Текст книги "Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии"
Автор книги: Жуан Гомес
Жанр:
Математика
сообщить о нарушении
Текущая страница: 1 (всего у книги 7 страниц)
Жуан Гомес
«Мир математики»
№ 4
«Когда прямые искривляются
Неевклидовы геометрии»
Предисловие
Посвящается памяти моих родителей, Висенса и Монсеррат
Во всей истории науки нет ничего более революционного, чем развитие неевклидовых геометрий, которое до основания потрясло веру в то, что теория Евклида является вечной истиной.
Эдвард Каснер иДжеймс Ньюмен («Математика и воображение», 1941)
Все мы знаем множество геометрических понятий, потому что постоянно используем этот раздел математики в нашей повседневной жизни. Но эти понятия относятся к так называемой «классической», или «евклидовой», геометрии. Однако существуют другие геометрии, которые устроены совсем не так, как нас учили в школе. Эта книга не сделает вас специалистом в нетрадиционных геометриях, зато покажет, что реальность гораздо богаче, чем кажется на первый взгляд.
В этой книге описаны другие способы мышления и отношения к геометрии, способы, отличающиеся от тех, которые прочно укоренились в нашей повседневной жизни, и которые определяют наши действия в соответствии с евклидовой геометрией. Можно подумать, что новые геометрии понятны лишь великим ученым, но мы постараемся в последующих главах в наиболее ясной и понятной форме изложить их основы.
Возможно, самым простым способом открытия новых миров является попытка увидеть их проявления в более понятных и очевидных сферах нашей повседневной жизни. Таким образом, наше изложение начнется с короткого путешествия в «геометрию такси», которая основана на так называемом «расстоянии Минковского», отличающемся от расстояния в обычном понимании. Как бы мы ни хотели улететь в дальние экзотические страны, для начала мы должны не терять землю под ногами. Нам придется обратиться к Евклиду, чтобы понять, как основные элементы геометрии используются в повседневной жизни. Лишь тогда мы сможем перейти к обсуждению таких понятий, как «пятый постулат» и «проблема параллелей», из которых рождаются интересующие нас новые геометрии.
Лишь владея лучшими инструментами математической теории, мы можем вступить в мир новых геометрий. Сначала проведем разведку, чтобы узнать, как обстоят дела. Мы рассмотрим различные попытки доказательства пятого постулата. Ведь только в XVIII в. непоколебимое на протяжении столетий учение Евклида было наконец поставлено под сомнение самыми выдающимися математиками того времени.
Неудачные попытки доказать пятый постулат поставили под сомнение, казалось бы, неоспоримые основы традиционной геометрии. В это время и проявили себя одни из самых замечательных ученых в области математики. История альтернативных интерпретаций пятого постулата является в равной мере историей неудач и гениальных открытий. С ней связаны самые известные в истории математики имена: Лобачевский, Бойяи, Гаусс, Риман… Мы более подробно рассмотрим удивительные результаты первой из новых геометрий – гиперболической геометрии Лобачевского и Бойяи. Мы увидим, как она кардинально изменила наше понимание физической реальности и как она повлияла на исследования Альберта Эйнштейна и открытие им теории относительности.
Эллиптическая геометрия Римана перенесет нас в удивительный мир сфер, где у треугольников сумма внутренних углов больше 180°. Мы воспользуемся сферической геометрией, чтобы ответить на многие вопросы. Что является кратчайшим расстоянием между двумя городами на поверхности Земли? Можно ли измерить внутренние углы треугольника, вершинами которого являются Париж, Лондон и Мадрид? Решения этих геометрических задач оказываются весьма полезными в нашем глобализованном мире, где GPS позволяет определить координаты любой точки нашей планеты.
Словно река, прорвавшая древнюю плотину, новые идеи смели традиционные научные понятия и породили сотни новых. Мы коснемся также геометрии XXI в. – интегральной и вычислительной геометрии, являющейся основой новых технологий.
Читатели, желающие поглубже изучить эти вопросы, найдут в конце книги список литературы. Алфавитный указатель позволит легко ориентироваться в тексте книги.
Глава 1
Поездка на такси
Нам часто приходится в повседневной жизни измерять предметы. Математическую дисциплину, изучающую такие задачи, древние греки называли геометрией. Это слово происходит от греческого geometrein, где geo означает «земля», a metrein – «измерять». Когда мы говорим о геометрии, мы всегда используем единственное число.
