355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГА) » Текст книги (страница 22)
Большая Советская Энциклопедия (ГА)
  • Текст добавлен: 9 октября 2016, 15:28

Текст книги "Большая Советская Энциклопедия (ГА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 22 (всего у книги 65 страниц)

Газы в технике

Га'зы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.; теплоносителей; рабочего тела для выполнения механической работы (огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины, парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах). В технике используется свыше 30 различных Г.

  Как топливо применяют природные газы горючие и получаемые искусственно в виде основной (генераторный Г.) или побочной (коксовый, доменный и др. Г.) продукции. Основные потребители природного Г. в чёрной металлургии – доменное и мартеновское производство. С использованием природного Г. производится ежегодно около 60% цемента, 60% стекла, свыше 60% керамзита, свыше 60% керамики. Перевод стекловаренных печей на природный Г. значительно улучшает технико-экономические показатели производства стекла. В топливном балансе машиностроительной промышленности на долю горючего Г. приходится около 40%. Основными потребителями являются нагревательные и термические печи. Применение в этих печах природного Г. вместо др. видов топлива позволяет снизить стоимость нагрева, улучшить его качество, повысить кпд печей и создать более благоприятные санитарно-гигиенические условия в производственных помещениях. В топливном балансе электростанций СССР удельный вес природного Г. составляет около 20%. Применение природного Г. на электростанциях даёт значительный эффект. Кпд котельных установок на электростанциях при переводе с твёрдого на газовое топливо увеличивается на 1—4%; уменьшается на 21—26% количество обслуживающего персонала. Суммарное снижение расхода топлива за счёт повышения кпд и снижения расхода электроэнергии на собственные нужды составляет 6—7%. Сжигание Г. в топках котлов малой производительности увеличивает кпд по сравнению с котлами, использующими твёрдое топливо, на 7—20% (в зависимости от сорта топлива) и позволяет повысить производительность на 30% и более. Использование природного Г. открывает широкие возможности для создания простых, менее металлоёмких и более экономичных котлов (паровых и водогрейных), работающих на природном Г.

  Некоторые Г. являются в то же время исходным сырьём для технологических процессов в химической промышленности (из них вырабатывается около 200 видов различных химических продуктов); на природном Г. работает ряд крупнейших химических комбинатов СССР.

  Из числа Г., используемых в качестве химических агентов, воздух (атмосферный или обогащенный кислородом) и кислород получили наибольшее распространение в металлургических, химических и смежных с ними отраслях промышленности (см. Воздух и Кислород в технике). Большое значение имеют также многие др. Г.: ацетилен, хлор, фтор и редкие Г.

  При газовой сварке большей частью используется пламя ацетилено-кислородной смеси, позволяющее развивать очень высокую температуру (около 3200 °С). В отдельных случаях применяют атомноводородную сварку, основанную на нагреве металла водородом, превращенным в атомарное состояние под действием электрической дуги.

  Тепловую обработку металлов в печах часто сопровождают воздействием химических агентов, находящихся в газообразном состоянии. Насыщение поверхностного слоя стали углеродом (см. Цементация ) производится путём длительного нагрева её в атмосфере Г., диссоциирующих с выделением атомарного углерода. В установках промышленного типа для газовой цементации применяют: природный Г., бутан-пропановую смесь и др. Во избежание чрезмерного выделения сажи (или смолистых веществ) к этим Г. подмешивают генераторный газ или дымовые газы, очищенные от углекислого газа и паров воды.

  Г. как химические агенты применяются также в практике химико-термической обработки поверхности стали при её азотировании , цианировании , алитировании , хромировании и др. При газовой цементации стали алюминием (или хромом) её нагревают в парах хлористого алюминия (хрома). Азот, генераторный газ из антрацита или древесного угля, продукты горения некоторых Г. (после удаления из них углекислого газа и паров воды) и продукты диссоциации аммиака в металлообрабатывающей промышленности служат в качестве специальных атмосфер для борьбы с окислением и обезуглероживанием металлов, которые происходят при их нагреве в атмосфере воздуха или дымовых газов.

  В качестве инертных веществ для продувки взрывоопасной аппаратуры (газгольдеров, газоочистных коробок, коммуникаций и т. п.) применяют водяной пар, углекислый газ и азот, а также смесь углекислого газа с азотом, например продукты горения газообразного топлива, сжигаемого с малым избытком воздуха. Технологические аппараты большой ёмкости продуваются инертными газами перед их заполнением Г. (например, водородом). При этом вытесняется находящийся в аппарате атмосферный воздух и предотвращается образование взрывчатой смеси Г. – воздух.

  В электроламповой промышленности для наполнения ламп накаливания применяются азот, криптон, ксенон и др. Наполнение ламп накаливания инертным газом уменьшает скорость испарения нити и т. о. увеличивает срок службы ламп. Использование для этих целей некоторых редких Г. позволяет значительно (до 30%) увеличить световую отдачу ламп накаливания, что имеет большое значение, т. к. на нужды освещения расходуется около 20% всей вырабатываемой в СССР энергии. Широко распространено наполнение ламп накаливания аргоно-азотной смесью, особенно подходящими наполнителями являются криптон и ксенон, обладающие высокой плотностью и минимальной теплопроводностью.

  Г. применяются также для интенсификации некоторых биохимических процессов, Углекислый газ и чистые продукты горения бессернистого топлива могут быть и пользованы в качестве углекислого удобрения. Повышенное содержание углекислого газа (до 0,3%) в атмосфере теплиц и оранжерей ускоряет рост и увеличивает плодоношение некоторых растений. Дозревание сорванных овощей и плодов (томатов, яблок и др.) можно ускорить хранением их в атмосфере этилена.

  В качестве теплоносителей широко распространены следующие Г.: продукты горения (дымовые Г.), воздух и реже газообразные продукты экзотермических процессов (окисления аммиака, получения серного ангидрида и др.). Дымовые газы как теплоноситель используют: для непосредственного обогрева изделий или материалов в печах и сушилках; для получения и подогрева промежуточных теплоносителей (водяного пара, горячей воды, воздуха и др.). Для регулирования процесса нагрева дымовыми газами их можно разбавлять воздухом или отходящими газами. Иногда дымовые газы служат для транспортировки угольной пыли и её подсушки во взвешенном состоянии, В этих случаях дымовые газы являются не только теплоносителем, но и физической средой для переноса твёрдых тел, находящихся в пылевидном состоянии. Воздух как промежуточный теплоноситель используют в тех случаях, когда недопустимо загрязнение нагреваемого продукта сажей и золой, содержащимися в некоторых дымовых газах. Чаще всего воздух как теплоноситель применяется в сушилках и в некоторых системах отопления помещений.

  В качестве рабочих веществ для совершения механической работы Г. распространены в газовых турбинах , в огнестрельном оружии, в реактивных двигателях и снарядах, а также в двигателях внутреннего сгорания. Для наполнения дирижаблей и аэростатов используются Г., имеющие невысокую плотность.

  Электрический разряд в Г. (или парах) широко применяется в электротехнике для выпрямления переменного тока, преобразования постоянного тока в переменный, генерации электрических колебаний, освещения газосветными лампами и ми. др. Подбором соответствующих газов или паров металлов можно повышать излучение газосветных ламп на заданном участке спектра. Этим достигается увеличение общей световой отдачи источника света (см. Электрический разряд в газах , Газосветная трубка ).

  Лит.: Кортунов А. К., Газовая умышленность СССР, М., 1967; Спейшер В. А., Сжигание газа на электростанциях и в промышленности, 2 изд., М., 1967; Использование газа в промышленных и энергетических установках, в сборнике: Теория и практика сжигания газа, в. 3—4, Л., 1967—68; Рябцев И. И., Волков А. Е., Производство газа из жидких топлив для синтеза аммиака и спиртов. М., 1968.

  В. А. Спейшер.

Газы горючие

Га'зы горю'чие, газообразные вещества, способные гореть. В широком смысле слова к Г. г. относятся водород, окись углерода, сероводород, газообразные углеводороды (например, метан, этан, этилен). В технике под Г. г. обычно понимают природные и искусственные смеси этих газов, разбавленных негорючими газами, такими как двуокись углерода, азот, инертные газы, пары воды. Наибольшее значение в промышленности имеют добываемые из недр земли газы природные горючие , в составе которых содержится до 99% газообразных углеводородов, главным образом метана и его ближайших гомологов. Природные Г. г. добывают из газовых месторождений или совместно с нефтью (см. Газы нефтяные попутные ).

  Искусственные смеси Г. г. получают в результате термического разложения твёрдого и жидкого топлива. Наиболее распространены: коксовый газ — продукт, получаемый при коксовании твёрдого топлива, генераторный газ, образующийся при газификации топлив ,газы нефтепереработки , которые получаются при термической и термокаталитической переработке нефти и нефтепродуктов, а также доменный газ , образующийся в процессе выплавки чугуна. В отличие от природных, искусственные Г. г. содержат в своём составе пепредельные углеводороды, окись углерода и иногда значительное количество водорода. В небольшом количестве Г. г. получают также методом подземной газификации углей .

  Основу развития газовой промышленности СССР и ряда др. стран составляют природные горючие газы, по запасам которых СССР занимает 1-е место в мире Удельный вес природных газов в общей добыче основных видов топлива составлял в СССР 17,9% (1968). Производство искусственных Г. г. не увеличивается из-за малой эффективности переработки твёрдых топлив. Природные газы – удобный и дешёвый вид топлива, всё шире используемый в самых различных отраслях промышленности и в коммунально-бытовом хозяйстве. Применение природных газов позволяет существенно упростить многие важные технологические процессы (см. Газы в технике).

  Лит.: Рябцев Н. И., Природные и искусственные газы, 3 изд., М., 1967; Стаскевич Н. Л., Справочное руководство по газоснабжению, Л., 1960.

  Н. И. Рябцев.

Газы земной коры

Га'зы земно'й коры', газы, встречающиеся в земной коре в свободном состоянии, в виде раствора в воде и нефти и в состоянии, сорбированном породами, особенно ископаемыми углями. Количество газов в геосферах Земли возрастает в глубь планеты (табл. 1). В зависимости от существа газообразующих процессов различают до 9 генетических групп Г. з. к., из которых важнейшими являются газы катагенетические, метаморфические, вулканические, биохимические, радиоактивного и воздушного происхождения; остальные группы газов (газы ядерных реакций, газы радиохимического происхождения и газы подкоровых глубин) имеют в условиях земной коры второстепенное значение.

  Газы катагенетического происхождения (см. Катагенез в литологии) возникают в результате преобразования органического вещества, заключённого в осадочных породах, при их погружении на глубины и одновременном увеличении давления от 10 до 200—250 мн/м2 (от 100 до 2000—2500 атм ) и температуры (от 25—30 °С до 250—300 °C). К катагенетическим газам относится основная масса горючих газов (см. Газы природные горючие ).

  При дальнейшем повышении температуры и давления породы дают начало газам метаморфизма, а при расплавлении пород – газам возрождения. Основной состав газов: пары воды, двуокись углерода, окись углерода, водород, сера, двуокись серы, метан, азот, редко инертные газы и летучие хлориды.

  Вулканические газы в основном идут из глубин Земли и связаны с дегазацией мантии (см. Вулканические газы ).

  Биохимические газы образуются при бактериальном разложении органических веществ и реже при восстановлении минеральных солей. К ним относятся метан и его гомологи (этан и др.), двуокись углерода, сероводород, азот, кислород, редко водород и др. Эта группа охватывает большую часть газов, выделяющихся в атмосферу или образующих скопления в самых верхних частях земной коры.

  Радиоактивные газы возникают в процессе распада радиоактивных элементов. К ним относятся гелий, недолговечные эманации радия, тория и др. Самостоятельных скоплений газы этой группы не образуют (см. Гелий ).

  Газы воздушного происхождения представляют собой газы атмосферы, проникшие в глубь земной коры главным образом в форме водных растворов. Они состоят из азота, кислорода и инертных газов (аргон, криптон и ксенон).

  По химическому составу выделяются три основных группы Г. з. к.: углеводородные, азотные и углекислотные. Особые свойства газов – их большая способность мигрировать как в свободном, так и водорастворённом состоянии – обусловливают смешивание газов разного происхождения и вместе с тем их широкое распространение в природе (табл. 2).

  Огромная масса горючих (углеводородных) газов находится в растворённом состоянии в подземных водах. Среднее содержание метана в подземных водах Западно-Кубанского прогиба колеблется от 1 м3 м3 до 10 м3 /м3 . Общее количество метана, растворённого в пластовых водах, во много раз превышает все его запасы в газовых и нефтяных месторождениях и составляет, по Л. М. Зорькину, n · 1016 м3

  Значительное количество углеводородных газов связано с органическими веществами, как рассеянными в осадочных породах, так и образующими ископаемые угли, которые содержат много метана (до 50 и более м3 ). Газы могут выделяться из подземных вод и создавать самостоятельные сухие скопления лишь в тех случаях, когда упругость растворённых газов превышает давление воды на соответствующей глубине. Поэтому все залежи свободного газа образованы в основном газами катагенетического происхождения.

Табл. 1 – Количество и общий состав газов в геосферах Земли (по В.А. Соколову)


Геосфера Масса геосферы (в 1018 т) Общая масса газов (в 1015 т) Среднее содержа– ние газов (%) Масса отдельных компонентов (в 1012 т)
O2N2CO2CH4H2H2 S+ SO2HCl+ HF He Ar
Осадочный слой 2,5 0,214 0,0097 2 76 92 43 0,2 0,8 _ 28 600
«Гранитный» и «базальто– вый» слои 26 7,8 0,03 _ 500 6300 15 115 200 600 28 600
Верхняя мантия _ 435,0 _ _ 13000 210000 _ 8600 210000 83000 28 600

*Приведён состав газов, извлечённых из породы при её дроблении.

Табл. 2. – Химический состав газов различного генезиса (в %)


Местонахождение CO2CO CH4C2 H6   и выше H2SO2N2Ar H2 S
Вулкан Этна 28,8 0,5 1,0 16,5 34,5 18,7
Кисловодск, Нарзан 92,13 0,37 7,3 0,129
Норильск, габбродиазбаз* 34,2 30,7 35,1
Норильск, порфириты 23,6 8,9 51,3 16,2
Грязевой вулкан Бог-Бога (Апшеронский полуостров) 1,6 0,4 94,7 0,29 0,3 2,7
Газовое месторождение Карадаг (пласт VII-а) (Азербайджан) 0,19 97,72 2,09
Газовое месторождение Лак (Франция) 9 74 2 15
Нефтяной попутный газ из мезозойских отложений Западного Предкавказья 7,68 84,57 6,54 1,2 0,52 0,01

  Лит.: Козлов А. Л., Проблемы геохимии природных газов, М. – Л., 1950; Соколов В. А., Геохимия газов земной коры и атмосферы, М., 1966.

  Н. Б. Вассоевич.

Газы крови

Га'зы кро'ви, газы, содержащиеся в крови животных и человека в растворённом состоянии и в химически связанном виде. Полное исследование Г. к. человека было впервые проведено И. М. Сеченовым (1859). Г. к. состоят из газов, поступающих из окружающей среды, и газов, образующихся в организме; они поступают в кровь и выделяются из неё путём диффузии. Содержание каждого из растворённых газов в артериальной крови определяется его парциальным давлением в альвеолярном воздухе и коэффициентом его растворимости в крови. Наиболее важны кислород и углекислый газ, которые находятся в крови в растворённом и в связанном виде. Они образуют легко распадающиеся соединения: СО2 идёт на образование солей, входящих в буферные системы крови, кислород, соединяясь с гемоглобином , образует оксигемоглобин. В результате газообмена содержание газов в венозной и артериальной крови различно (см. табл. ):

  При значит. изменении давления воздуха (например, в горах, в кессонах) парциальное давление О2 и N2 резко меняется, что может вызвать кислородное голодание, декомпрессионные заболевания и др. нарушения. Кроме постоянных Г. к., в кровь могут поступать наркотические, токсические и др. газы (см. Наркоз , Углерода окись ).

Содержание газов в крови человека в норме


Газ Кровь артериальная Кровь венозная
Парциальное давление, мм рт. ст. Содержание в % (объёмн.) Парциальное давление, мм рт. ст. Содержание в % (объёмн.)
В раствор. виде В связан. виде В раствор. виде В связан. виде
Кислород 90-100 0,28 18-20 35-45 0,12 12-15
Углекислый газ 37-41 2,5-2,6 44-48 42-47 2,8-3,0 48-53
Азот 560-580 1 0 560-580 1 0
Прочие газы следы следы следы следы

  Л. Л. Шик.

Газы нефтепереработки

Га'зы нефтеперерабо'тки, смеси газов, состоящие в основном из низкомолекулярных углеводородов, образующихся на нефтеперегонных установках и при термических и каталитических процессах переработки нефтяного сырья. В отличие от газов природных горючих и газов нефтяных попутных , большинство Г. н. содержат значительные количества непредельных углеводородов и водород. Исключение составляют газы, выделяющиеся при прямой перегонке нефти, а также газы каталитического риформинга и гидроформинга, которые состоят из парафиновых углеводородов (метан, этан, пропан и др.) и небольшого количества примесей (азот, кислород, углекислый газ и др.). Большое количество непредельных углеводородов находится в газах, образующихся при проведении высокотемпературных процессов (например, общее содержание непредельных углеводородов в Г. н. при жёстких режимах коксования доходит до 50% по массе, каталитического крекинга тяжёлого сырья – до 56% по массе).

  Выход Г. н. на установках крекинга, пиролиза и др. составляет (на перерабатываемую нефть) 8,5—9,5%, в том числе до 2,5% непредельных углеводородов. Содержание водорода в Г. н. колеблется от 0,2% в газах термического крекинга до 7% в газах риформинга. Входящие в состав Г. н. непредельные углеводороды (этилен, пропилен, бутилен, бутадиен и др.) являются сырьем для нефтехимической промышленности и для получения высокооктановых компонентов моторных топлив. Г. н. обладают высокой теплотой сгорания 52,3 Мдж/м3 (до 12 500 ккал/м3 ) и используются в качестве топлива.

  Лит.: Тарасов А. И., Газы нефтепереработки и методы их анализа, М., 1960; Основы технологии нефтехимического синтеза, под ред. А. И. Динцеса и Л. А. Потоловского, М., 196(Смидович Е. В., Деструктивная переработка нефти и газа, М., 1966 (Технология переработки нефти и газа, ч.2).

  В. В. Панов.

Газы нефтяные попутные

Га'зы нефтяны'е попу'тные, углеводородные газы, сопутствующие нефти и выделяющиеся из неё при сепарации. Количество газов (в м3 ), приходящееся на 1 т добытой нефти (т. н. газовый фактор), зависит от условий формирования и залегания нефтяных месторождений и может изменяться от 1—2 до нескольких тыс. м3 нефти. Суммарная добыча Г. н. п. в СССР составила 18,8 млрд. м3 (1967). В отличие от газов природных горючих , состоящих в основном из метана, Г. н. п. содержат значительные количества этана, пропана, бутана и др. предельных углеводородов. Кроме того, в Г. н. п. присутствуют пары воды, а иногда и азот, углекислый газ, сероводород и редкие газы (гелий, аргон).

  Перед подачей в магистральные газопроводы Г. н. п. перерабатывают на т. н. газоперерабатывающих заводах, продукцией которых являются газовый бензин, т. н. отбензиненный газ и углеводородные фракции, представляющие собой технически чистые углеводороды (этан, пропан, бутан, изобутан и др.) или их смеси.

  Газовый бензин применяют как компонент автомобильных бензинов. Сжиженные газы (пропан-бутановая фракция) широко используют как моторное топливо для автотранспорта или как топливо для коммунально-бытовых нужд. Углеводородные фракции – ценное сырьё для химической и нефтехимической промышленности. Они широко используются для получения ацетилена. Пиролизом этана получают этилен – важный продукт для органического синтеза. При окислении пропан-бутановой фракции образуются ацетальдегид, формальдегид, уксусная кислота, ацетон и др. продукты. Изобутан служит для производства высокооктановых компонентов моторных топлив, а также изобутилена – сырья для изготовления синтетического каучука. Дегидрированием изопентана получают изопрен – важный продукт при производстве синтетических каучуков.

  Лит.: Рябцев Н. И., Естественные и искусственные газы, 2 изд., М., I960; Чураков А. М., Газоотбензинивающие установки, М., 1962.

  С. Ф. Гудков.


    Ваша оценка произведения:

Популярные книги за неделю