355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ИО) » Текст книги (страница 7)
Большая Советская Энциклопедия (ИО)
  • Текст добавлен: 8 октября 2016, 14:14

Текст книги "Большая Советская Энциклопедия (ИО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 7 (всего у книги 11 страниц)

Ионные радиусы

Ио'нные ра'диусы, условные характеристики ионов, используемые для приблизительной оценки межъядерных расстояний в ионных кристаллах. Значения И. р. закономерно связаны с положением элементов в периодической системе Менделеева. И. р. широко используются в кристаллохимии, позволяя выявить закономерности строения кристаллов разных соединений, в геохимии при изучении явления замещения ионов в геохимических процессах и др.

  Предложено несколько систем значений И. р. В основе этих систем обычно лежит следующее наблюдение: разность межъядерных расстояний А – Х и В – Х в ионных кристаллах состава АХ и ВХ, где А и В – металл, Х – неметалл, практически не меняется при замене Х на аналогичный ему другой неметалл (например, при замене хлора на бром), если координационные числа аналогичных ионов в сравниваемых солях одинаковы. Отсюда вытекает, что И. р. обладают свойством аддитивности, т. е. что экспериментально определяемые межъядерные расстояния можно рассматривать как сумму соответствующих «радиусов» ионов. Разделение этой суммы на слагаемые всегда базируется на более или менее произвольных допущениях. Системы И. р., предложенные разными авторами, отличаются главным образом использованием различных исходных допущений.

  В таблицах приводят И. р., отвечающие разным значениям окислительного числа (см. Валентность). При значениях его, отличных от +1, окислительное число не соответствует реальной степени ионизации атомов, и И. р. приобретают ещё более условный смысл, так как связь может иметь в значительной мере ковалентный характер. Значения И. р. (в ) для некоторых элементов (по Н. В. Белову и Г. Б. Бокию): F 1,33, Cl 1,81, Br 1,96, I 2,20, O2— 1,36, Li+ 0,68, Na 0,98, К+ 1,33, Rb+ 1,49, Cs+ 1,65, Be2+ 0,34, Mg2+ 0,74, Ca2+ 1,04, Sr2+ 1,20, Ba2+ 1,38, Sc3+ 0,83, Y3+ 0,97, La3+ 1,04.

  В. Л. Киреев.

Ионный источник

Ио'нный исто'чник, устройство для получения направленных потоков (пучков) ионов. И. и. является важной частью ускорителей заряженных частиц, масс-спектрометров, ионных микроскопов, электромагнитных разделителей изотопов (см. Изотопов разделение) и многих др. устройств.

Ионный лазер

Ио'нный ла'зер, один из видов газового лазера.

Ионный микроскоп

Ио'нный микроско'п, прибор, в котором для получения изображений применяется пучок ионов, создаваемый термоионным или газоразрядным ионным источником. По принципу действия И. м. аналогичен электронному микроскопу. Проходя через объект и испытывая в различных его участках рассеяние и поглощение, ионный пучок фокусируется системой электростатических или магнитных линз и даёт на экране или фотослое увеличенное изображение объекта (см. Электронная и ионная оптика).

  Создано лишь несколько опытных образцов И. м. Работы по его усовершенствованию стимулируются тем, что он должен обладать более высокой разрешающей способностью по сравнению с электронным микроскопом. Длина волны де Бройля для ионов значительно меньше, чем для электронов (при одинаковом ускоряющем напряжении), вследствие чего в И. м. очень малы эффекты дифракции, которые в электронном микроскопе ограничивают его разрешающую способность. Другие преимущества И. м. – меньшее влияние изменения массы ионов при больших ускоряющих напряжениях и лучшая контрастность изображения. Расчёты показывают, что, например, контрастность изображения органических плёнок толщиной в 50 , вызванная рассеянием протонов, в несколько раз должна превышать контрастность, вызванную рассеянием электронов.