Казалось бы, множественное число – геометрии – подразумевает существование целого ряда возможных дисциплин на выбор. Такой подход звучит слишком заумно, эта идея находится за пределами понимания обычных людей. Тем не менее, так оно и есть: другие геометрии существуют.
Разве ученые абсолютно точно знают, что такое на самом деле точка в пространстве или прямая линия, проходящая через нее? Может ли круг иметь форму прямоугольника? Знаем ли мы, что означает «параллельность»?
Ответы на эти вопросы не являются вечными истинами, а меняются на протяжении времени. Евклид с полной убежденностью утверждал, что «через точку вне прямой можно провести только одну прямую, параллельную данной», но Лобачевский показал, что можно провести много параллельных прямых, практически бесконечное число. Риман был не согласен с обоими и считал, что параллельные прямые не существуют. Кто же из этих великих математиков прав? Может, все они правы?
Или они все ошибаются?
В данной главе мы как раз и разрешим все эти неопределенности, но, пожалуй, нам лучше начать с простого примера, который наглядно демонстрирует, почему возникает путаница относительно самой природы физической реальности.
Отправляясь из дома на работу или в другое место, мы вычисляем время, которое потребуется на дорогу, исходя из расстояния. Но часто оказывается, что расчеты не соответствуют реальному времени. Пробки, светофоры, дорожные работы – список таких задержек можно продолжать бесконечно. Все это, казалось бы, идет наперекор нашим тщательным планам.
Проблема заключается в том, что мысленно мы моделируем наше путешествие геометрически идеальным образом, представляя наш путь в виде почти прямой линии. Однако реальность вовсе не является геометрически идеальной. Наши расчеты нарушают не только неисправные светофоры или разгружающие товары грузовики. Дело еще и в том, что блоки городских зданий не образуют идеальных квадратов, а улицы не пересекаются под идеально прямыми углами… Означает ли это, что невозможно найти оптимальную дорогу, чтобы утром добраться до работы?
* * *
ИЛЬДЕФОНСО СЕРДА (1815–1876)
Известный главным образом как инженер и архитектор, Ильдефонсо Серда обладал многими талантами, занимаясь также экономикой, правом и политикой. Его реформа городского планирования в Барселоне в XIX в., получившая название «План Серда», изменила лицо города, в результате чего появился один из самых впечатляющих районов – Эшампле. По-каталонски (I’Eixample) или по-испански (el Ensanche) это означает «расширение». Улицы Эшампле образуют прямоугольные кварталы, пересекаясь на равных расстояниях друг от друга.
Вид с воздуха на район Эшампле в Барселоне.
* * *
Заколдованные улицы
Как и следовало ожидать, реальность никогда не бывает геометрически идеальной, иначе бы мир был очень скучным, представляя из себя утомительные повторения упорядоченных форм. Однако рациональность и упорядоченность являются важными критериями, которые необходимо учитывать на практике, например, в городском планировании. По вполне разумным причинам улицы многих современных городов образуют квадратные блоки. Одним из первых примеров такого городского планирования был район Эшампле в испанском городе Барселоне, детище архитектора Ильдефонсо Серда. Этот район послужит идеальным вводным примером к нашей теме.
Представьте, что вы находитесь в районе Эшампле и хотите попасть из точки А в точку В. Если каждый городской квартал считать за единицу пути, то каким будет в этих единицах расстояние между точками А и В?
Глядя на этот рисунок, можно представить треугольник с гипотенузой (прямая линия между точками А и В) и двумя другими сторонами (вдоль улиц от одной точки к другой). Тогда длина одной стороны составит 4 единицы, а другой – 2.
Применяя теорему Пифагора (а2 = Ь2 + с2), мы можем найти длину гипотенузы: √(42 + 22) = √20 = 4,47 единиц. Если нам нужно рассчитать время в пути, то очевидно, что это расстояние обманчиво, потому что мы не можем передвигаться из одной точки в другую по прямой линии. Реальное расстояние будет суммой двух других сторон треугольника, то есть 6 единиц.
