и пропорциям тела близки к бегемоту. Имели короткие массивные ноги (передние с 4, задние с 3 пальцами), крупный череп, мощные клыки, редуцированные резцы и передние коренные зубы.

Аминокапроновая кислота

e-Аминокапро'новая кислота', NH2(CH2)5COOH, органическая кислота, бесцветные кристаллы, хорошо растворимые в воде, нерастворимые в обычных органических растворителях. А. к. получают обычно гидролизом e-капролактама — сырья для производства полиамидной смолы капрон. А. к. применяют для синтеза некоторых аминокислот, например лизина.

Аминокислоты

Аминокисло'ты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2. В зависимости от положения аминогруппы относительно карбоксильной группы различают a-, b-, g- и др. А. А. играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из А. Все белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных А., играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения А. задаются генетическим кодом, записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших А., входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к a-А. В природе встречаются и b-А., RCH(NH2)CH2COOH, например b-аланин CH2NH2CH2COOH, входящий в состав пантотеновой кислоты. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

Моноаминокарбоновые кислоты:

  Глицин – NH2CH2COOH

  Аланин – CH3CH (NH2) COOH

  Цистеин – CH2(SH)CH(NH2)COOH

  Метионин – CH2 (SCH3) CH2CH (NH2) COOH

  Валин-(СН3)2СНСН(МН2)СООН и др.

Моноаминодикарбоновые кислоты:

  Аспарагиновая – HOOC CH2CH (NH2) COOH

  Глутаминовая – HOOC (CH2)2CH (NH2) COOH

Диаминомонокарбоновые кислоты:

  Лизин – NH2CH2(CH3)2CH(NH2)COOH

  Аргинин – NH2C(=NH)NH(CH2)3CH(NH2)COOH и др.

  А. – бесцветные кристаллические вещества, растворимые в воде; tпл 220—315°С. Высокая температура плавления А. связана с тем, что их молекулы имеют структуру главным образом амфотерных (двузарядных) ионов. Например, строение простейшей А. – глицина — можно выразить формулой  (а не NH2CH2COOH).

  Все природные А., кроме глицина, содержат асимметричные атомы углерода, существуют в оптически активных модификациях и, как правило, относятся к L-ряду. А. D-ряда содержатся только в некоторых антибиотиках и в оболочках бактерий.

  Многие растения и бактерии могут синтезировать все необходимые им А. из простых неорганических соединений. Большинство А. синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота. Однако 8 А. (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин) являются незаменимыми, т. е. не могут синтезироваться в организме животных и человека, и должны доставляться с пищей. Суточная потребность взрослого человека в каждой из незаменимых А. составляет в среднем около 1 г. При недостатке этих А. (чаще триптофана, лизина, метионина) или в случае отсутствия в пище хотя бы одной из них невозможен синтез белков и многих др. биологически важных веществ, необходимых для жизни. Гистидин и аргинин синтезируются в животном организме, но лишь в ограниченной, иногда недостаточной, мере. Цистеин и тирозин образуются лишь из своих предшественников – соответственно метионина и фенилаланина – и могут стать незаменимыми при недостатке этих А. Некоторые А. могут синтезироваться в животном организме из безазотистых предшественников при помощи процесса переаминирования, т. е. переноса аминогруппы с одной А. на др. В организме А. постоянно используются для синтеза и ресинтеза белков и др. веществ – гормонов, аминов, алкалоидов, коферментов, пигментов и др. Избыток А. подвергается распаду до конечных продуктов обмена (у человека и млекопитающих до мочевины, двуокиси углерода и воды), при котором выделяется энергия, необходимая организму для процессов жизнедеятельности. Промежуточным этапом такого распада является обычно дезаминирование (чаще всего окислительное).

  К числу производных А., представляющих большой практический интерес, относится лактам w-аминокапроновой кислоты (см. Капролактам) исходный продукт производства капрона.

