355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фролов » От инстинкта до разума (Очерк науки о поведении) » Текст книги (страница 2)
От инстинкта до разума (Очерк науки о поведении)
  • Текст добавлен: 15 марта 2018, 13:00

Текст книги "От инстинкта до разума (Очерк науки о поведении)"


Автор книги: Юрий Фролов



сообщить о нарушении

Текущая страница: 2 (всего у книги 8 страниц)

2. Устройство и работа центральной нервной системы

Там, где нет нервной системы, нет и инстинктов, нет и других более простых форм поведения. Однако и у низших организмов, не обладающих нервной системой, есть некоторая свойственная живой материи раздражимость. Раздражимость – это способность приходить в деятельное состояние под влиянием различного рода внешних «возбудителей»: света, тепла и т. п. Это свойство – раздражимость живой материи – довольно широко распространено в природе. Возбудителями движений животных являются и некоторые химические вещества, в особенности пищевые вещества, к которым стремятся и растения и животные, возбудителями являются также вода, соли, без которых невозможна жизнь, наконец, газы, например кислород. Благодаря органам внешних чувств, которыми обладают более развитые животные, появляется возможность правильно, целесообразно отвечать на раздражения, поступающие из внешней среды. Простейшие реакции, в которых проявляется такая раздражимость, например в результате воздействия на организм света, тепла и др., называются тропизмами. Разумеется, в тропизмах, как и в инстинктах, нет никаких проявлений таинственного и всё происходит по законам, действующим в природе.

Раздражимостью в её элементарном виде, т. е. способностью реагировать на внешние раздражения, обладают не только животные, но и растения. Подсолнечник в течение дня совершает почти полный поворот от востока на запад, следуя за движением солнца. Это и есть проявление светового тропизма, характерное для подсолнечника. Свет действует на перераспределение внутренних соков растения на освещенной стороне, причём получается поворот стебля. Растение использует при этом наилучшие условия солнечного освещения для роста и развития, благодаря накоплению влаги в одной половине стебля за счёт другой половины.

Некоторые растения, например «стыдливая мимоза», свёртывают свои лепестки от малейшего к ним прикосновения. Это явление может быть рассматриваемо как своеобразная чувствительность клеток растительного организма к прикосновению, но не как деятельность специальных органов чувств.

Растение не располагает никакими органами чувств, поэтому нельзя говорить о его поведении.

Простейшее одноклеточное животное, например амёба, состоит из протоплазмы, ядра и тонкой оболочки (рис. 1).

Рис. 1. Строение одноклеточного животного (амёбы): а – ложноножки при помощи которых амёба передвигается и захватывает пишу; б – ядро; в – сократительная вакуоля; г – захваченная амёбой пища.

Амёбу легко обнаружить при помощи лупы или микроскопа в капле стоячей воды с гниющими растениями. Наружный слой амёбы довольно чувствителен. Если рядом с амёбой под стеклом микроскопа оказываются клетки водорослей, которыми она питается, или мельчайшие зёрнышки краски, например кармина, то амёба, прикоснувшись к ним своим наружным чувствительным слоем, тотчас же окружает их выростами своего тела, так называемыми ложноножками. Постепенно обволакивая ими встретившийся ей предмет, амёба втягивает его и переваривает с помощью соков, содержащихся в её теле. Непереваренные частицы, зёрнышки кармина, а также продукты обмена веществ, амёба выбрасывает из организма. Следовательно, она обладает способностью выделения, очистки организма.

Этому простейшему одноклеточному существу, таким образом, свойственна некоторая реактивность. Амёба даёт ответную реакцию на получаемые извне раздражения. Реакция эта выражается в данном случае в движении ложноножек, в переваривании пищи и выделении негодных отбросов.

Хотя раздражимость и способность к реакции у амёбы довольно высоки, они всё же имеют простой и однообразный характер. Амёба реагирует на многие явления окружающего мира одним и тем же способом. Кислород сам проникает сквози тонкую оболочку амёбы в протоплазму. Реакции амёбы крайне ограничены и выражаются только в захватывании частей пищи, да ещё в химическом действии её протоплазмы.

