355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (НИ) » Текст книги (страница 30)
Большая Советская Энциклопедия (НИ)
  • Текст добавлен: 29 сентября 2016, 02:39

Текст книги "Большая Советская Энциклопедия (НИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 30 (всего у книги 34 страниц)

«Нистру»

«Ни'стру» («Днестр»), ежемесячный литературно-художественный и общественно-политический журнал на молдавском языке. Орган СП Молдавской ССР. Издаётся с 1932 в Кишиневе; до 1957 носил название «Октомбрие» («Октябрь»). Тираж (1974) около 6 тыс. экземпляров.

Нисходящий узел орбиты

Нисходя'щий у'зел орби'ты, см. Узел орбиты.

Нит

Нит (от лат. niteo – блещу, сверкаю), наименование единицы яркости, входящей в Международную систему единиц (СИ), – канделы на м2, принятое Международной комиссией по освещению (1951), а также ГОСТ 7932—56 «Световые единицы», но не утвержденное Генеральной конференцией по мерам и весам. Обозначения: русское нт, международное nt. 1 нт = 10-4кд/см2 = 9,95 · 10-5стильб = 3,13 · 10-4ламберт. Наименование Н. в новые стандарты на единицы не включается.

Нитард

Ни'тард (Nithardus), Нитгард (умер 14.6.844), франкский историк. Внук Карла Великого. В сочинении «Четыре книги истории» (доведено до 843) описал борьбу между сыновьями Людовика Благочестивого Карлом Лысым, Людовиком Немецким и Лотарем, в которой участвовал на стороне Карла Лысого. Осуждал междоусобицы, отстаивал необходимость централизации. Книга содержит уникальные сведения о Стеллинга восстании 841—843, текст на романском и германском языке «Страсбургской клятвы» 842 – первого дошедшего до нас памятника на этих языках.

  Соч. в кн.: Quellen zur Karolingischen Reichsgeschichte, Bd I, B., 1955.

Нитевидные кристаллы

Нитеви'дные криста'ллы, «усы», монокристаллы в форме иголок и волокон, имеющие диаметр от нескольких нм (десятков ) до нескольких сот мкм и большое отношение длины к диаметру (обычно более 100). Известны самородные волокнистые кристаллы Au, Ag, Cu, Sn, Pb, S, различных окислов и силикатов. Часто природные Н. к. встречаются в виде включений внутри др. минералов (например, иглы рутила в природных кристаллах рубина, кварца).

  Первые упоминания об искусственном получении Н. к. относятся к 16 в. Особенный интерес к Н. к. возник в 50-х гг. 20 в. – после того как было обнаружено, что Н. к. многих веществ обладают необычно высокими механическими свойствами. В последующие годы в лабораториях ряда стран получены Н. к. более 140 различных элементов и соединений. Н. к. некоторых тугоплавких соединений (карбида кремния, окиси алюминия, нитрида кремния и др.) выпускаются в промышленных масштабах.

  Наиболее важное свойство Н. к. – уникально высокая прочность (близкая к теоретической, которую можно оценить из значений модуля упругости материала), в несколько раз превосходящая прочность массивных моно– и поликристаллов (рис. 1). Высокая прочность Н. к. объясняется совершенством их структуры и значительно меньшим, чем у массивных кристаллов, количеством (а иногда полным отсутствием) объёмных и поверхностных дефектов (одна из важнейших причин малой дефектности Н. к. – их малые размеры, при которых вероятность присутствия дефекта в каждом из кристаллов невелика).