  Известно много методов синтеза А., например действие аммиака на галогензамещённые карбоновые кислоты:

  RCHCICOOH+2NH3 ® RCHNH2COOH + NH4CI,

восстановление оксимов или гидразонов, кето– или альдегидокислот:

  RC(= NOH)COOH ® RCHNH2COOH

и др. Некоторые А. выделяют из продуктов гидролиза богатых ими белков методом адсорбции на ионообменных смолах; так выделяют глутаминовую кислоту из казеина и клейковины злаков; тирозин – из фиброина шёлка; аргинин — из желатины; гистидиниз белков крови. Некоторые А. производят синтетически, например метионин, лизин и глутаминовую кислоту. А. получают в больших количествах также микробиологическим синтезом. Поступление в организм незаменимых А. определяется количеством и аминокислотным составом пищевых белков. Это следует учитывать для организации правильного общественного питания и составления рационов для разных возрастных и профессиональных групп населения. Потребность в пищевом белке может быть полностью покрыта за счёт смеси А. Этим пользуются в лечебном питании.

  А. применяют в медицине: для парентерального питания больных (т. е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и др. органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т. п.); в животноводстве и ветеринарии – для питания (см. ниже) и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.

  Изучение аминокислотного состава белков и обмена А. проводят рядом цветных реакций, например нингидриновой реакцией, а также методами хроматографии и с помощью специальных автоматических приборов – анализаторов А.

  А. в кормлении с.-х. животных. Рационы с.-х. животных должны содержать все необходимые организму А., особенно незаменимые, поэтому при организации кормления в настоящее время стали учитывать в кормах не только общее количество протеина, как было принято раньше, но и незаменимых А. Потребность в А. у разных видов животных неодинакова. У жвачных животных микрофлора преджелудков способна синтезировать все необходимые организму А. из аммиака, выделяющегося при распаде белка или небелковых азотистых соединений, например мочевины. Нормирования А. для этих животных не проводят. Однако с целью пополнения рациона животных небелковыми азотистыми веществами применяют мочевину. Молодняк жвачных, у которого ещё недостаточно развиты преджелудки, испытывает некоторую потребность в незаменимых А. Рационы свиней и птицы обязательно балансируют по содержанию А. С этой целью подбирают корма, дополняющие друг друга по аминокислотному составу, а также используют синтетические А., выпускаемые промышленностью. Синтетические А. скармливают в смеси с концентратами; целесообразнее добавлять их в комбикорма промышленного изготовления. Избыток А. отрицательно влияет на организм животных.

  Лит.: Майстер А., Биохимия аминокислот, пер. с англ.,М., 1961; Аминокислотное питание свиней и птицы, М., 1963; Збарский Б. И., Иванов И. И., Мардашев С. P., Биологическая химия, 4 изд., Л., 1965; Попов И. С., Аминокислотный состав кормов, 2 изд., М., 1965; Обмен аминокислот. Материалы Всесоюзной конференции [13—17 окт. 1965], Тбилиси, 1967; Кретович В. Л., Основы биохимии растений, 4 изд., М., 1964.

  И. Б. Збарский, Я. Ф. Комиссаров.

Аминоксидазы

Аминоксида'зы, группа ферментов, катализирующих окислительное дезаминирование аминов (т. е. отщепление аминогруппы —NH2) с образованием альдегидов, аммиака и перекиси водорода. А. относятся к оксидоредуктазам. Широко распространены в тканях животных и человека (особенно в печени, почках и слизистой оболочке кишечника), а также у растений и бактерий. Моноаминоксидаза находится в митохондрияхи дезаминирует моноамины (имеющие одну аминогруппу), в том числе и такие биологически активные вещества, как адреналин, серотонин и др. амины биогенные. Диаминоксидаза действует на гистамин и др. диамины (имеющие две аминогруппы). А. крови дезаминирует полиамины. А. участвует также в обезвреживании аминов, образующихся в кишечнике под влиянием гнилостных бактерий.

  И. С. Северина.

Аминомасляная кислота

Аминома'сляная кислота', органическое соединение; в зависимости от положения карбоксильной и аминогрупп различают: a-А. к., CH3CH2CH(NH2)COOH, b-А. к., CH3CH(NH2)CH2COOH и g-А.к., NH2CH2CH2CH2COOH. А. к. – высокоплавкие кристаллические вещества, растворимые в воде и не растворимые в эфире. a– и b-А. к. оптически активны, a– и g- А. к. широко распространены в животных и растительных тканях. b-А. к. в организмах не обнаружена.