  К недостаткам И. м. относятся заметная потеря энергии ионов даже при прохождении через очень тонкие объекты, что вызывает разрушение объектов, большая хроматическая аберрация (см. Электронные линзы), разрушение люминофора экрана ионами и слабое фотографическое действие. Эти недостатки привели к тому, что, несмотря на перечисленные выше преимущества И. м. по сравнению с электронным, он не нашёл пока практического применения. Значительно более эффективным оказался И. м. без линз – ионный проектор.

  Лит.: The proceedings of the 3d International conference on electron microscopy, L., 1956, p. 220—99.

  Ю. М. Кушнир.

Ионный насос

Ио'нный насо'с,вакуумный насос, в котором откачиваемый газ подвергается интенсивной ионизации, а образующиеся положительно заряженные ионы удаляются под действием электрического поля. С помощью И. н. создают разрежение 10-4н/м2 (10-6мм рт. ст.).

Ионный обмен

Ио'нныйобме'н, обмен ионов в растворах электролитов (гомогенный И. о.). При смешении разбавленных растворов электролитов, например NaCl и KNO3 в смеси присутствуют ионы Na+, К+, NO3 и Cl. Равновесное состояние выразится в этом случае уравнением:  (реакция двойного обмена). Если одно из веществ, могущих получиться при взаимодействии, диссоциировано меньше других, равновесие сдвигается в сторону образования малодиссоциированного вещества. Равновесие сдвигается также в сторону образования летучего или малорастворимого продукта (если он выделяется из данной фазы) по реакциям:

  При выпаривании равновесного раствора прежде всего начинается кристаллизация соли (комбинации ионов), обладающей меньшей растворимостью. Избирательность кристаллизации может быть вызвана также добавлением органических растворителей (спирт, ацетон, диоксан и т. п.).

  При гетерогенном И. о. (ионообменная сорбция) обмен происходит между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твёрдой фазы – ионита. При соприкосновении ионита, насыщенного одним ионом, например Н+, с раствором, содержащим другие ионы, например Na+ и Ca2+, происходит обмен ионов между раствором и ионитом: в растворе уменьшаются концентрации Na+ и Ca2+ и появляется эквивалентное количество ионов Н+.

  Гетерогенный И. о. имеет место при сорбции из растворов электролитов на некоторых минералах (алюмосиликатах, гидратах окисей металлов, цеолитах), в клетках и мембранах живых организмов и в синтетических ионообменных сорбентах. Гетерогенный И. о. широко применяется для обессоливания воды, идущей для питания котлов паром высоких параметров, в гидрометаллургии, в химической и фармацевтической промышленности (см. Иониты).

  К. В. Чмутов.

Ионный проектор

Ио'нный прое'ктор, автоионный микроскоп, безлинзовый ионно-оптический прибор для получения увеличенного в несколько миллионов раз изображения поверхности твёрдого тела. С помощью И. п. можно различать детали поверхности, разделённые расстояниями порядка 2—3 , что даёт возможность наблюдать расположение отдельных атомов в кристаллической решётке. И. п. изобретён в 1951 немецким учёным Э. Мюллером, который ранее создал электронный проектор.

  Принципиальная схема И. и. показана на рис. 1. Положительным электродом и одновременно объектом, поверхность которого изображается на экране, служит остриё тонкой иглы. Атомы (или молекулы) газа, заполняющего внутренний объём прибора, ионизуются в сильном электрическом поле вблизи поверхности острия, отдавая ему свои электроны. Возникшие положительные ионы приобретают под действием поля радиальное (перпендикулярное поверхности острия) ускорение, устремляются к флуоресцирующему экрану (потенциал которого отрицателен) и бомбардируют его. Свечение каждого элемента экрана пропорционально плотности приходящего на него ионного тока. Поэтому распределение свечения на экране воспроизводит в увеличенном масштабе распределение плотности возникновения ионов вблизи острия. Масштаб увеличения m равен отношению радиуса экрана R к радиусу кривизны острия r, m = R/r (чем тоньше остриё, тем больше увеличение).