Несколько более сложный характер реакции находим мы у инфузории-парамеции, или «туфельки», представляющей собой также одноклеточный организм. Однако «туфелька» обладает уже некоторым подобием органов, некоторым разделением функций между отдельными частями клетки. У «туфельки» имеются специальные пузырьки в протоплазме или вакуоли, в которых происходит переваривание попавших извне питательных веществ. Наблюдая за «туфелькой» в микроскоп, можно заметить в её теле пульсацию, помогающую движению жидкости внутри организма (рис. 2).

Рис. 2. Строение одноклеточного животного (ресничной инфузории).

Наконец, в протоплазме «туфельки» есть полупрозрачные нити, способствующие, по-видимому, передаче раздражения от одной части клетки к другой.

Эти элементы (их называют фибриллами) являются зачатками нервной системы и чрезвычайно разнообразят поведение одноклеточного организма. Внешние факторы: влажность, химический состав воды, в котором живет «туфелька», наличие кислорода, определяют собой движения или покой этой инфузории. Особенно обращает на себя внимание необычайная подвижность и сложность реакции «туфельки», когда появляется свет или нагревается вода. Так же реагирует она на кислород, на пищу и на электрический ток.

Все эти разнообразные реакции происходят в пределах лишь одной живой клетки, помещённой под объективом микроскопа в капле воды. Наука всегда идёт от простого к сложному: наблюдая реакции простых организмов, мы получаем представление об основах дальнейшего совершенствования поведения животных.

Значительно большего развития передача возбуждения от одной части организма к другой достигает у более высоко организованных животных, у многоклеточных, начиная с так называемых кишечнополостных, например гидроидов. Высокая возбудимость и передача возбуждения наблюдаются у полипов и медуз – животных, ведущих водный образ жизни. Уже у обыкновенной гидры, живущей в пресноводных водоёмах и достигающей 12 мм длины, мы замечаем чрезвычайную точность в передаче возбуждения от одних частей её тела к другим. Нервная система гидры имеет разбросанное расположение. Возбуждение чувствительных клеток, сосредоточенных в щупальцах, окружающих рот гидры, передаётся клеткам, образующим тот «стебелёк», на котором держится животное. Если раздражать иглой часть тончайших щупальцев, которыми этот полип пользуется для захватывания пищи, происходит не только их сгибание, но и сокращение других щупальцев, а также всего тела. Таким способом гидра «охотится» за мелкими водными животными.

Однако говорить об инстинктах кишечнополостных было бы неверно. С таким же успехом можно было бы говорить об инстинктах «высших растений», например мимозы и росянки. Под инстинктами, как мы подробно расскажем дальше, подразумеваются сложные формы поведения, свойственные более высоко организованным существам, имеющим развитую нервную систему.

У медуз, которые плавают на поверхности моря и движение которых можно наблюдать также в аквариуме, мы находим довольно развитые средства нервной связи и органы чувств. У медузы имеются пигментные пятна, расположенные по краю её полупрозрачного «колокола». Это – органы восприятия света. Имеются также и другие чувствительные органы, например, обеспечивающие равновесие тела в воде (так называемые статолиты). Все они соединены нитевидными нервными проводниками с особым кольцом, в состав которого входит множество нервных волокон и клеток. Здесь мы уже имеем дело с новой ступенью развития нервной системы. По этому нервному кольцу передаются «сигналы» возбуждения от чувствительных органов через нервные узлы к мышцам её тела. В результате получаются периодические сокращения и расслабления её так называемого колокола, в состав которого входят мышечные элементы. Благодаря сокращению этих мышц, в результате выталкивания воды из-под колокола, происходит движение медузы в воде.