  Н. к. тугоплавких соединений, помимо высокой температуры плавления и прочности, имеют высокий модуль упругости, химически инертны по отношению ко многим металлическим, полимерным и керамическим материалам до весьма высоких температур. В Н. к., в отличие от поликристаллических волокон, не могут идти процессы рекристаллизации, обычно вызывающие резкое падение прочности при высоких температурах. Известно большое число методов получения Н. к.: физическое испарение с последующей конденсацией, осаждение из газовой фазы при участии химических реакций, кристаллизация из растворов, направленная кристаллизация эвтектических сплавов, выращивание на пористых мембранах и др. Н. к. тугоплавких металлов и соединений обычно получают методом осаждения из газовой фазы в высокотемпературных печах периодического, полунепрерывного или непрерывного действия. На рис. 2 показаны возможные схемы роста Н. к. Наиболее важные направления в применении Н. к. – реализация их высоких прочностных свойств в композиционных материалах, а также использование их высокой тепловой и абразивной стойкости.

  Лит.: Бережкова Г. В., Нитевидные кристаллы М., 1969; Монокристальные волокна и армированные ими материалы, пер. с англ., М., 1973.

  В. Н. Грибков, К. И. Портной.

Рис. 1. Прочность нитевидных кристаллов в сравнении с теоретической и реальной прочностью некоторых материалов: 1 – теоретическая (s » 0,1 Е, где Е – модуль упругости); 2 – нитевидные кристаллы; 3 – непрерывные волокна; 4 – массивные образцы.

Рис. 2. Схемы роста нитевидного кристалла из газовой фазы по дислокационному механизму (а) и механизму пар – жидкость – твёрдая фаза (б).

Нитеводитель

Нитеводи'тель, нитевод, один из основных рабочих органов вязальной машины любого типа. Н. служит для прокладывания нити на иглы машины в процессе петлеобразования (см. Вязание). Нить, проходящая сквозь Н., подаётся на иглы под определенным углом, при небольшом постоянном натяжении. Различают Н. подвижные и неподвижные. Подвижный Н. совершает возвратно-поступательное движение (на плоских машинах) или круговое (на круглых машинах) относительно неподвижной игольницы и прокладывает нить на работающие иглы. К подвижным Н. относятся также нитеводы (ушковины) основовязальных машин. Такие Н. совершают продольные и качательные движения, обвивая нитями иглы. Неподвижные Н. прокладывают нити на иглы движущейся игольницы. Многие вязальные машины имеют несколько (2—6) Н. в каждой петлеобразующей системе. При вязании некоторых изделий, например чулок или рисунчатого трикотажа, используют автоматически попеременно действующие Н., заменяемые специальным механизмом.

Нителла

Ните'лла (Nitella), род харовых водорослей. Около 100 видов; в СССР – 14. Высота растений до 1 м. Основные побеги и ветви состоят из длинных (до 25 см), одноклеточных междоузлий и многоклеточных узлов. Боковые побеги вильчатые, расположены мутовками (по кругу) в узлах. Размножение половое и вегетативное – обрывками ветвей. Растет в озёрах и опреснённых участках морей. Многие виды Н. используют для изучения внутриклеточных процессов.

Нитерой

Нитеро'й (Niterói), город на Ю.-В. Бразилии, у входа в бухту Гуанабара, на её восточном берегу (на западном берегу – г. Рио-де-Жанейро), административный центр штата Рио-де-Жанейро. 324,4 тыс. жителей (1970, с пригородами). Ж.-д. станция. Паромное сообщение с Рио-де-Жанейро. Машино-строительная, химическая и пищевая промышленность. Основан в 17 в.

Нитки

Ни'тки, кручёные изделия, вырабатываемые из хлопчато-бумажной, шерстяной, льняной пряжи, натурального шёлка, химических волокон. В зависимости от назначения различают Н.: швейные, вышивальные, вязальные и штопку. Н. бывают белые, чёрные и цветные, матовой и глянцевой отделки, а также неотделанные – суровые. В зависимости от толщины Н. делят по торговым номерам: чем тоньше Н., тем выше их номер (например, хлопчато-бумажные Н. имеют номера от 80 до 10).

Нитр

Нитр..., нитро... (от греч. nítron, лат. nitrum, первоначально – природная сода, начиная с 8 в. н. э. – селитра), в химических, биологических и др. терминах составная часть, означающая отношение к азоту (новолат. nitrogenium); см., например, Нитриды, Нитрификация.