  Вероятность прямой ионизации газа в электрическом поле оказывается значительной, если на расстояниях порядка размеров атома (молекулы) газа создаётся падение потенциала порядка ионизационного потенциала этой частицы. Напряжённость такого поля чрезвычайно велика – от 2 до 6 в/, т. е. (2—6)×108в/см. Столь сильное поле легко создать у поверхности острия (на удалении 5—10  от неё) при достаточно малом радиусе кривизны поверхности – от 100 до 1000 . Именно этим (наряду со стремлением к большим увеличениям) обусловлено использование в И. п. образца в виде тонкого острия. Происходящий в И. п. процесс ионизации газа в сильном поле острия носит название автоионизации.

  Вблизи острия электрическое поле неоднородно – над ступеньками кристаллической решётки или отдельными выступающими атомами его локальная напряжённость увеличивается: на таких участках вероятность автоионизации выше и количество ионов, образующихся в единицу времени, больше. На экране эти участки отображаются в виде ярких точек. Иными словами, образование контрастного изображения поверхности определяется наличием у неё локального микрорельефа. Ионный ток и, следовательно, яркость и контрастность изображения растут с повышением давления газа, которое в И. п., однако, обычно не превышает примерно 0,001 мм рт. ст.; при более высоком давлении начинается газовый разряд.

  Разрешающая способность И. п. зависит главным образом от касательных (относительно поверхности острия) составляющих тепловых скоростей ионов и от напряжённости ноля у острия. В отличие от электронного проектора, в И. п. влияние дифракции на разрешающую способность относительно мало вследствие значительно большей (по сравнению с электронами) массы ионов. Далее, разрешение И. п. существенно зависит от поляризуемости a атомов (или молекул) рабочего газа; наиболее пригодны для использования в И. п. газы с малой a (водород, гелий). Большинство частиц газа достигает поверхности острия, не претерпев ионизации. При обычных температурах они затем покидают её, обладая значительными касательными составляющими скорости. При охлаждении острия до температуры жидкого водорода или азота (20—78 К) неионизованные молекулы на некоторое время «прилипают» к нему, теряя свою кинетическую энергию. Их ионизация происходит после испарения с острия (для гелия на расстоянии » 5  от него; локальное распределение поля на таком удалении от поверхности достаточно хорошо выявляет атомную структуру острия, см. рис. 2).

  И. п. широко применяется для исследования атомной структуры чистых металлов и различных сплавов и её связи с их механическими свойствами; всевозможных дефектов в кристаллах, в частности дислокаций и повреждений, вызванных радиоактивным облучением; влияния способов обработки, например пластических деформаций, на свойства материалов. С его помощью изучают процессы коррозии, адсорбции и десорбции, свойства тонких пленок, осаждённых на поверхности металлов. Сопоставление результатов исследований в электронном проекторе и в И. п. позволяет получить значительную информацию об электронных свойствах металлов, сплавов и плёночных систем, чрезвычайно важную в современной электронике. Ведутся работы, ставящие целью изучение с помощью И. п. структуры биологических молекул.

  Лит.: Мюллер Э., Автоионная микроскопия, «Успехи физических наук», 1967, т. 92, в, 2, с. 293; Автоионная микроскопия, пер. с англ., М., 1971.

Рис. 1. Схема ионного проектора: 1 – жидкий водород; 2 – жидкий азот; 3 – остриё; 4 – проводящее кольцо; 5 – экран.

Рис. 2a. Изображения поверхности вольфрамового острия радиусом 950 Å при увеличении в 106 раз в электронном проекторе (а). На изображении можно видеть только структуру кристаллических плоскостей.

Рис. 2б. Изображения поверхности вольфрамового острия радиусом 950 Å при увеличении в 106 раз в гелиевом ионном проекторе (б) при температуре 22 К. С помощью ионного проектора за счёт разрешения отдельных атомов (светлые точки на кольцах) можно различить бисерно-цепочечную структуру ступеней кристалической решётки.

