Текст книги "Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии"
Автор книги: Жуан Гомес
Жанр:
Математика
сообщить о нарушении
Текущая страница: 7 (всего у книги 7 страниц)
Помимо преимуществ и недостатков различных форматов, все данные, выводимые на экран или распечатываемые на принтере, нужно сначала переводить в пиксели – основные строительные элементы современных изображений.
Дистанционное зондирование: географические информационные системы
Дистанционное зондирование – относительно новое направление, появившееся в середине XX века. В качестве исследовательского инструмента используются спутниковые снимки. Одним из самых известных искусственных спутников на орбите Земли является Meteosat. Это отличный пример того, как спутниковые изображения применяются для практических целей. Этот спутник используется для составления прогнозов погоды в Европе и Северной Африке. Он является одним из пяти метеорологических спутников, находящихся над экватором и передающих примерно каждые полчаса информацию о состоянии атмосферы. Другими спутниками являются два спутника GOES, передающие информацию для Америки, спутник Insat – для Индии и GMS – для Японии. Они передают фотографии атмосферы, которые можно видеть каждый день на экранах телевизоров по всему миру. Но существует много других спутников, наблюдающих за Землей, которые используются не только в метеорологических целях, но и для нужд картографии, и для изучения природных ресурсов.
Спутники – это огромные цифровые фотокамеры, вращающиеся вокруг Земли на постоянной орбите и делающие снимки поверхности, которые затем пересылаются на компьютеры.
* * *
ИНТЕРПРЕТАЦИЯ СПУТНИКОВЫХ ФОТОГРАФИЙ
Метеорологические спутники передают три вида изображений: инфракрасные, в видимом свете и изображения паров воды.
Инфракрасные фотографии иногда показывают по телевизору. На них изображены теплые объекты в более темных цветах, а холодные – в более светлых. Таким образом, безоблачные регионы, как правило, темнее, хотя так же могут выглядеть очень низкие облака и туман. Высокие облака очень холодные.
На фотографиях в видимом свете безоблачные океаны и суша выглядят темнее, в то время как облака и снег – светлее. Густые облака в большей степени отражают свет и выглядят ярче, чем тонкие облака. Однако на этих изображениях трудно отличить высокие и низкие облака, поэтому также используются инфракрасные фотографии. А ночью ка¬меры видимого света практически бесполезны, и снова используются инфракрасные фотографии.
Изображения паров воды показывают, сколько водяного пара находится в атмосфере. Они очень полезны для определения области, где может пойти дождь. Темные цвета соответствуют сухому воздуху, в то время как яркие белые области показывают, что воздух там более влажный.
Инфракрасная фотография Западной Европы со спутника Meteosat.
То же изображение с камеры видимого света…
…и с камеры, передающей изображения паров воды в атмосфере.
* * *
Датчики, используемые спутниками, очень похожи на обычные цифровые камеры, хотя, конечно, несравненно более эффективны.
Кроме мощности, есть еще одно важное функциональное различие между датчиками на спутниках и обычными фотокамерами: датчики спутников фотографируют на определенной длине волны света в диапазоне от инфракрасного до ультрафиолетового излучения и сохраняют фотографии в виде цифровых изображений. Существуют также датчики, которые фиксируют только невидимый человеческому глазу инфракрасный свет.
Инфракрасные датчики могут определять попадающие в поле действия излучения вещества, такие как дым. В фильмах этот эффект часто показывается как луч цветного света. Спутники оснащены инфракрасными датчиками, которые работают на определенных частотах, и с их помощью можно увидеть мир таким, как он выглядит в других длинах волн, то есть в других «цветах».
Все объекты на Земле характеризуются светом, который они отражают. Объект воспринимается человеком как красный, если он отражает свет определенной длины волны. Другие визуальные системы могут видеть объекты по-другому. Объекты отражают свет с разной длиной волны: если бы это было не так, мы не смогли бы их различать лишь с помощью зрения. Тот же эффект позволяет датчикам спутниковой камеры отличать лес от полей и воды, которые отражают свет разной длины волны.
Спутники оснащены многими другими видами датчиков, например, для измерения температуры, то есть улавливающими инфракрасные волны. Они позволяют отличить белый снег от белых облаков и определить, является ли данная область горячей или холодной. С помощью специальной обработки изображения можно определить, являются деревья в лесу живыми или мертвыми, сгоревшими.