Мы могли бы попробовать различные другие маршруты, чтобы найти наименьшее расстояние. Вариантов множество. Мы можем двигаться по вертикали и по горизонтали, поворачивая на первую улицу, а затем на вторую, или сделать поворот через две улицы и так далее. Однако общее расстояние всегда будет 6 единиц.
На следующем рисунке изображены различные маршруты между точками А и В. Всего имеется 15 возможностей.
Выходит, что фактический маршрут вовсе не является прямой линией. Здесь появляется другое понятие расстояния, которое называется расстоянием такси. Это понятие нелинейного расстояния лежит в основе геометрии такси.
* * *
ВОЗМОЖНЫЕ МАРШРУТЫ
Формула, выражающая количество всех возможных маршрутов для n вертикальных и m горизонтальных движений, выглядит следующим образом:
Здесь n! означает факториал числа n, который равен n ·(n-1)·(n-2)·…·2·1. Например, 5! = 5–4 – 3–2 – 1 = 120. В нашем примере формула записывается так:
возможных маршрутов.
* * *
Расстояние такси
Расстояние, которое изучается в школе, является евклидовым расстоянием. Оно находится по теореме Пифагора, поэтому расстояние между двумя точками Р и Q с координатами Р = (x1, y1) и Q = (x2, у2) выражается следующей формулой:
В отличие от евклидова расстояния, минимальное расстояние в городе с прямоугольной сеткой улиц считается как dT(P, Q) = |x2 – x1| + |y2 – y1|
* * *
АБСОЛЮТНОЕ ЗНАЧЕНИЕ
Выражение |А| означает «абсолютное значение числа А», которое получается путем игнорирования знака числа. Если число А положительно, то |А| = А, а если число А отрицательно, то |А| = – А, например, |-5| = 5.
* * *
Это альтернативное расстояние называется манхэттенским расстоянием, или расстоянием Минковского, в честь немецкого математика Германа Минковского.
На более популярном языке это расстояние называют также расстоянием такси. На рисунке ниже пунктирная линия отмечает евклидово расстояние, а сумма длин вертикальных и горизонтальных отрезков соответствует расстоянию такси.
Если точка С является началом координат, то точка А имеет координаты (2, 1), а точка В – координаты (0, 5). Таким образом, евклидово расстояние составляет 4,47 единиц, а расстояние такси – 6 единиц. Обратите внимание, что положение начала координат не влияет на результат при расчете расстояний.
В математике метрикой или расстоянием между двумя точками А и В называется такое соотношение, которое удовлетворяет условиям положительности, симметрии и неравенства треугольника. А именно,
1) δ(A, В) >= 0, и из δ(A, В) = 0 следует, что А = В;
2) δ(A, В) = δ(В, A);
3) δ(А, В) =< δ(А, С) + δ(С, В).
Евклидово расстояние d(A, В) и расстояние такси dt(A, В) – два примера расстояний, которые удовлетворяют указанным выше условиям. В общем случае d(A, В) =< dT(A, В).
* * *
ГЕРМАН МИНКОВСКИЙ (1864–1909)
Немецкий математик Герман Минковский разработал геометрическую теорию чисел – геометрический метод решения задач из теории чисел. В 1907 г. он понял, что специальная теория относительности Эйнштейна может быть лучше выражена в терминах неевклидовой геометрии четырехмерного пространства. Это пространство с тех пор называется пространством Минковского. В нем время и пространство являются взаимосвязанными измерениями и образуют четырехмерное пространство, так называемое пространство-время. Именно таким подходом позже воспользовался Эйнштейн при работе над общей теорией относительности.
* * *
Пример с треугольниками
В евклидовой геометрии имеется признак равенства треугольников по двум сторонам и углу между ними, который работает следующим образом.
Пусть у нас имеются два треугольника АВС и А1В1С1 со сторонами соответственно АВ, АС, ВС и А1В1, A1C1, B1C1. Тогда, если АВ = A1B1, АС = А1С1 и угол ВАС равен углу В1A1С1, то сторона ВС равна стороне B1C1, то есть треугольники равны.
Другими словами, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то третьи стороны в треугольниках также будут равны. Такие треугольники равны. Однако этот очевидный результат оказывается ложным в геометрии такси.