Ионный ракетный двигатель

Ио'нный раке'тный дви'гатель, то же, что электростатический ракетный двигатель.

Ионный электропривод

Ио'нный электропри'вод, привод, состоящий из электродвигателя и ионного преобразователя, управляющего режимами работы двигателя. Изменяя подводимое к двигателю напряжение, можно менять частоту его вращения и тем самым регулировать режим работы электропривода. Напряжение может изменяться дискретно (ступенчатое регулирование) при переключении отводов согласующего трансформатора Т (рис.) или плавно при изменении угла регулирования вентилей преобразователя, пропускающих ток от сети U1 к электродвигателю Д. Управляющее напряжение на вентили подаётся устройством управления СУ. В качестве вентилей в И. э. малой и средней мощности обычно применяют тиратроны, а в мощных – игнитроны и экситроны.

  Различают И. э. постоянного и переменного тока. В первом случае ток через преобразователь подаётся в обмотки якоря или возбуждения двигателя постоянного тока; во втором – обмотки статора или ротора асинхронного или синхронного электродвигателя. Преобразователь И. э. постоянного тока выполняется в виде выпрямителя по мостовой схеме или с нулевым выводом. Преобразователь И. э. переменного тока представляет собой преобразователь частоты, собранный по схеме «выпрямитель – инвертор» или по схеме с непосредственной связью. И. э. бывает реверсивным, т. е. допускающим изменение направления вращения двигателя, и нереверсивным. Для реверсирования обычно применяют переключающее устройство, которым в И. э. постоянного тока могут быть, например, силовой механический реверсор или дополнительный комплект вентилей; в И. э. переменного тока – изменением чередования фаз в СУ. И. э. применяется в прокатных станах, подъёмниках, мощных вентиляторах, станках, на ж.-д. подвижном составе. С 1960 в устройствах средней мощности И. э. заменяются электроприводами с полупроводниковыми преобразователями.

  Лит.: Бутаев Ф. И., Эттингер Е. Л., Вентильный электропривод, М.—Л.,1951; Чиликин М. Г., Общий курс электропривода, 4 изд., М.—Л., 1965.

  Ю. М. Иньков.

Схема ионного электропривода с двигателем постоянного тока: U1 – напряжение питающей сети; Т – трансформатор; ИП – ионный преобразователь; Д – двигатель; БЗ – блок защиты; СУ – система управления.

Ионогальванизация

Ионогальваниза'ция, физиотерапевтический метод лечения; то же, что электрофорез лекарственный.

Ионол

Ионо'л, 4-метил-2,6-ди-трет-бутил-фенол, (CH3)(C4H9)2C6H2OH. Технический И. – порошок жёлтого цвета, tпл 69—70 °С; применяется как антиокислитель в производстве пищевых продуктов, смазочных масел, каучуков и др.

Ионолюминесценция

Ионолюминесце'нция, люминесценция, возбуждаемая при бомбардировке люминофора ионами. Подробнее см. Люминесценция.

Иононы

Ионо'ны, ненасыщенные кетоны циклогексенового ряда с приятным однотипным запахом. И. – высококипящие бесцветные жидкости, хорошо растворимые в спирте. К И. относят собственно ионон и его гомологи: метилионон, изометилионон и ирон. Для И. известно несколько изомеров, из которых наиболее нежным и тонким запахом обладают a-изомеры. Ионон в разбавленных растворах имеет запах цветов фиалки, метил– и изометилиононы – запах фиалки с оттенком ириса, ирон – запах ириса с оттенком фиалки.

  Ионон содержится в некоторых плодах и эфирных маслах, метил– и изометилиононы в природе не найдены, ирон – главная составная часть (60—80%) ирисового эфирного масла, извлекаемого из корней ириса.

  В промышленности ионон, метил– и изометилиононы получают из цитраля, ирон – из метилцитраля (обычно в виде смесей изомеров). И. широко применяют в парфюмерии при создании композиций для духов и одеколонов, а также косметических отдушек. b-Ионон используют так же при производстве витамина А (см. Витамины).