Органы чувств и нервная система животных на всех ступенях развития помогают друг другу: действуя как одно целое, они вместе регулируют всё поведение медузы. Иногда раздражение одних участков чувствительного кольца медузы вызывает сокращение не всех, а только некоторых мышц. Раздражение же других участков обусловливает другие движения. Здесь мы видим новые качества поведения: по мере развития животного наблюдается некоторое разделение действий между частями самой нервной системы. Одни клетки её являются преимущественно чувствительными, другие – двигательными. Правда, у низших кишечнополостных животных нервные клетки и мышцы ещё очень тесно связаны друг с другом и составляют одно целое (рис. 3).

Рис. 3. Поперечный разрез через стенку тела кишечнополостного животного (гидры).

Органы восприятия света у медуз уже довольно хорошо развиты и играют важную роль, обеспечивая особую чувствительность этого животного к свету.

На следующем этапе развития животного мира, наблюдая, например, строение обыкновенных дождевых червей, мы находим нервные клетки, разделяющиеся на две группы: чувствительные и двигательные. Кроме того, – и это самое важное, – мы имеем у них своеобразную нервную цепочку, расположенную на брюшной стороне тела. Скопления нервных клеток (нервные узлы) связаны между собой симметричными пучками нервных волокон. Это позволяет животному точно согласовывать отдельные движения при перемещении на земле. Тело червя может извиваться в ту или другую сторону, может зарываться в землю, что способствует, как известно, разрыхлению почвы, проникновению в нее воздуха.

Сделаем простейший опыт, чтобы определить роль нервной цепочки червей. Перережем дождевого червя пополам. После этого каждая половина будет некоторое время двигаться самостоятельно. Следовательно, нервные центры, регулирующие движение червя, находящиеся как на переднем, так и на заднем конце тела, могут действовать независимо друг от друга. Всё же и у червей отмечается относительно большая чувствительность головного конца тела. Это позволяет им отмечать близость пищи или появление врага, однако лишь путём непосредственного прикосновения.

Дальнейшее развитие нервной системы совершается за счёт совершенствования органов, позволяющих распознавать предметы на довольно значительном расстоянии – органов зрения и слуха, которые мы наблюдаем у более высоко организованных, чем черви, животных: моллюсков, ракообразных и насекомых. При этом у животных, конечно, продолжает развиваться осязание и другие «низшие чувства», которые являются для них основными. Но чем дальше, тем орган зрения начинает занимать более важное, ведущее место. Водные животные отлично распознают глубину водоёма, различают направление движения воды, её химический состав и реагируют на его изменения с помощью особого «химического чувства», также достигающего высокой степени развития. Вкус – тоже проявление своеобразного химического чувства, имеющего значение даже и для человека. Вместе с развитием чувствительности к происходящим в окружающей среде переменам происходит всё более тонкое разделение чувств (например разделение обоняния и вкуса). Большинство органов «высших» чувств располагается ближе к голове, связывается с головными нервными «узлами».

При этом происходит и слияние различных отделов нервной системы. Это заметно у так называемых членистоногих животных. В особенности у насекомых мы замечаем слияние отдельных частей их нервной цепочки, расположенной на брюшной стороне тела, в более крупные образования. Как и звенья нервной цепочки червей, они состоят из некоторого количества сложно устроенных нервных клеток (рис. 4).

Рис. 4. Постепенное объединение отдельных узлов нервной цепочки насекомых в крупные грудные (г) и брюшные (б) узлы: 1 – бабочка-тонкопряд; 2 – светляк; 3 – «божья коровка»; 4 – садовый кузька; 5 – личинка падальной мухи.

Эти клетки, обладающие нитевидными отростками, воспринимают раздражения, поступающие от определённых частей тела, от органов чувств, и передают их мышцам. Мышечный аппарат насекомых высоко развит и расчленён на множество пучков. Передние нервные узлы наиболее развитых насекомых – жуков, муравьёв и пчёл – сливаются в один крупный узел (надглоточный узел), связанный с органами чувств. Он играет у насекомых ту роль, которую у позвоночных выполняет головной мозг. В грудной части образуется особый грудной узел, который управляет движением мышц конечностей, в брюшной – несколько узлов, регулирующих деятельность внутренних органов. Некоторое подобие этой «узловой» системы мы находим и во внутренностях высших животных, где многочисленные нервные центры образуют так называемое «солнечное сплетение» и другие местные аппараты регуляции деятельности органов, но не играющие роли в самом сокращении мышц.