Нитра (город в Чехословакии)

Ни'тра (Nitra), город в Чехословакии, в Словацкой Социалистической Республике, в Западно-Словацкой области, на р. Нитра. 47 тыс. жителей (1971). Пищевая промышленность, машиностроение. С.-х. и педагогические институты. Н. – один из древнейших словацких городов. В начале железного века (800—500 до н. э.) на месте Н. находилось большое поселение, обнесённое валом. С приходом (6—7 вв.) в Подунавье славян Н. становится важным политическим и культурным центром Словакии. В 9 в. столица Нитранского княжества; построена древнейшая церковь, возникла первая церковная епархия. В это время Н. состояла из 2 мощных укреплений, обнесённых двойными валами и палисадами. В начале 10 в., после нашествия мадьяр, Н. стала удельным княжеством, а после освобождения от мадьяр в 13 в. и восстановления епархии Н. долгое время находилась во владении последней. Систематические раскопки ведутся с 1949.

  Лит.: Nitra, Nitra, [I960].

Нитра (река в Чехословакии)

Ни'тра (Nitra), река в Чехословакии, левый приток р. Ваг (бассейн Дуная). Длина 242 км, площадь бассейна 5,2 тыс. км2. Истоки на южных склонах хребта Малая Фатра (Западные Карпаты), нижнее течение на Среднедунайской равнине. Средний расход воды в нижнем течении около 25 м3/сек. Весеннее половодье, летняя межень. Сплав леса. На Н. – г. Нитра.

Нитрагин

Нитраги'н, бактериальное удобрениедля бобовых культур, содержащее клубеньковые бактерии, способные усваивать атмосферный азот и превращать его в доступные растениям соединения.

Нитраллой

Нитралло'й (от нитр... и англ. alloy – примесь, сплав), общее название группы конструкционных сталей, предназначенных для изготовления азотируемых деталей (см. Азотирование). Основные легирующие элементы в Н. – Al, Cr, Mo, V, которые образуют мелкокристаллические твёрдые нитриды, придающие поверхностному азотированному слою большую твёрдость (HV до 1200) и износостойкость. Наиболее типичные Н. – распространённые в СССР стали 38ХМЮА и 38ХЮ. Сталь 38ХМЮА, применяемая для изготовления ответственных деталей, наряду с Al и Cr, содержит Mo (0,15—0,25%), который увеличивает прокаливаемость, несколько повышает предел прочности сердцевины детали и предотвращает развитие отпускной хрупкости стали в процессе азотирования.

Нитрамины

Нитрами'ны, N-нитроаминосоединения, органические соединения, в молекулах которых группа – NO2 связана с атомом азота. Н. могут быть первичными RNHNO2 и вторичными RR'NNO2 (где R, R' – алкил или арил).

  Моноалкилнитрамины получают нитрованием N-ацилпроизводных первичных аминов (1) или дихлораминов (2) нитрующей смесью, например:

  CH3NHCO2CH3 ® CH3N (NO2) CO2CH3 ® CH3NHNO2 (1)

 (2)

  Вторичные алифатические Н. образуются при обработке соответствующего аминосоединения смесью азотной кислоты и уксусного ангидрида, борфторидом нитрония и др. Арилнитрамины синтезируют прямым нитрованием соответствующих аминов или окислением солей диазотатов.

  Ароматические Н., как правило, – твёрдые вещества, алифатические Н. – жидкости или низкоплавкие твёрдые вещества. Под действием кислот первичные алифатические Н. разлагаются на соответствующие спирты и закись азота, вторичные устойчивы к действию кислот даже при 100 °С; ароматические Н. подвергаются различным перегруппировкам. При взаимодействии со щелочами большинство первичных Н. дают соли; вторичные алифатические Н., имеющие a-водородные атомы, могут разлагаться на амины и альдегиды:

 

  Низшие Н. чрезвычайно взрывоопасны. Некоторые Н. применяют в качестве бризантных взрывчатых веществ, например тринитрофенилметилнитрамин (тетрил), циклотриметилентринитрамин (гексоген), циклотетраметилентетранитрамин (октоген).

  Лит.: Химия нитро– и нитрозогрупп, под ред. Г. Фойера, пер. с англ., М., 1972; Овербергер Ч. Дж., Анселм Ж.-П., Ломбардино Дж., Органические соединения со связями азот-азот, пер. с англ., Л., 1970.

  М. М. Краюшкин.

Нитраты

Нитра'ты металлов, соли азотной кислоты HNO3. Бесцветные кристаллические вещества; при обычной температуре устойчивы; при высоких температурах легко отдают кислород и являются в этих условиях сильными окислителями (например, 2К NO3 = 2KNO2 + O2). Все Н. металлов хорошо растворимы в воде. В нейтральных и слабокислых растворах Н. получают действием НNO3 на металлы, окислы, некоторые соли, по реакциям обмена, действием NO2 на основания (наряду с нитритами) и др. Н. некоторых элементов (Na, К, Ca) встречаются в природе; из них практическое значение имеют только месторождения NaNO3 (чилийская селитра). Н. широко применяют как удобрения (соли Na, К, NH4, Ca), в производстве взрывчатых веществ (соли NH4, Ba), как протраву при крашении (соли Cr, Fe, A1, Cu) и т.д. Н. аммония, щелочных и щелочноземельных металлов называются также селитрами.

Нитраты природные

Нитра'ты приро'дные, класс минералов, представляющих собой природные соли азотной кислоты. Главные минералы Н. п.: натриевая селитра NaNO3; калиевая селитра КNO3; аммонийная селитра NH4 NO3; дарапскит Na3(NO3) · (SO4) · Н2О; нитромагнезит Mg (NO3)2 · 6H2O; нитрокальцит Ca (NO3)2 · 4H2O; нитробарит Ba (NO3)2; герхардтит Cu2(NO3)(OH)3; ликазит Cu6(NO3)2 · (РО4)(ОН)7, буттгенбахит Cu19(NO3)2 · (OH)32Cl4 · 3H2O. Структура Н. п. напоминает структуру карбонатов природных, но менее устойчива вследствие высокой степени поляризации кислорода под действием пятивалентного азота. Встречаются в виде солеобразных масс, выцветов, корочек, налётов. Все селитры хорошо растворяются в воде, обладают охлаждающим вкусом. Значительные месторождения находятся в Чили (провинции Тарапака и Антофагаста), где Н. п. ассоциируют с галогенидами, сульфатами, селенатами и некоторыми иодатами. В этих месторождениях калиевая и натриевая селитра составляют основная часть запасов. Щелочные Н. п. часто формируются при взаимодействии азотистых органических веществ и щелочных солей (например, налёты калиевой и натриевой селитры в полостях и трещинах пород или высыпки). На современном этапе Н.п. добываются в ограниченном количестве (1974); главную массу азотных соединений получают химическим путём (синтез аммиака из азота воздуха и водорода).

  Лит.: Костов И., Минералогия, пер. с англ., М., 1971.

  М. Д. Дорфман.