Рассмотрим треугольники с вершинами А = (3,1), В = (1, 3), С = (5, 3) и А1 = (4, 4), В1 = (8, 4), С1 = (4, 0), как изображено на рисунке:
Можно показать, что
dT(A, B) = 4 = dT(A1, B1),
а также
dT(A, C) = 4 = dT(A1, C1),
Таким образом, по формуле расстояния такси b = b1 и с = с1. Обратите внимание, что угол ВАС также равен углу В1А1С1 (в данном примере они равны 90°). Несмотря на выполнение условий признака равенства, стороны а и а; наших треугольников имеют разную длину. Это совершенно разные треугольники, так что для них признак равенства треугольников из евклидовой геометрии не работает.
Круги
Круги встречаются повсеместно, как в естественных, так и в искусственных мирах, и, следовательно, это, пожалуй, простейшая из геометрических фигур, и ее легче всего описать. Подумав о круге, мы сразу вспоминаем множество круглых объектов, так что нам совсем нетрудно представить себе эту форму. Например, если взять колесо велосипеда, очевидно, что все спицы имеют одинаковую длину, иначе было бы невозможно на нем ездить. Все спицы одинаковой длины, потому что все точки на ободе находятся на одном и том же расстоянии от центра. Теперь сформулируем точное определение окружности на плоскости.
Геометрическое место точек плоскости, равноудаленных от заданной точки на заданное расстояние, называется окружностью.
Данная фиксированная точка называется центром окружности, а заданное расстояние – радиусом окружности.
Таким образом, если мы выберем точку Р на окружности (с центром в точке А и радиусом r), то d(P, А) = r. Например, если центр находится в точке (2, -1), а радиус равен 3, то все точки Р, удовлетворяющие нашему соотношению для А и r, образуют окружность.
На приведенном выше рисунке для изображения точек окружности использовалась формула евклидова расстояния, но если применять формулу расстояния такси, то получится совсем другой, очень странный результат, как можно видеть на следующем рисунке.
Мы можем проверить, что точки Р на этой «окружности» такси действительно удовлетворяют соотношению dT = (Р, А) = r при А = (2, -1) и r = 3. В геометрии такси возможно то, что всегда казалось абсурдным: мы можем круг превратить в квадрат!
Если вычислить длину окружности нашего такси-круга по классической формуле l = 2·π·r, то мы получим l = 2 ·π· 3 = 18,849. Однако по формуле расстояний такси длина окружности составит 6 + 6 + 6 + 6 = 24 единицы, и, кроме того, результат совсем не будет содержать π.
Эллипсы
Многие другие формы, известные из геометрии Евклида, выглядят странно в геометрии такси. Например, эллипс представляет собой множество точек, расположенных вокруг двух фиксированных точек, называемых фокусами. Сумма расстояний от любой точки эллипса до фокусов постоянна. Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.
В следующем примере фокусами являются точки А = (—3, 0) и В = (3, 0), а большая ось эллипса (наибольший диаметр) составляет 10 единиц. Следовательно, эллипс состоит из всех точек Р, удовлетворяющих условию d(P, А) + d(P, В) = 10:
Если евклидово расстояние заменить расстоянием такси, то множество точек Р, удовлетворяющих условию d(P, А) + d(P, В) = 10, будет выглядеть весьма странно:
Эти примеры показывают, что формы геометрических фигур не являются универсальными, вечными и неизменными. Любая форма относительна, каким бы странным этот факт ни казался. Формы зависят от метрики – так называется тип используемого «расстояния». Другими словами, они зависят от подхода к данной задаче.
Тем не менее, расстояние такси вовсе не является курьезом. Оно имеет множество применений в городском планировании. Например, оно играет важную роль при планировании эффективной дорожной сети и удобного расположения государственных учреждений (больниц, школ, туристических достопримечательностей и т. д.).
Соединяющие улицы
Давайте представим, что в некотором городе приняли решение соединить между собой два городских округа. Эти районы называются А и В, а улицы в них образуют прямоугольные кварталы, как в реальном Эшампле в Барселоне. Для соединения двух округов было решено построить дорогу таким образом, чтобы выполнялось одно сложное условие: в любой точке этой дороги автомобиль должен находиться на одинаковом расстоянии от точек А и В. Как можно спроектировать такую дорогу?
В математических терминах этот вопрос можно сформулировать следующим образом: какие точки на плоскости равноудалены от точек А и В?