Насекомые отличаются весьма разнообразными и сложными формами поведения. Охватывая своими органами зрения и обоняния довольно большие пространства, они ищут себе добычу и защищаются от врагов весьма сложными способами. Насекомые обладают большим числом развитых инстинктов (питания, размножения и др.).

Инстинкты насекомых, как и других высших животных, состоят из многих отдельных двигательных актов, связанных в одну общую цепь; например пчела осуществляет полёт за цветочной пылью и возвращение обратно. Инстинкты составляют большую часть способов приспособления насекомых к окружающей их среде и определяют в основных чертах их поведение. Инстинкты насекомых большей частью целесообразны. Однако ничего сверхъестественного в этой целесообразности нет. Можно указать сколько угодно инстинктов, становящихся нецелесообразными, даже нелепыми, затрудняющими поведение животного в тех случаях, когда обстоятельства его жизни резко изменяются.

Эго ещё раз показывает, что инстинкты возникают в зависимости от длительного воздействия условий внешней среды и лишь постепенно меняются с изменением этих условий.

Возьмём обыкновенное широко распространённое насекомое – чёрного таракана – и разрежем его на две части, по линии, отделяющей от брюшка грудную част. Задняя половина останется после этого лежать неподвижно. Передняя же часть после некоторой паузы будет проявлять заметные признаки жизни. Обнаружится движение лапок, усиков, челюстей. Центральная нервная система насекомого не только объединяет собой движения передней и задней половин насекомого, но и подчиняет движения задней половины влиянию головного узла-мозга, заставляет действовать организм как одно целое, приноравливает поведение животного к условиям внешней среды на более и более широком пространстве. Известно, что многие насекомые (саранча) обладают способностью к передвижению на огромные расстояния. Их нервная система высоко развита.

Объединение отдельных частей нервной цепочки, о которой мы говорили выше, у насекомых выражается в резком увеличении головной части – надглоточного узла. Именно первенствующее значение головного конца нервной цепочки связано с проявлением более сложных форм поведения. Наиболее развитые насекомые, обладатели инстинктов строительства гнёзд, например, осы, пчёлы и муравьи, располагающие сложными, так называемыми фасеточными глазами, имеют более сложное и внутреннее устройство головного узла, состоящего из множества нервных клеток. Последние расположены не только в виде узлов, но и рядами, т. е. в определённом порядке, – так называемый экранный тип строения мозга.

У позвоночных (рыб, земноводных, пресмыкающихся, птиц и млекопитающих), занимающих наиболее высокое положение в мире животных, центры нервной системы устроены ещё более сложно, чем у насекомых. Они более развиты как в смысле расчленения и специализации частей, так и в смысле объединения через них работы всех других органов тела. Нервные центры, которые помещаются в головном конце, в высших «этажах» нервной системы, связаны десятками тысяч нервных нитей друг с другом и со всеми органами тела. Эти центры направляют деятельность не только аппарата передвижения – мышц, туловища и конечностей (анимальная нервная система), но и работу внутренних органов с помощью системы узлов, так называемой вегетативной (растительной) нервной системы.

Даже у низших позвоночных – рыб, ведущих сравнительно простой, водный образ жизни, мы имеем новое в строении нервной системы по сравнению с беспозвоночными, а именно: так называемую нервную трубку, которая находится на спинной стороне тела. Она состоит из множества нервных клеток, образующих систему нервных центров, расположенных этажами. Эти центры управляют движением определённых мышц тела и конечностей – в данном случае плавников. Основное значение в регулировании этих движений имеет спинной мозг (рис. 5).

Рис. 5. Спинной мозг и его корешки: передние – центробежные, задние – центростремительные.