Нитраты целлюлозы

Нитра'ты целлюло'зы, нитроцеллюлоза, азотнокислые сложные эфиры целлюлозы общей формулы [СбН7О2(ОН)3-х (ONO2) x] n, где х может меняться от 1 до 3; белая волокнистая рыхлая масса, очень напоминающая целлюлозу. Важнейшая характеристика Н. ц. – степень замещения или содержание азота, в значительной степени определяющие физико-механические, химические и технологические свойства этого полимера. Практическое применение имеют следующие основные виды Н. ц. (в скобках указано содержание азота): коллоксилин (10,7—12,2%), пироксилин № 2 (12,2—12,5%) и пироксилин № 1 (13,0—13,5%); известен также особый вид Н. ц., открытый Д. И. Менделеевым и названный им пироколлодием (12,4%). Плотность Н. ц. 1,58—1,65 г/см2, средняя степень полимеризации коллоксилина 150—600 (молярная масса 37 500—150 000), пироксилинов 1000—2000 (молекулярная масса 250 000—500 000). Растворимость Н. ц. зависит от содержания азота; растворителем для всех служит ацетон; Н. ц. нерастворимы в воде и неполярных растворителях (например, в бензоле, четырёххлористом углероде, бензине); они не стойки к действию кислот и щелочей; разбавленные минеральные кислоты вызывают медленный гидролиз, а щелочи омыляют и разрушают их. Н. ц. обладают низкой атмосферо– и термостойкостью. При нагревании они начинают разлагаться уже при 40—60 °С, причём скорость разложения быстро возрастает с повышением температуры. При быстром нагревании распад Н. ц. может закончиться вспышкой и взрывом. Введение в Н. ц. стабилизаторов (дифениламина, производных мочевины) позволяет повысить их стойкость.

  Н. ц. получают нитрованием разрыхлённой и высушенной целлюлозы нитрующей смесью. Полученный продукт многократно промывают водой, раствором соды, опять водой и, если необходимо, обезвоживают (например, этиловым спиртом). Товарный продукт хранят с содержанием 20—40% воды или спирта.

  Назначение Н. ц. определяется содержанием в них азота. Коллоксилин применяют для производства целлулоида, пластмасс (этролов), в небольших количествах для кино– и фотоплёнки, для получения нитролаков, нитроклеев и нитроэмалей. Пироксилины применяют для получения бездымного пороха, динамитов и др. взрывчатых веществ. Основной недостаток Н. ц. – горючесть, поэтому они вытесняются ацетатами целлюлозы и синтетическими полимерами.

  Н. ц. – одни из первых полимерных материалов, впервые полученные французским химиком А. Браконно в 1832.

  Лит.: Роговин 3. А., Химия целлюлозы, М., 1972.

  В. Н. Кряжев.

Нитриды

Нитри'ды, соединения азота с более электроположительными элементами, главным образом с металлами. По строению и свойствам Н. подразделяются на три группы:

  1) солеобразные Н. металлов I и II групп периодической системы Менделеева, легко разлагающиеся водой с образованием аммиака:

  Mg3N2 + 6H2O = 3Mg(OH)2 + 2NH3

  2) ковалентные Н. неметаллов, а также Al, Ga, In, Tl. Эти Н. (особенно AlN, BN, Si3N4) исключительно устойчивы к химическим воздействиям, тугоплавки, термостойки, являются диэлектриками или полупроводниками; особенно важен бора нитрид; 3) металлоподобные Н. переходных металлов (наиболее многочисленная группа). Их строение определяется тем, что атомы азота внедряются в кристаллическую решетку металла; такие Н. во многих случаях не отвечают правилам формальной валентности и представляют нестехиометрические соединения (ZrN, Mn4N, W2N) с широкими областями гомогенности, в пределах которых происходит существенное изменение их свойств. Такие Н. во многом похожи на металлы – имеют высокие электро– и теплопроводность, тугоплавки (например, TiN и HfN плавятся соответственно при 3200 и 3380 °С); отличаются от металлов высокой твёрдостью, хрупкостью, непластичностью. Металлоподобные Н. обладают высокой химической стойкостью.

  Н. образуются на поверхности металлов под действием азота или аммиака при 500—900 °С; нитридные покрытия придают металлическим изделиям твёрдость, износостойкость, коррозионную стойкость. Изделия из Н. применяются в технике высоких температур, газотурбостроении, энергетике, космической технике. Некоторые металлоподобные Н. – сверхпроводники (например, NbN и MoN проявляют сверхпроводимость соответственно при 15,6 К и 12 К); полупроводниковые и электроизоляционные свойства Н. используются в технике полупроводников.