Несмотря на уровень сложности, изображения, передаваемые спутниками, тоже являются цифровыми, как и фотографии, сделанные нами в отпуске. Разница лишь в разрешении. Как и для обычных камер, размер пикселей в изображениях варьируется в зависимости от производителя, но спутники используют свой собственный параметр, называемый пространственным разрешением. Высокое разрешение обеспечивают более маленькие пиксели. Чем меньше пиксель, тем больше разрешение изображения, тем больше оно содержит информации. Разрешение спутниковых фотографий зависит от второго, более сложного параметра, называемого временным разрешением. Это время, которое требуется спутнику для повторного прохождения над той же точкой поверхности.
Как мы убедились по прочтении этой книги, новые геометрии не только возможны, но они также открывают перед человечеством новые области знаний. Хотя эти области могут показаться сложными, на самом деле они являются практическим применением математики. Они не только помогают нам полнее воспринимать реальность, но и широко используются в нашей повседневной жизни. Это не просто абстрактные идеи в умах гениальных математиков: эти открытия помогают нам диагностировать заболевания и ориентироваться во время путешествия. Можно сказать, что новые геометрии сделали видимым то, что на протяжении веков являлось незримым, и тем самым расширили наши горизонты. Таким образом, никогда еще отрицание какой-либо теории не оказывалось для человечества настолько полезным, как это произошло при отказе от пятого постулата Евклида.
Приложение
Теория относительности и новые геометрии
В 1905 г. Альберт Эйнштейн опубликовал «Специальную теорию относительности», которая вызвала сильнейшее потрясение основ физики со времен начала научной революции и фундаментального труда Исаака Ньютона Principia Mathematica («Математические начала натуральной философии»).
Эйнштейн предложил новый взгляд на реальность. Событие происходит в трехмерном пространстве в определенный момент времени. Другими словами, оно происходит в пространстве-времени и описывается четырьмя координатами: три из них определяют его положение в пространстве, а четвертая – во времени. Конечно, эти координаты задаются относительно некой системы координат. Поэтому место события в пространстве-времени зависит от положения наблюдателя, то есть от системы координат, используемой для определения события. Таким образом, различные наблюдатели видят событие по-разному, особенно если они сами движутся с разными скоростями.
Проанализируем эти понятия в геометрическом смысле. В теории относительности расстояние между двумя событиями называется интервалом и делится на две составляющие: пространство и время.
Пространственная составляющая – это расстояние между местонахождениями событий в трехмерном пространстве, в то время как временная составляющая – это промежуток времени между двумя событиями. Эти составляющие зависят от используемой системы координат и ее ориентации, поэтому различные наблюдатели могут получить разные результаты. Однако интервал, разделяющий два события в четырехмерном пространстве-времени, является абсолютным. Он один и тот же и для неподвижного наблюдателя, и для другого наблюдателя, движущегося с постоянной скоростью относительно неподвижного.
Для наблюдателей, улетающих от Земли со скоростью, близкой к скорости света, пространственные и временные составляющие интервала будут совершенно разными. Один наблюдатель может решить, что два события разделяют 200 лет, в то время как другой может сделать вывод, что они происходят одновременно. Их восприятие пространственных и временных составляющих может сильно отличаться от нашего. Геометрия пространства-времени оказывается странной. В четырехмерном пространстве расстояние между двумя точками (интервал между двумя событиями) является неизменным, в то время как две составляющие могут быть совершенно различны.
Через три года после того, как Эйнштейн опубликовал свою первую статью на эту тему, Герман Минковский упростил его теорию, предложив геометрическую интерпретацию, обосновывающую странные вычисления Эйнштейна. Конечно, геометрия Минковского была неевклидовой. Минковский использовал одну из самых важных идей Римана о том, что математическое пространство определяется способом измерения расстояний. Другими словами, формула расстояния определяет тип геометрии.
Ось t представляет собой время, а ось х – пространство. Оси под прямым углом (х, t) соответствуют системе в состоянии покоя, в то время как оси с острым углом между ними (х', t') – движущейся системе. Движущаяся система склоняется к лучу света. В неподвижной системе наблюдатель видит, что события А и В происходят одновременно, а в движущейся системе наблюдатель решит, что событие В произошло раньше А.
Если два события имеют координаты
(x1, у1, z1, t1) и (x2, у2, z2, t2)
расстояние I между ними в геометрии Минковского вычисляется по формуле
где с – скорость света.
С другой стороны, если бы эти две точки были в четырехмерном евклидовом пространстве, расстояние между ними считалось бы по формуле:
Эта вторая формула является обобщением теоремы Пифагора из евклидовой геометрии на плоскости, в то время как первая формула со знаками минус в евклидовой геометрии не встречается.