Ионообменники

Ионообме'нники, то же, чтоиониты.

Ионообменные смолы

Ионообме'нные смо'лы, синтетические высокомолекулярные (полимерные) органические иониты. В соответствии с общей классификацией ионитов И. с. делят на катионообменные (поликислоты), анионообменные (полиоснования) и амфотерные, или биполярные (полиамфолиты). Катионообменные смолы бывают сильно– и слабокислотные, анионообменные – сильно– и слабоосновные. Если носителями электрических зарядов молекулярного каркаса И. с. являются фиксированные ионы (функциональные, или ионогенные, группы) только одного типа, например сульфогруппы, то такие И. с. называются монофункциональными. Если же смолы содержат разнотипные ионогенные группы, они называются полифункциональными. По структурному признаку различают микропористые, или гелевидные, и макропористые И. с. Частицы гелевидных смол гомогенны; ионный обмен в системе гелевидная смола – раствор электролита возможен лишь благодаря диффузии обменивающихся ионов сквозь молекулярную сетку набухшего ионита. Макропористые смолы гетерогенны; их частицы имеют губчатую структуру, т. е. пронизаны системой сквозных пор, средний диаметр которых (от 200—300 до 1000—1200 ) намного превышает размеры молекул растворителя и обменивающихся ионов. Раствор электролита свободно проникает по порам внутрь частиц таких И. с., что значительно облегчает ионный обмен, особенно в неводных средах.

  И. с. можно рассматривать как нерастворимые полиэлектролиты. Поливалентный (многозарядный) ион, образующий структурный каркас И. с., практически неподвижен из-за огромной молекулярной массы. Этот ион-каркас, или ион-сетка, связывает малые подвижные ионы противоположного знака (противоионы), которые способны к эквивалентному обмену на ионы окружающего раствора. Свойства некоторых промышленных марок отечественных И. с. приведены в таблице. Средний размер частиц таких И. с. составляет 0,2—2,0 мм, насыпная масса 0,5—0,9 т/м3.

  Получают И. с. полимеризацией, поликонденсацией или путём полимераналогичных превращений, так называемой химической обработкой полимера, не обладавшего до этого свойствами ионита. Среди промышленных И. с. широкое распространение получили смолы на основе сополимеров стирола и дивинилбензола. В их числе сильнокислотные катиониты, сильно– и слабоосновные аниониты. Основным сырьём для промышленного синтеза слабокислотных катионообменных смол служат акриловая и метакриловая кислоты и их эфиры. В больших количествах производят также И. с. на основе феноло-альдегидных полимеров, полиаминов и др. Направленный синтез И. с. позволяет создавать материалы с заданными технологическими характеристиками.

  И. с. используют для обессоливания воды, извлечения и разделения редких элементов, очистки продуктов органического и неорганического синтеза и др. Подробнее см. Иониты.

  Свойства некоторых промышленных марок отечественных ионообменных смол


Марка Статическая обменная ёмкость1, мг-экв/гУдельный объём2, мл/гМаксимальная температура эксплуатации, °С Основное сырьё
Сильнокислотные катионообменные смолы
КУ-1 4,2—4,5 2,6—3,0 80 Фенол, формальдегид
КУ-2 4,8—5,2 2,5—2,9 130 Стирол, дивинилбензол
Слабокислотные катионообменные смолы
КБ-2 10—11 2,6—3,0 100 Акриловая кислота, дивинилбензол
КБ-4 8,5—10 2,6—3,0 100 Метакриловая кислота, дивинилбензол
Сильноосновные анионообменные смолы
АВ-16 8—9,5 3,6—4,2 90 Полиамины, эпихлоргидрин, пиридин
АВ-17 3,5—4,2 2,5—3,0 50 Стирол, дивинилбензол
Слабоосновные анионообменные смолы
АН-2Ф 8,5-10 2,5-3,2 50 Полиамины, фенол
АН-18 3,5-5 2,0-2,5 60 Стирол, дивинилбензол
ЭДЭ-10П 8,5-9,5 2,6-3,2 45 Полиамины, эпихлоргидрин

  1 Выражена числом миллиграмм-эквивалентов ионов, поглощаемых 1 г сухой смолы при контакте со стандартным раствором гидроокиси натрия (для катионообменных смол) или соляной кислоты (для анионообменных смол). 2 Объём, занимаемый 1 г набухшей в воде смолы.

  Лит. см. при статьях Иониты, Ионный обмен.

  Л. А. Шиц.

Ионосфера

Ионосфе'ра (от ионы и греч. spháira – шар), ионизированная часть верхней атмосферы; расположена выше 50 км. Верхней границей И. является внешняя часть магнитосферы Земли. И. представляет собой природное образование разреженной слабоионизированной плазмы, находящейся в магнитном поле Земли и обладающей благодаря своей высокой электропроводности специфическими свойствами, определяющими характер распространений в ней радиоволн и различных возмущении (подробнее см. Плазма, Распространение радиоволн). Только благодаря И. возможен такой простой и удобный вид связи на дальние расстояния, как радиосвязь.

  Первые предположения о существовании высоко над Землёй электропроводящего слоя высказывались в связи с исследованием магнитного поля Земли и атмосферного электричества (К. Гаусс, 1839; У. Томсон, 1860; Б. Стюарт, 1878). Вскоре после открытия А. С. Поповым радио (1895) А. Кеннелли в США и О. Хевисайд в Великобритании почти одновременно (в 1902) высказали предположение, что распространение радиоволн за пределы прямой видимости обусловлено их отражением от электропроводящего слоя, расположенного на высотах 100—300 км. Научные исследования И. были начаты в 20-х гг., когда применили зондирующие ионосферные станции и, посылая с Земли короткие радиосигналы с различной длиной волны, наблюдали их отражения от соответствующих областей И. Английским учёным У. Эклсом был предложен механизм влияния заряженных частиц на радиоволны (1912), советский учёный М. В. Шулейкин (1923) пришёл к выводу о существовании в И. не менее 2 слоев, английский учёный С. Чепмен (1931) построил теорию простого слоя, в первом приближении описывающую И. Большой вклад внесли работы советских учёных Д. А. Рожанского, М. А. Бонч-Бруевича, А. Н. Щукина, С. И. Крючкова, английских учёных Дж. Лармора, Э. Эплтона и др.

  Наблюдения на мировой сети станций позволили получить глобальную картину изменения И. Было установлено, что концентрация ионов и электронов в И. распределена по высоте неравномерно: имеются области, или слои, где она достигает максимума (рис. 1). Таких слоев в И. несколько; они не имеют резко выраженных границ, их положение и интенсивность регулярно изменяются в течение дня, сезона и 11-летнего солнечного цикла. Верхний слой F соответствует главному максимуму ионизации И. Ночью он поднимается до высот 300—400 км, а днём (преимущественно летом) раздваивается на слои F1 и F2 с максимумами на высотах 160—200 км и 220—320 км. На высотах 90—150 км находится область Е, а ниже 90 км область D. Слоистость И. обусловлена резким изменением по высоте условий её образования (см. ниже).

  Применение сначала ракет, а потом и спутников позволило получить более надёжную информацию о верхней атмосфере, непосредственно измерить на ракетах ионный состав (при помощи масс-спектрометра) и основные физические характеристики И. (температуру, концентрацию ионов и электронов) на всех высотах, исследовать источники ионизации – интенсивность и спектр коротковолнового ионизующего излучения Солнца и разнообразных корпускулярных потоков. Это позволило объяснить регулярные изменения в И. С помощью спутников, несущих на борту ионосферную станцию и зондирующих И. сверху, удалось исследовать верхнюю часть И., расположенную выше максимума слоя F и поэтому недоступную для изучения наземными ионосферными станциями.

  Было установлено, что температура и электронная концентрация nе в И. резко растут до области F (см. таблицу и рис. 2); в верхней части И. рост температуры замедляется, а nе выше области F уменьшается с высотой сначала постепенно до высот 15—20 тыс. км (так называемая плазмопауза), а потом более резко, переходя к низким концентрациям nе в межпланетной среде.

  Значения характеристик основных областей ионосферы


Область ионосферы Средняя высота максимума, кмТемпература, К Электронная концентрация ne, см—3Эффективный коэффициент рекомбинации a', см3×сек—1
День Ночь
Солнечная активность
максимум минимум
D70 220 100 200 10 10-6
Е110 270 3×1051,5×1053000 10-7
F1180 800—1500 5×1053×1053×10-8
F2 (зима) 220—280 1000—2000 25×1056×105~1052×10-10
F2 (лето) 250—320 8×1052×1053×10510-10

  Наряду с ракетами и спутниками получили успешное развитие новые наземные методы исследования, особенно важные для изучения нижней части И. в области D: методы частичного отражения и перекрёстной модуляции; измерения с помощью риометров поглощения космического радиоизлучения на разных частотах, исследования поля длинных и сверхдлинных радиоволн, а также метод наклонного и возвратно-наклонного зондирования. Большое значение имеет метод обратного некогерентного (томпсоновского) рассеяния, основанный на принципе радиолокации, когда посылают в И. короткий мощный импульс радиоизлучения, а затем принимают слабый рассеянный сигнал, растянутый во времени в зависимости от расстояния до точки рассеяния. Этот метод позволяет измерять не только распределение nе до очень больших высот (1000 км и выше), но даёт также температуру электронов и ионов, ионный состав, регулярные и нерегулярные движения и др. параметры И.

  Образование ионосферы. В И. непрерывно протекают процессы ионизации и рекомбинации. Наблюдаемые в И. концентрации ионов и электронов есть результат баланса между скоростью их образования в процессе ионизации и скоростью уничтожения за счёт рекомбинации и др. процессов. Источники ионизации и процессы рекомбинации разные в различных областях ионосферы.

  Основным источником ионизации И. днём является коротковолновое излучение Солнца с длиной волны l короче 1038 , однако важны также и корпускулярные потоки, галактические и солнечные космические лучи и др. Каждый тип ионизующего излучения оказывает наибольшее действие на атмосферу лишь в определённой области высот, соответствующих его проникающей способности. Так, мягкое коротковолновое излучение Солнца с l = 85—911  бо'льшую часть ионов образует в И. в области 120—200 км (но действует и выше), тогда как более длинноволновое излучение с l = 911—1038  вызывает ионизацию на высотах 95—115 км, т. е. в области E, а рентгеновское излучение с l короче 85  – в верхней части области D на высотах 85—100 км. В нижней части области D, ниже 60—70 км днём и ниже 80—90 км ночью, ионизация осуществляется так называемыми галактическими космическими лучами. Существенный вклад в ионизацию области D на высотах около 80 км вносят корпускулярные потоки (например, электроны с энергией £ 30—40 кэв), а также солнечное излучение первой линии серии Лаймана (La) водорода с l = 1215,7  (см. Атомные спектры).

  До сих пор речь шла об обычных условиях ионизации. Во время солнечных вспышек всплеск рентгеновского излучения вызывает внезапное возмущение в нижней части И. Через несколько часов после солнечных вспышек в атмосферу Земли проникают также солнечные космические лучи, которые вызывают повышенную ионизацию на высотах 50—100 км, особенно сильную в полярных шапках (областях вблизи магнитного полюса). В зоне полярных сияний в отдельные периоды времени действуют потоки протонов и электронов, которые вызывают не только ионизацию, но и заметное свечение атмосферы (полярные сияния) на высотах 100—120 км, но они действуют также и ниже, в области D. Во время магнитных бурь эти потоки корпускул усиливаются, а зона их действия расширяется к более низким широтам (иногда так называемые низкоширотные красные сияния наблюдают на широте Москвы и южнее).