  Лит.: Самсонов Г. В., Нитриды, К., 1969.

  Г. В. Самсонов.

Нитрилы

Нитри'лы карбоновых кислот, цианистые соединения, RC ≡ N, органические производные синильной кислоты. Их структурные изомеры – изонитрилы.

  Первый представитель ряда – цианистый водород HCN (формонитрил). Низшие алифатические Н. – жидкости с неприятным запахом, высшие – твёрдые кристаллические вещества, простейший ароматический Н. бензонитрил – бесцветная жидкость с приятным запахом горького миндаля; некоторые свойства Н. приведены в таблице.


Нитрил tкип, °С Плотность при 20°С, г/см3
Ацетонитрил CH3CN 81,6 0,783
Пропионитрил C2H5CN 98 0,785
Бутиронитрил C3H7CN 118 0,794
Стеаронитрил C17H35CN 357 0,818*
Бензонитрил C6H5CN 190,7 1,0102**

* При 41°С. ** d1515.

  Н. восстанавливаются до первичных аминов RNH2; Н. с ненасыщенными углеводородными остатками легко полимеризуются. Например, в промышленности полимеризацией акрилонитрила получают полиакрилонитрильные волокна. Формонитрил, или синильную кислоту, HCN, применяют в производстве акрилонитрила, метакрилонитрил – для получения органического стекла. Под действием кислот и щелочей Н. гидролизуются до карбоновых кислот (II):

  Реакцию можно остановить на стадии образования амида карбоновой кислоты (I). Обратная реакция, т. е. отщепление воды от амида или аммониевой соли карбоновой кислоты – один из основных способов получения Н.; другой способ – взаимодействие галогеналкилов с цианидом калия KCN.

Нитриты

Нитри'ты металлов, соли азотистой кислоты HNO2. Бесцветные кристаллические вещества; термически менее устойчивы, чем нитраты. Характер разложения зависит от катиона [например, 2Ba (NO2)2 = BaO + Ba (NO3)2 + NO2 + 1/2 N2; 2Ag NO2 = AgNO3 + Ag + NO]. Почти все Н. хорошо растворимы в воде (исключение – AgNO2). Н. могут проявлять как окислительные, так и восстановительные свойства. Получают Н. действием смеси NO и NO2 на окислы и гидроокиси, восстановлением нитратов и по реакциям обмена. Применяют главным образом в производстве азокрасителей. Важнейшие Н. описаны в соответствующих статьях (Натрия нитрит и др.).

Нитрификация

Нитрифика'ция (от нитр... и лат. facio – делаю), процесс микробиологического превращения аммонийных солей в нитраты – основную форму азотного питания растений. Протекает в почве и воде водоёмов. Н. завершает минерализацию органических соединений азота, начатую аммонификацией, и является показателем плодородия почвы. Вызывается хемосинтезирующими нитрифицирующими бактериями. Протекает в 2 стадии. Сначала ион аммония окисляется бактериями первой стадии Н. в нитрит-ион, а затем нитрит-ион окисляется бактериями второй стадии Н. в нитрат-ион. Н. идёт при рН почвы 5—9. Нитрификаторы – аэробные организмы, и при недостатке в почве воздуха Н. приостанавливается. Хорошая обработка почвы, улучшая её аэрацию, усиливает Н.

  В результате возросшего сжигания топлива (заводы, двигатели внутреннего сгорания) в атмосфере образуются окислы азота, которые попадают в почву и воду водоёмов с дождём в большом количестве и превращаются там с помощью нитрифицирующих бактерий в нитраты. Чрезмерное обогащение ими воды делает её непригодной для питья. Чтобы предупредить усиленное образование нитратов в воде, иногда применяют химические препараты, тормозящие Н. в почве.

  Г. А. Заварзин.


    Ваша оценка произведения:

Популярные книги за неделю