Как всегда, в евклидовой геометрии имеется простое решение. Если на плоскости XY точка А имеет координаты (0, 0), а точка В – (4, 2), то можно провести линию, перпендикулярную отрезку АВ и проходящую через его середину. Эта линия и будет состоять из точек Р, удовлетворяющих условию:
d(P, A) = d(P, B).
Но этот подход не работает в геометрии такси. Обратите внимание, что евклидово решение потребует снести большое количество зданий, чтобы построить такой идеальный маршрут.
Решение должно быть найдено в терминах геометрии такси. Нужно найти линию, все точки Р которой удовлетворяют условию dT(P, А) = dT(P, В). Тогда расстояние от любой точки этой линии до точки А будет равно расстоянию до точки В. Кроме того, это решение позволяет свести к минимуму количество сносимых зданий.
Глава 2
Евклидова геометрия
В живописи точка является наиболее важным элементом.
Василий Кандинский
Геометрия первоначально была наукой об измерениях. Греческие геометры умели измерять отрезки линий (как прямых, так и кривых), площадь поверхности, ограниченной линиями, и объемы фигур, ограниченных поверхностями. Однако глагол «измерять» вскоре принял более широкий смысл: «устанавливать отношения между геометрическими объектами». Появились геометрические формулировки, которые используются и сегодня: «прямая линия r параллельна прямой q», «отрезок АС в три раза длиннее отрезка АВ», «отношение периметра окружности к ее диаметру
есть число, которое не может быть выражено в виде дроби».
Для установления истинности таких отношений геометры древности разработали и довели до совершенства особую систему доказательств, которая стала основным методом математики. Система греческих геометров состояла в выводе важнейших результатов (теорем) из набора основополагающих аксиом с помощью «длинных цепочек рассуждений», как называл доказательства Декарт в своем трактате «Рассуждение о методе». Этот практически творческий подход является характерной чертой евклидовой геометрии.
«Начала» Евклида и пятый постулат
Как и в случае со многими другими выдающимися деятелями далекого прошлого, сведения о Евклиде крайне скудны. Ни дата, ни город его рождения точно не известны. Все имеющиеся сведения содержатся в толкованиях древних документов, упоминающих геометрию. Оттуда известно, что он жил до Архимеда, ок. 325–265 гг. до н. э., и был почти современником Птолемея (367–283 гг. до н. э.). Стиль его рассуждений указывает на то, что он учился в Афинах с другими учениками Платона. Достоверно известно, что Евклид жил в Александрии, где преподавал математику на протяжении более чем 20 лет. Именно там он основал знаменитую школу, с которой и связан расцвет его научной деятельности.
Около 300 г. до н. э. Евклид написал свой магнум опус, великий труд «Начала», содержащий практически все известные в то время математические сведения. Эта книга является, по-видимому, наиболее читаемой после Библии. В самом деле, она использовалась в качестве учебного пособия в течение почти 2000 лет и считалась нерушимой основой не только геометрии, но даже здравого смысла. Первая печатная версия «Начал» появилась в Венеции в 1482 г. Это был перевод с арабского языка на латинский. Первая версия прямого перевода с греческого на латынь была опубликована в 1303 г.
Страница из первой книги «Начал» Евклида. Издание Леонардо де Базилея и Гчльермо де Павия, 1491 г.
«Начала геометрии» (или «Начала») состоят из 13 книг, содержащих 463 утверждений, 372 теоремы и 93 задачи. Они не содержат обычного набора рутинных расчетов, которыми нагружают учеников в школе, а представляют собой логичный и структурированный свод современных знаний в стиле Платона. В соответствии со своими научными идеалами Платон говорил, что геометрия – это наука, которой занимаются ради познания. В седьмой книге диалога «Государство» он так объясняет свои представления об этой науке:
«Как если бы они были заняты практическим делом, геометры употребляют выражения «построим» четырехугольник, «проведем» линию, «произведем наложение» и так далее. А между тем, все это наука, которой занимаются ради познания».
В «Началах» все предложения доказываются шаг за шагом. Первые четыре книги называют пифагорейскими, так как они содержат главным образом материал, который изучали Пифагор и его последователи. Эти книги посвящены геометрии на плоскости: теореме Пифагора, свойствам треугольников, параллелограммов, кругов, многоугольников и так далее.