Нервная клетка состоит из «тела» клетки, в котором находится ядро, и отростков, – так называемого нейрита (главный отросток), а также более мелких – дендритов, по которым раздражение направляется в клетку (рис. 6).

В каждом «этаже» спинного мозга позвоночных расположение этих нервных элементов примерно одинаково: мозговой ствол состоит из двух видов нервного вещества: серого, нервных клеток (оно образует центральную часть и на поперечном разрезе напоминает силуэт бабочки с развёрнутыми крыльями (рис. 6), и белого, нервных волокон (проводящие пути мозга, т. е. соединения между отдельными его «этажами»).

Рис. 6. Строение центральной нервной системы позвоночных. Слева – нервная клетка с отростками (нейритом и дендритами), справа – поперечный разрез спинного мозга.

Спинной мозг соединен с телом двумя видами «корешков»: одни из них (задние) несут раздражения от кожи и других органов (чувствительные пути), другие (передние) являются двигательными, т. е. несут возбуждение к двигательным органам – к мышцам.

Ведущую роль в поведении высших позвоночных играет передний конец нервной системы или головной мозг. Если у беспозвоночных мы находим десятки и сотни тысяч нервных клеток, то число нервных клеток в мозгу рыб измеряется миллионами и миллиардами. Есть, правда, одно низшее хордовое животное – ланцетник, у которого вовсе не имеется головного мозга. У ланцетника нет глаз. У рыб, начиная с хрящевых, например акул, и кончая костистыми, составляющими огромное большинство этого класса позвоночных, наблюдается расчленение головного конца мозговой трубки головного мозга на три части – переднюю, тесно связанную с органами чувств; среднюю часть, заведующую установкой и регуляцией основных движений тела в пространстве, и, наконец, заднюю, так называемый мозжечок. Последний имеет близкое отношение к сохранению равновесия и несет ряд других важных функций. Равновесие необходимо для движения и для всех проявлений инстинктивной деятельности. Мозжечок особенно развит у акул, производящих сложные движения – перевёртывание на спину при схватывании добычи. Та же ловкость обнаруживается у костистых рыб, например «брызгунов», инстинкт которых позволяет им охотиться за насекомыми не только в воде, но и в воздухе (рис. 7).

Рис. 7. Рыба-«брызгун» охотится за воздушно живущим насекомым, выбрасывая изо рта струйку воды.

Самую заднюю часть головного мозга или переднюю часть спинного составляет продолговатый мозг, в котором расположен важнейший центр управления дыхательными движениями и другие нервные центры.

По мере того как предки высших позвоночных стали покидать водную среду и выходить на сушу, строение их нервной системы и, вместе с тем, всё их поведение стали всё более усложняться.

У земноводных животных, в частности у лягушки, соответственно её более сложному образу жизни (надо учесть, что передвижение позвоночных по суше представляет большую трудность и сопряжено с большим числом препятствий, чем плавание в воде), передняя часть мозга развита ещё больше, чем у рыб. Здесь мы уже имеем зачатки мощных скоплений нервных клеток – так называемых больших полушарий головного мозга, о которых мы будем говорить впоследствии. Правда, эта часть пока ещё обслуживает по преимуществу химические – обонятельные раздражения, которые лягушка получает главным образом через воду. Эта способность узнавать издали о веществах, растворённых в воде, даёт земноводным огромные преимущества в борьбе за жизнь.

В совершенстве реакций лягушек на внешние раздражения нетрудно убедиться каждому, наблюдая, как ловко это животное плавает, ныряет, ловит мух и ускользает от врагов, в том числе и от человека, если он ловит лягушек без сачка. Каждый инстинкт проявляется в той или иной комбинации действий, и чем сложнее инстинкт, тем более совершенна эта комбинация в результате усложнения связи в клетках нервной системы. В центрах среднего мозга лягушки (рис. 8) – так называемого двухолмия – осуществляется взаимодействие между важнейшими внешними раздражениями, к числу которых относятся зрительные сигналы (глаза у лягушки развиты отлично и во многом напоминают глаза высших позвоночных) и деятельность мышц тела.

Рис. 8. Строение головного мозга позвоночных животных: 1 – миноги; 2 – костистой рыбы; 3 – лягушки; 4 – пресмыкающегося; 5 – птицы; 6 – низшего млекопитающего (грызуна); 7 – хищника (собаки).

Из этого взаимодействия органов чувств и нервных центров складываются все простые и сложные поступки животного, всё его поведение.

Если удалить тонким ножом передний мозг лягушки, но сохранить её средний мозг, то она утратит свою ловкость. Правда, она ещё может сохранить основное положение тела: она сидит, подняв голову и подогнув задние лапки. Даже лишившись передней части мозга, она способна держаться на суше и на воде, выходить из любого положения, какое вы ей придадите. Как неповреждённая лягушка, она всегда готова к прыжку. Заметим, что именно с помощью прыжков это животное ловко настигает добычу и ускользает от нападения врага.

Но сделаем ещё одну дополнительную операцию – удалим у лягушки средний мозг. Хотя она по-прежнему останется жива, но будет теперь пассивно лежать на животе или на спине. Следовательно, без этой (средней) части головного мозга она теряет способность двигаться, прыгать, плавать. Однако она не теряет вовсе способности защищаться, но эти способы защиты крайне элементарны: если ущипнуть лягушку за лапу – лапа подтянется к животу. Наконец, если разрушить и спинной мозг, – все движения прекратятся.

Поднимемся ещё на один «этаж» выше по лестнице развития животного мира.

В истории развития нервной системы позвоночных особое место занимают пресмыкающиеся: змеи, ящерицы, черепахи, крокодилы.

Пресмыкающиеся – один из древних классов позвоночных, населявших поверхность нашей планеты ещё в ту пору, когда она была покрыта гигантскими папоротниками (так называемый юрский период). В доисторическом прошлом Земли среди пресмыкающихся имелись как представители, ведшие чисто водный образ жизни, так и свободно передвигавшиеся по земле. Поэтому их нервная система достигла большого совершенства, а их инстинкты питания, Самозащиты и охраны потомства были весьма разнообразны.

Существовали пресмыкающиеся, летавшие подобно птицам по воздуху, так называемые птеродактили. Пресмыкающиеся и сейчас имеют то общее свойство с птицами, что размножаются путём откладки яиц. Пресмыкающиеся располагали уже высокоразвитой нервной системой и обладали сложными и разнообразными инстинктами. Остатки пресмыкающихся сохранились в древних пластах земли как память о тех геологических эпохах, когда поверхность земли выглядела совершенно иначе, чем сейчас. На ней «паслись» тысячи разнообразных видов пресмыкающихся, проявлявших высокую сложность поведения. Однако они были вытеснены другими животными – птицами и млекопитающими, у которых были меньшие размеры тела, но которые обладали большим развитием мозговых функций, большей подвижностью и, тем самым, большей приспособленностью к изменяющимся условиям внешней среды.

Переднюю часть головного мозга древних и ныне живущих пресмыкающихся образуют так называемые полушария, состоящие из клеток, тесно связанных не только с обонянием, как это свойственно рыбам, но и с другими органами чувств. Средний мозг (двухолмие) содержит сложно устроенные зрительные и слуховые центры, связанные с соответствующими органами чувств, а также специальные центры, регулирующие позу животного. Здесь, как и у лягушки, высшие центры как бы контролируют работу низших, вступают с ними в теснейшую связь.

Поглядите на ящерицу, – как она быстро движется в траве, и вы убедитесь, как много даёт ей ориентировка и приспособление к окружающей обстановке с помощью органов её чувств, насколько у неё развит инстинкт самосохранения, выражающийся во многих разнообразных приёмах борьбы с опасностями.

У других пресмыкающихся, например у крокодилов, имеется сложно устроенный задний мозг (мозжечок), позволяющий животному свободно ориентироваться в пространстве при любых положениях тела. В головном мозгу пресмыкающихся мы находим скопления нервных клеток, так называемый зрительный бугор и полосатое тело, которые и являются высшим регулирующим аппаратом поведения пресмыкающихся.

Если мы взглянем на мозг птицы, то найдём у неё ещё более совершенное, чем у пресмыкающихся, развитие переднего конца, образующее так называемые полушария большого мозга. В их клетках сходятся все пути, ведущие от воспринимающих поверхностей тела, от всех органов чувств птицы. Составляющий главную часть полушария высший двигательный центр – полосатое тело – по размеру и весу превосходит все остальные части переднего мозга птицы. Кроме того, у птиц, как, впрочем, и у пресмыкающихся, выделяется промежуточный мозг. В промежуточном мозгу мы находим ещё один важный орган – особую железу, нижний мозговой придаток, который регулирует важные химические функции организма, как, например, водный обмен и многие другие важнейшие стороны деятельности внутренних органов. В истории своего развития эта железа связана с мозгом. Мозг как бы берёт в своё «ведение» не только согласование движений мышц, но и контроль за химическим составом крови. Железы, выделяющие свой сок непосредственно в кровь (железы внутренней секреции), участвуют, наряду с нервной системой, в регуляции поведения животного как единого целого. Следовательно, химический фактор становится в один ряд с нервным и все функции организма становятся объединёнными, приспособленными к условиям внешней среды.

Особенное значение в этом смысле имеют половые железы животных (самцов и самок). Выделяя химические вещества в кровь, эти органы обусловливают проявления инстинктов размножения, приуроченных у животных к определённому времени года. От способности к быстрому размножению зависит не только благополучие данного вида, но и многочисленные периодические явления в жизни животных (например перелет птиц).

Средний мозг, игравший в предыдущих этапах развития позвоночных основную роль в управлении движениями тела, у птиц тоже весьма развит. Он служит для регулирования так называемого тонуса мышц, определяет степень напряжения мускулатуры конечностей, в частности крыльев, а также и шеи. От тонуса мышц зависит их готовность к действию, что очень важно для полёта, бега и других движений.

Наконец, задний мозг (мозжечок) птиц отлично развит и имеет очень сложное строение. Мозжечок помогает птицам производить любые сложные движения в воздухе, какие мы видим, например, у почтовых голубей, у хищных и других птиц.

Таким образом, по мере развития позвоночных, начиная от рыб и кончая птицами, мы имеем как бы постепенный переход наиболее сложных функций управления движениями организма к головному мозгу. Вместе с тем мы наблюдаем постепенное подчинение переднему мозгу низших и средних частей мозга, а также подчинение ему всех химических явлений, происходящих в клетках тела – питания, дыхания, кровообращения и др.

Особенно большого развития достигают полушария большого мозга у млекопитающих: начиная с грызунов, хищников, травоядных и др. Млекопитающие составляют высший класс среди позвоночных. Главные группы млекопитающих – травоядные и хищники – появились сравнительно недавно, лишь в начале третичного геологического периода.

Среди млекопитающих высшее положение занимают приматы-обезьяны. Это наиболее ловкие и развитые в двигательном отношении животные.

Наблюдая мозг млекопитающих, мы видим, что чем более усложняются условия жизни животного, тем более совершенствуются полушария переднего мозга, в которых развивается несколько миллиардов новых нервных клеток, образующих кору больших полушарий и расположенных в несколько слоёв. Большее число этих слоёв и разнообразие образующих их клеток составляют особенности коры мозга человека. Именно кора полушарий головного мозга человека, связанная с тонким развитием органов высших чувств, является материальной базой мышления, основой развития высших разумных форм поведения, какие мы находим у человека.

Таким образом, наука доказывает неразрывность человеческого мышления с материальной основой – мозгом. Это разоблачает религиозные представления о том, что мышление будто является неким сверхъестественным, таинственным «даром божиим».


    Ваша оценка произведения:

Популярные книги за неделю