Общая теория относительности
Через десять лет после публикации специальной теории относительности Эйнштейн сформулировал общую теорию относительности, которая снова потрясла научный мир. Одной из его революционных идей была мысль о том, что наше пространство искривлено. Другими словами, лучи света, которые всегда выбирают кратчайший маршрут, не распространяются по прямой линии, а изгибаются, что является кратчайшим расстоянием в искривленном пространстве. Лучи света изгибаются в разной степени в зависимости от области пространства: в сильном гравитационном поле они искривлены сильнее.
Это явление было экспериментально доказано в 1919 г. во время полного солнечного затмения. Во время затмения лучи света от далекой звезды, проходящие очень близко от Солнца, могут быть подробно изучены. Эйнштейн оказался прав, лучи были искривлены. Было также доказано, что прогнозы гения оказались очень близки к расчетам, сделанным на основе реальных данных, собранных в ходе наблюдения. Прямые линии в геометрии общей теории относительности отличаются от евклидовых прямых.
Какую из геометрий, рассмотренных в этой книге, использовал Эйнштейн? Как всегда в мире неевклидовых геометрий, простого ответа нет. Во-первых, понятие искривленного пространства берется из эллиптической геометрии, в которой прямые линии во Вселенной замкнуты. Во-вторых, Эйнштейн использовал вариант геометрии Минковского, в которой формула для расстояния учитывает физические условия в разных точках Вселенной в зависимости от силы гравитационного поля. Альберт Эйнштейн отметил роль неевклидовых геометрий в своей знаменитой лекции в 1921 г.:
«Я не могу не отдать должное всем альтернативным геометриям. Если бы я не знал их, я бы не смог развить теорию относительности».
Относительность материи и пространства
Возможно, Эйнштейн не открыл бы теории относительности, если бы не важнейший эксперимент, проведенный в 1880 г. Альбертом Майкельсоном (1852–1931) и Эдвардом Морли (1838–1923). Эти два физика попытались определить наличие вещества, называемого «эфиром», через которое, как считалось, распространяется свет и электромагнитное излучение. Звуковые волны не распространяются в вакууме, им необходима среда, воздух или вода, которая также позволяет измерить скорость звука. Таким образом, в XIX веке считалось, что световые волны распространяются не в космическом вакууме, а им также нужна среда, которая еще не открыта.
В эксперименте измерялось время, за которое луч света достигал зеркала и отражался от него. Сначала движение светового луча совпадало с направлением вращения Земли, так что когда луч летел к зеркалу, скорость планеты добавлялась к скорости света в эфире, а на его обратном пути вычиталась, что позволяло измерить скорость света в эфире. Затем световой луч пускался перпендикулярно вращению Земли, так что скорость вращения планеты не влияла на скорость света в эфире.
Таким образом, в эксперименте вращение Земли учитывалось или исключалось.
Представьте себе подобную ситуацию. Мы стоим на берегу реки шириной d и хотим провести следующий эксперимент. Вместо того чтобы посылать луч света, мы переплывем реку туда и обратно. Пусть с будет наша скорость, которая соответствует скорости света, a v – скорость течения реки, соответствующая скорости вращения Земли.
По аналогии с экспериментом Майкельсона – Морли, мы сначала проплывем фиксированное расстояние d по течению, а затем против него. Пусть t1 – время движения по течению, а t2 – время движения против течения. Когда мы плывем по течению, мы движемся с нашей скоростью с, но по отношению к берегу скорость равна (с + v). Аналогично, плывя против течения, мы движемся относительно берега со скоростью (с – v).
Используя формулу для нахождения расстояния при известных скорости и времени, мы получаем d = (с + v)·t1 и d = (с – v)·t2 Общее время по течению и назад считается следующим образом:
(а) Движение по течению и против.
(b) Переплывание реки и возвращение в исходную точку.
(с) Чтобы оставаться напротив исходной точки, пловцу необходимо плыть против течения.
Эти результаты можно проверить на конкретных числах. Представьте себе, что наша река шириной 500 метров (0,5 км), мы плаваем со скоростью с = 2 км/ч, а скорость течения реки v = 1 км/час. Тогда нам потребуется 1/6 часа, чтобы проплыть 500 метров по течению и полчаса – против течения, то есть в общей сложности 2/3 часа (около 0,67 часа).
Во второй части эксперимента Майкельсона и Морли мы переплываем на другую сторону реки и возвращаемся в исходную точку. Чтобы все время оставаться напротив исходной точки, мы должны плыть против течения. Таким образом, мы плывем не только поперек реки, но и против течения, чтобы компенсировать расстояние, на которое река относит нас вниз по течению. Нам постоянно приходится бороться с течением, и только часть работы, которую мы совершаем, помогает нам достичь другого берега. Таким образом, мы плывем вдоль гипотенузы прямоугольного треугольника, один из катетов которого равен ширине реки, а другой – расстоянию, на которое река отнесла бы нас за это время вниз по течению.
Пусть t0 – время, требуемое для переплывания реки. Связь между длиной пути и временем получается из теоремы Пифагора:
(c·t0)2 = (v·t0)2 + d2
Перепишем это уравнение следующим образом:
c2t20 – v2t20 = d2
t20 = d2/(c2 – v2)
Время, затраченное на обратный путь, то же самое, поэтому общее
Подставим в формулу числовые значения из предыдущего примера. Таким образом, время, требуемое для переплывания реки, составит 1/√З 0,5777 часа.
Обратите внимание, что значения времени в двух частях эксперимента (0,67 и 0,5777) различаются. Время, затраченное на движение вдоль течения реки, в 1/√(1 – v2/c2) раз больше, чем время движения поперек реки.
Но в эксперименте Майкельсона – Морли результат был иным: значения времени в двух частях эксперимента были одинаковыми. И это не было связано с погрешностью измерений или с ошибкой в эксперименте, который был проведен с максимальной точностью. И никто не мог найти объяснение. Значит, неверна сама теория? Ученые были обеспокоены.
Затем была выдвинута гениальная идея: в некотором смысле скорость вращения Земли «уменьшила расстояние в направлении движения» ровно настолько, чтобы результаты в двух частях эксперимента Майкельсона – Морли получились одинаковыми. Таким образом, если бы Земля двигалась почти со скоростью света, то в направлении движения она была бы плоской, похожей на блин. Расстояние l' в направлении движения связано с расстоянием l в направлении, перпендикулярном направлению движения, следующим образом:
где множитель
называется фактором Лоренца – Фицджеральда.
Так как скорость света является очень большой (3 х 108 м/с), значение фактора Лоренца – Фицджеральда равно почти 1, пока скорость v меньше 10 % от скорости света.
Почему Майкельсон и Морли не смогли измерить уменьшение длины в направлении движения? Потому что когда линейка расположена в направлении движения Земли, длина линейки тоже сокращается. Теория сокращения никогда не может быть доказана прямыми измерениями.
Если бы мы могли делать высокоскоростные фотографии, могли бы мы увидеть, что мяч, летящий почти со скоростью света, принимает форму блина? Нет, даже стоп-кадр не позволит нам это рассмотреть. Почему? Это объясняется тем, что оптические искажения компенсируют уплощение формы.
Человеческий глаз и объектив фотокамеры улавливают частицы света, фотоны, которые отражаются от объектов. Свету, идущему от очень удаленных объектов, может потребоваться много времени, чтобы достичь наших глаз. Например, свет доходит от Солнца до Земли за 8 минут, а свет далекой звезды, возможно, шел к нам миллионы лет. С другой стороны, переднюю и более удаленную часть движущегося объекта мы видим одновременно, хотя свет от передней части был отражен немного раньше. Разница существует, и связана она с тем, что скорость света конечна. Объект действительно должен выглядеть удлиненным в направлении движения, но этот эффект растяжения компенсируется эффектом сокращения в нашем восприятии.
Теория Лоренца – Фицджеральда была основана на сложной идее взаимодействия вещества с эфиром, но в конце концов ученые были вынуждены признать, что эфира не существует.
Через 24 года после эксперимента Майкельсона – Морли Эйнштейн понял, что скорость света не зависит от движения источника света или наблюдателя. Скорость Земли не может быть добавлена или вычтена из скорости света в опыте Майкельсона – Морли. Теория Эйнштейна предсказывает то же время, 2d/с, для обратного движения, независимо от расположения оборудования.
Кроме того, теория относительности также позволяет предсказать сокращение длины в направлении движения точно на величину фактора Лоренца – Фицджеральда. Однако при объяснении результатов эксперимента Майкельсона – Морли это сокращение длины не имеет ничего общего с эфиром или с теорией Лоренца.
Теория Эйнштейна вообще исключает необходимость эфира. Объяснить релятивистское сокращение длины можно в рамках самой теории относительности. Это объяснение заключается в относительном движении объекта и наблюдателя. Длина объекта, движущегося почти со скоростью света, уменьшается в направлении движения (хотя этот эффект мы не можем наблюдать, как уже говорилось). Для движущегося объекта, наоборот, именно мы кажемся летящими почти со скоростью света и похожими на плоский блин в направлении движения.
Другим следствием теории относительности является то, что время при движении тоже сокращается. Рассмотрим двух наблюдателей, которые движутся с постоянной скоростью v по отношению друг к другу. Каждый из них будет видеть, что часы у другого наблюдателя идут медленнее, чем его собственные, медленнее в γ раз. Этот странный результат известен как «парадокс времени».
Список литературы
Devlin, К.: The Language of Mathematics, New York, Freeman & Co., 1988.
Euclid: Euclid’s Elements, Translated by Thomas L. Heath, Santa Fe, Green Lion Press, 2002.
Издание на русском языке: Начала Евклида. / Пер. с греч. и комм. Д. Д. Мордухая-Болтовского под ред. М. Я. Выгодского и И. Н. Веселовского. – М.—Л.: ГИТТЛ, Т.1.1948; Т.2 1949; Т.З 1950.
Eves, Н.: Fundamentals of Modern Elementary Geometry, Sudbury, MA, Jones and Bartlett Publishers, Inc, 1992.
Faber, R. L.: Foundations of Euclidean and Non-Euclidean Geometries, New York, Dekker, 1983.
Garfunkel, S. (coord. COMAP): For All Practical Purposes, New York, Freeman, 2008.
Greenberg, M.J.: Euclidean and Non-Euclidean Geometries, New York, Freeman, 1993.
Jacobs, H.R.: Geometry, New York, Freeman, 2003.
Krause, E. F.: Taxicab Geometry, New York, Dover, 1988.
Parker, S.: Albert Einstein and the Laws of Relativity, New York, Chelsea House Publishers, 1994.
Smart, J.R.: Modern Geometries, California, Brooks/Cole, Pacific Grove, 1988.
* * *
Научно-популярное издание
Выходит в свет отдельными томами с 2014 года
Мир математики
Том 4
Жуан Гомес
Когда прямые искривляются. Неевклидовы геометрии
РОССИЯ
Издатель, учредитель, редакция: ООО «Де Агостини», Россия
Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1
Письма читателей по данному адресу не принимаются.
Генеральный директор: Николаос Скилакис
Главный редактор: Анастасия Жаркова
Старший редактор: Дарья Клинг
Финансовый директор: Наталия Василенко
Коммерческий директор: Александр Якутов
Менеджер по маркетингу: Михаил Ткачук
Менеджер по продукту: Яна Чухиль
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:
8-800-200-02-01
Телефон горячей линии для читателей Москвы:
® 8-495-660-02-02
Адрес для писем читателей:
Россия, 170100, г. Тверь, Почтамт, а/я 245, «Де Агостини», «Мир математики»
Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).
Распространение:
ООО «Бурда Дистрибьюшен Сервисиз»
УКРАИНА
Издатель и учредитель:
ООО «Де Агостини Паблишинг» Украина
Юридический адрес: 01032, Украина, г. Киев, ул. Саксаганского, 119
Генеральный директор: Екатерина Клименко
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ua , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в Украине:
0-800-500-8-40
Адрес для писем читателей:
Украина, 01033, г. Киев, a/я «Де Агостини», «Мир математики»
Украïnа, 01033, м. Киïв, а/с «Де Агостiнi»
БЕЛАРУСЬ
Импортер и дистрибьютор в РБ:
ООО «Росчерк», 220037, г. Минск, ул. Авангардная, 48а, литер 8/к,
тел./факс: +375 17 331 94 27
Телефон «горячей линии» в РБ:
+ 375 17 279-87-87 (пн-пт, 9.00–21.00)
Адрес для писем читателей:
Республика Беларусь, 220040, г. Минск, а/я 224, ООО «Росчерк», «Де Агостини», «Мир математики»
КАЗАХСТАН
Распространение: ТОО «КГП «Бурда-Алатау Пресс»
Издатель оставляет за собой право увеличить реко мендуемую розничную цену книг. Издатель остав ляет за собой право изменять последовательность заявленных тем томов издания и их содержание.
Отпечатано в соответствии с предоставленными материалами в типографии:
Grafica Veneta S.p.A Via Malcanton 2
35010 Trebaseleghe (PD) Italy
Подписано в печать: 07.08.2013
Дата поступления в продажу на территории России: 11.02.2014
Формат 70 х 100 / 16. Гарнитура «Academy».
Печать офсетная. Бумага офсетная. Печ. л. 4,75.
Усл. печ. л. 6,156.
Тираж: 200 000 экз.
© Joan Gomez, 2010 (текст)
© RBA Collecionables S.A., 2010
© ООО «Де Агостини», 2014
ISBN 978-5-9774-0682-6
ISBN 978-5-9774-0635-2 (т. 4)