Следующие две книги излагают понятия пропорциональности и подобия многоугольников и содержат первое упоминание о золотой пропорции (в терминах «крайнего и среднего отношения»).
Книги с седьмой по девятую посвящены арифметике и рассматривают задачи, связанные с теорией чисел: делимость, простые числа, совершенные числа и так далее. Здесь определяется евклидово понятие числа. Евклид рассматривал все числа как геометрические отрезки, что соответствует современному понятию измеряемых величин.
Десятая книга дает классификацию чисел, называемых иррациональными, то есть таких чисел, которые не могут быть выражены в виде дроби. Последние три книги посвящены стереометрии (многогранникам, сферам и так далее). Здесь также рассматриваются пять правильных многогранников, так называемых «Платоновых тел», все грани которых равны и при этом являются правильными многоугольниками.
Евклид начинает изложение с простых, очевидных утверждений, которые могут быть легко и интуитивно поняты и не подлежат сомнению. Он называет их определениями, постулатами и аксиомами, и из них он выводит свои предложения, которые доказываются с помощью цепочек рассуждений. Основы учения Евклида сформулированы в первой книге «Начал», которая содержит 23 определения, 5 постулатов и 48 предложений.
* * *
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Существует только пять правильных выпуклых многогранников. Возможно, именно поэтому греки уделяли им особое значение, соотнося их с четырьмя стихиями: тетраэдр (огонь), куб (земля), октаэдр (воздух), икосаэдр (вода); а додекаэдр олицетворял Вселенную. Правильные многогранники также известны как пять «Платоновых тел».
ТЕРМИНОЛОГИЯ ЕВКЛИДА
Предложение – истинное утверждение, которое уже доказано или должно быть доказано.
Теорема – предложение, которое может быть логически выведено из аксиом или из других ранее доказанных теорем с помощью принятых правил доказательства.
Постулат– предложение, истинность которого принимается без доказательства и лежит в основе дальнейших рассуждений; другими словами, допущение, лежащее в основе доказательства.
Аксиома – предложение, настолько ясное и очевидное, что оно не требует доказательств. Аксиомы более очевидны, чем постулаты.
* * *
Первоначальные определения из первой книги даются для точки, прямой линии, прямого угла и параллельных линий и лежат в основе евклидовой геометрии и других геометрий.
Определение 1. Точка есть то, что не имеет частей.
Определение 2. Линия – это длина без ширины.
[…]
Определение 4. Прямая линия есть та, которая равно расположена по отношению к точкам на ней.
[…]
Определение 10. Когда же прямая, восставленная на другой прямой, образует смежные углы, равные между собой, то каждый из углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.
[…]
Определение 23. Параллельные – суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.
Затем формулируются следующие аксиомы.
1. Равные одному и тому же равны и между собой.
2. Если к равным прибавляются равные, то и целые будут равны.
3. Если от равных отнимаются равные, то остатки будут равны.
4. Совмещающиеся друг с другом равны между собой.
3. Целое больше части.
В отношении фигур Евклид не говорит об их равенстве, а старается использовать слово «конгруэнтность». В общем случае под конгруэнтностью геометрических фигур понимается тот факт, что при наложении друг на друга они совпадают.
Далее Евклид формулирует пять знаменитых постулатов.
I. От всякой точки до всякой точки можно провести прямую линию.
II. Любой отрезок можно непрерывно продолжать по прямой линии.
III. Имея любой отрезок, можно описать круг с радиусом, равным длине этого отрезка, и с центром в одном из концов этого отрезка.
IV. Все прямые углы равны между собой.
V. Если две прямые пересекаются третьей, так что с одной стороны сумма внутренних углов меньше двух прямых углов, то эти две прямые неизбежно пересекаются друг с другом по эту сторону, будучи продленными достаточно далеко.
В соответствии с пятым постулатом, если сумма углов меньше двух прямых углов, то прямые линии будут сходиться (пересекутся). Значит, верно и обратное: если сумма углов больше двух прямых углов, то прямые линии никогда не пересекутся (они будут расходиться). Что произойдет, если сумма углов равна двум прямым углам? Тогда прямые линии и не сходятся, и не расходятся, то есть они будут параллельными и никогда не пересекутся. Однако пятый постулат вскоре стал вызывать сомнения. Во-первых, его формулировка является более сложной, чем у других постулатов, и не кажется интуитивно ясной. Даже Евклид долго не использует пятый постулат, пока не формулирует предложение 32:
«Сумма углов треугольника равна двум прямым углам (180°)».