Аминопептидазы

Аминопептида'зы, группа ферментов кишечного сока, катализирующих гидролитическое расщепление полипептидов — продуктов расщепления белков – с образованием свободных аминокислот. Расщепление осуществляется только с того конца полипептидной цепи, где имеется свободная аминогруппа (см. Пищеварение, Ферменты).

Аминопласты

Аминопла'сты, карбамидные пластики, пластмассы на основе термореактивных синтетических смол, получаемых взаимодействием мочевины, меламина и др. аминосоединений с альдегидами (обычно с формальдегидом). Наиболее распространены А. на основе мочевино-формальдегидных смол и меламино-формальдегидных смол. А. светостойки, не имеют запаха, могут быть окрашены в любой цвет и светлые тона, физиологически безвредны. Они стойки к действию слабых кислот и щелочей, спирта, бензина, ацетона, хлороформа и др. органических соединений. При применении меламино-формальдегидных смол получаются изделия с большей теплостойкостью и устойчивостью к действию влаги, чем в случае мочевино-формальдегидных смол.

  А. выпускают в промышленности в виде пресспорошков, слоистых пластиков или пористых материалов. Наполнителями для пресспорошков служат сульфитная целлюлоза, древесная мука, асбест, тальк и др. Плотность прессизделий из А. на основе мочевино-формальдегидной смолы (наполнитель – сульфитная целлюлоза) 1400 кг/м3, прочность при растяжении 35—50 Мн/м2 (350—500 кгс/см2), при изгибе 60—90 Мн/м2 (600—900 кгс/см2), теплостойкость по Мартенсу 100—120°С, водопоглощение 1—1,5%, диэлектрическая проницаемость (при 50 гц) 5—7. Из пресспорошков получают изделия широкого потребления (галантерейные и канцелярские товары, предметы домашнего обихода, детские игрушки и т. д.), детали электроосветительного оборудования (абажуры, кнопки, штепсели, выключатели и т. п.), а также корпуса телефонов, радиоприёмников, телевизоров и др. При получении слоистого пластика наполнителями служат листы бумаги, ткань (хлопчатобумажная, асбестовая, стеклянная). Плотность такого пластика 1400 кг/м3, прочность при изгибе 100 Мн/м2(1000 кгс/см2), водопоглощение около 4% . Благодаря прозрачности исходных смол, слоистые пластики из А. пригодны для декоративных целей (облицовка столов, стен, киосков, корабельных переборок и др.)– Такие изделия можно мыть тёплой водой с мылом.

  О получении пористых материалов из А. см. Мипора.

  Лит.: Петров Г. С., Левин А. Н., Термореактивные смолы и пластические массы, М., 1959; Справочник по пластическим массам, ч. 1, М., 1967, с. 396.

Аминосахара

Аминосахара', органические соединения, в молекулах которых содержатся группы, характерные для сахаров, – альдегидная (CHO) или кетонная (CO) группа, несколько гидроксильных (OH) и одна или несколько аминогрупп (NH2). Углеродная цепь в А. может быть неразветвлённой или разветвленной. Как производные моносахаридов, А. обладают восстанавливающими свойствами и дают реакции сахаров, но проявляют и свойства органических оснований. А. широко распространены в природе, встречаются во всех тканях животных, растений, в микроорганизмах, в составе сложных белков и липидов, полисахаридов, гликозидов и др.; они входят в состав многих гормонов, антибиотиков и др. биологически значимых веществ. Наиболее распространены глюкозамин и галактозамин. Многие А. получены синтетически.

  Лит.: Степаненко Б. Н., Углеводы. Успехи в изучении строения и метаболизма, М., 1968.

  Л. И. Линевич.

Аминоспирты

Аминоспирты', аминоалкоголи, органические соединения, содержащие —NH2– и —ОН-группы у разных атомов углерода в молекуле; высококипящие маслянистые жидкости со свойствами оснований. А. получают действием аммиака и аминов на окиси олефинов, например:

  Известны и др. способы их синтеза.

  А., особенно этаноламин, широко используют в производстве моющих средств, эмульгаторов, косметических и лекарственных препаратов, а также как поглотители кислых газов (например, CO2). К А. относится холин, которому принадлежит важная роль в обмене веществ у человека и животных; препараты холина применяют для лечения печени. Некоторые алкалоиды, напримерэфедрин, являются А., к ним принадлежит также важный гормон адреналин.

Аминотрансферазы

Аминотрансфера'зы, аминоферазы, трансаминазы, ферменты из группы трансфераз, катализируют перенос аминогрупп (—NH2) от a-аминокислот на a-кетокислоты. А. обнаружены в большинстве тканей животных и растений, играют важную роль в азотистом обмене. Роль А. в процессе переаминирования открыта советскими биохимиками А. Е. Браунштейном и М. Г. Крицман (1937). Коферментом трансаминазных реакций является пиридоксальфосфат, альдегидная группа которого служит промежуточным акцептором аминогруппы; получающийся таким образом пиридоксаминфосфат передаёт её на кетогруппу аминируемой кислоты. Реакция обратима.

  А. А. Болдырев.

Аминофенолы

Аминофено'лы, C6H4(NH2)OH, органические соединения; кристаллы. Известны три изомера А.: о-А., tпл 174°С; m-A., tпл 123°С и n-A.,tпл 186°С. А. амфотерны и образуют соли как с кислотами, так и щелочами. Общий способ получения А. – восстановление соответствующих нитрозо– или нитрофенолов:

  C6H4(NO2)OH + 6H = C6H4(NH2)OH + 2P2O.

  Изомеры (мета- и пара-) применяют в производстве сернистых и некоторых других красителей (например, коричневых красителей для меха). n-Аминофенол и его производные, например метол, — широко распространённые проявляющие вещества в фотографии.

Амины

Ами'ны, обширный класс азотсодержащих органических соединений, продукты замещения одного, двух или трёх атомов водорода в аммиаке NH3 на органические радикалы R. По числу замещенных атомов водорода различают: первичные А. RNH2, вторичные R2NH и третичные R3N (где R – CH3, C2H5, C6H11, C6H5 и др.). По радикалу А. делят на алифатические, например метиламин CH3NH2, диметиламин (CH3)2NH и т. д.; алициклические, например циклогексиламин C6H11NH2; ароматические, например фениламин, или анилин, C6H5NH2, и гетероциклические, например 2-аминопиридин C5H4N(NH2). А. с двумя, тремя и более аминогруппами —NH2 называют ди-, три– и полиаминами: этилендиаминH2NCH2CH2NH2, гексаметилен диамин H2N(CH2)6NH2.

  Простейшие А. – газы с аммиачным запахом, высшие – жидкости или твёрдые вещества. Простейшие А. найдены в продуктах жизнедеятельности растений; триметиламин (CH3)3N содержится в сахарной мелассе и в сельдяном рассоле, которому придаёт его характерный неприятный запах. Широко распространены в природе более сложные А.: алкалоиды, аминокислоты, амины биогенные и др. Алифатические А. обычно получают алкилированием NH3; ароматические – восстановлением нитросоединений.

  Подобно аммиаку, А. – основания (ароматические А. с боковой NH2-группой – очень слабые основания). С кислотами А. образуют соли замещенного аммония, например: C2H5NH2+HCI = [C2H5NH3]+Cl. С алкилгалогенидами третичные А. дают соли четырёхзамещённого аммония: R3N + R¢CI = [R3NR¢]+CI-. Большое значение имеет реакция А. с азотистой кислотой. Первичные ароматические А. образуют с ней диазосоединения, имеющие широкое применение в лабораторном и промышленном синтезе. Первичные алифатические А. превращаются HNO2 в спирты, например C2H5NH2 + HNO2 =C2H5OH + N2 + H2O; вторичные – дают нитрозамины: (C2H5)2NH + HNO2 = H2O + (C2H5)2NNO; третичные А. с HNO2 не реагируют. Этой реакцией пользуются для распознавания первичных, вторичных и третичных А.

  В промышленности А. широко используют для производства красителей и лекарственных веществ, полиамидов, из которых изготовляют синтетическое волокно (капрон, найлон) и т. д.

  Синтез ароматических А. впервые осуществлен в 1842 Н. Н. Зининым. В 1849 Ш. Вюрц открыл алифатические А.

  Лит.: Краткая химическая энциклопедия, т. 1, М., 1961, с. 195.


    Ваша оценка произведения:

Популярные книги за неделю