  Процессом, обратным ионизации, является процесс нейтрализации, или рекомбинации. Скорость исчезновения ионов в И. характеризуется эффективным коэффициентом рекомбинации a¢, который определяет величину ne и её изменение во времени. Например, когда известен источник ионизации, т. е. скорость образования ионов в 1 см3 в 1 секq, то  Значения a¢ для различных областей И. различны (см. таблицу и рис. 3).

  Состав ионосферы. Под воздействием ионизующих излучений в И. происходят сложные физико-химические процессы, которые можно подразделить на три типа: ионизацию, ионно-молекулярные реакции и рекомбинацию, – соответствующие трём стадиям жизни ионов: их образованию, превращениям и уничтожению. В разных областях И. каждый из этих процессов проявляется по-своему, что приводит к различию ионного состава по высоте. Так, днём на высотах 85—200 км преобладают положительные молекулярные ионы NO+ и O2+, выше 200 км в области F – атомные ионы O+, а выше 600—1000 км – протоны H+. В нижней части области D (ниже 70—80 км) существенно образование комплексных ионов-гидратов типа (H2O)nH+, а также отрицательных ионов, из которых наиболее стабильны ионы NO2 и NO3. Отрицательные ионы наблюдаются лишь в области D.

  Изменения ионосферы. И. непрерывно изменяется. Различают регулярные изменения и возмущённые состояния. Поскольку основным источником ионизации является коротковолновое излучение Солнца, многие регулярные изменения И. обязаны изменению либо высоты Солнца над горизонтом (суточные, сезонные, широтные изменения), либо уровня солнечной активности (11-летние и 27-дневные вариации).

  После солнечных вспышек, когда резко усиливается ионизующее излучение, возникают так называемые внезапные ионосферные возмущения. Часто возмущённые состояния И. связаны и с магнитными бурями. Многие явления, которые происходят в верхней атмосфере и магнитосфере Земли, тесно связаны. Это обусловлено влиянием солнечной активности одновременно на все эти явления. Когда в межпланетном пространстве в районе Земли возрастает солнечный корпускулярный поток, который задерживается магнитосферой, происходит не только возмущение геомагнитного поля (магнитная буря), но изменяются радиационные пояса Земли, усиливаются корпускулярные потоки в зоне полярных сияний и т. д. При этом происходит также дополнительное разогревание верхней атмосферы и изменяются условия ионизации И. В свою очередь, изменения И. и движения в ней влияют на вариации геомагнитного поля и другие явления в верхней атмосфере.

  Характеристики ионосферных слоев. Закономерности изменения параметров И. – степень ионизации или ne, ионный состав и эффективный коэффициент рекомбинации различны в разных областях И.; это обусловлено в первую очередь значительным изменением по высоте концентрации и состава нейтральных частиц верхней атмосферы.

  В области D наблюдаются наиболее низкие ne < 103см-3 (рис. 2). В этой области И. из-за высокой концентрации молекул, а следовательно, и высокой частоты столкновения с ними электронов происходит наиболее сильное поглощение радиоволн, что иногда приводит к прекращению радиосвязи. Здесь же, как в волноводе, распространяются длинные и сверхдлинные радиоволны. От всей остальной части И. область D отличается тем, что наряду с положительными ионами в ней наблюдаются отрицательные ионы, которые определяют многие свойства области D. Отрицательные ионы образуются в результате тройных столкновений электронов с нейтральными молекулами O2. Ниже 70—80 км концентрация молекул и число таких столкновений настолько возрастают, что отрицательных ионов становится больше, чем электронов. Уничтожаются отрицательные ионы при взаимной нейтрализации с положительными ионами. Так как этот процесс очень быстрый, то именно им объясняется довольно высокий эффективный коэффициент рекомбинации, который наблюдается в области D.


    Ваша оценка произведения:

Популярные книги за неделю