Как потом доказал сам Евклид, это утверждение эквивалентно пятому постулату. Все треугольники образованы пересечением двух непараллельных прямых, которые затем пересекаются третьей. Параллельные линии в пятом постулате представляют собой особый случай, когда третья прямая перпендикулярна двум другим, и тогда два угла в сумме равны 180°, не оставляя ничего третьему углу треугольника.
Следовательно, по Евклиду нельзя построить треугольник с двумя прямыми углами.
Знаменитая теорема Пифагора также является еще одним частным случаем пятого постулата, когда только один из углов равен 90°:
«В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов двух других сторон».
Таким образом, оказывается, что, по сути, существует несколько утверждений, эквивалентных пятому постулату, о которых сам Евклид, возможно, не догадывался.
Утверждения, эквивалентные пятому постулату
Пятый постулат, по сути, вызвал сумятицу. Понятие параллельных прямых, которые можно неограниченно продолжать, фактически вводило понятие бесконечности.
Кроме того, по формулировке Евклида пятый постулат больше похож на теорему, чем на универсальную истину. Таким образом, на протяжении веков многие математики были убеждены, что это на самом деле свойство прямых, которое может быть доказано, и поэтому пытались найти доказательство. В результате появилось большое количество эквивалентных формулировок пятого постулата. Наиболее важные из них (именно с точки зрения новых геометрий) приведены ниже.
Греческий философ Прокл (410–485) был самым известным представителем афинской школы математики. Его постулат о равноудаленности формулируется следующим образом:
«Прямая, параллельная данной прямой, сохраняет постоянное расстояние от нее».
* * *
ГЕОМЕТРИЯ В ИСКУССТВЕ
Художники в своих работах используют точки, прямые линии и другие геометрические объекты. Их работы очень помогают при ответе на вопросы «что такое точка?», «что такое прямая линия?», «что мы имеем в виду под параллельностью?»Василий Кандинский (1866–1944) был русским художником, поэтом, драматургом и педагогом. Научные исследования в области права и экономики он сочетал с занятиями графикой и живописью. Его преподавательский опыт отражен в трактате «Точка и линия на плоскости» (1925), где Кандинский определил прямую линию как «след перемещающейся точки».
* * *
Великий французский математик Адриен Мари Лежандр (1752–1833) пытался доказать пятый постулат в книге «Начала геометрии», которая многократно переиздавалась и переводилась на многие языки. Более 40 лет он искал доказательство пятого постулата, которое было бы математически строгим, но в то же время понятным читателям и студентам. К сожалению, он умер, так и не увидев развития неевклидовых геометрий. Однако именно он сформулировал постулат для углов треугольника:
«Существует треугольник, сумма углов которого равна двум прямым».
Тут мы должны упомянуть Яноша Бойяи, о котором мы позже расскажем более подробно. Отец Бойяи, который также был математиком, безуспешно пытался доказать пятый постулат и поэтому не хотел, чтобы его сын зря тратил время на решение этой задачи. Однако Яношу было суждено сделать гораздо большее. Все началось с постулата о трех точках:
«Через любые три точки, не лежащие на прямой линии, всегда можно провести окружность».
Мы также более подробно рассмотрим результаты «принца математики» Карла Фридриха Гаусса, который начал работать над пятым постулатом в 1792 г. в возрасте 15 лет и к 1817 г. убедился, что этот постулат совершенно независим от других четырех. Гаусс сформулировал постулат о площади треугольника:
«Существует треугольник сколь угодно большой площади».
Особенно важным был результат шотландского математика и геолога Джона Плейфера (1748–1819). Именно его «аксиома параллельности», в отличие от сложной формулировки Евклида, в настоящее время преподается в школах и наиболее часто встречается в учебниках. И действительно, ее часто принимают за оригинальную формулировку пятого постулата Евклида. Ее ценность заключается в простоте – аксиому Плейфера гораздо легче понять, чем формулировку Евклида: