355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Буланов » Анаболизм без лекарств III » Текст книги (страница 6)
Анаболизм без лекарств III
  • Текст добавлен: 19 апреля 2017, 06:00

Текст книги "Анаболизм без лекарств III"


Автор книги: Юрий Буланов


Жанры:

   

Спорт

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 13 страниц)

6. Энергия, которую мы забираем

Энергизаторы – это средства для повышения энергетического потенциала организма. Энергизаторов довольно много и все они действуют на организм по-разному. Прежде чем начать их рассматривать, давайте совершим маленький экскурс в нормальную физиологию.

Жизнь во всех своих проявлениях, даже самых мельчайших, связана с затратами энергии. Любое живое существо нуждается в постоянном притоке энергии извне. Поэтому, одна из основных функций любого живого организма – это способность обеспечить себя энергией за счет, каких-либо внешних энергетических источников. Биоэнергетика (словом биоэнергетикой часто спекулируют мошенники, которые машут вокруг больных людей руками с растопыренными пальцами и величают себя биоэнерготерапевтами, т. к. просто не знают других наукообразных терминов) как наука изучает обеспечение живых существ энергией. Она позволяет нам заглянуть внутрь энергетических процессов, происходящих в организме, и понять, каким образом мы можем управлять этими процессами.

Солнечный свет – первичный источник энергии для всей земной биосферы. Он усваивается зелеными растениями и некоторыми фотосинтезирующими бактериями, которые создают благодаря солнечной Энергии биополимеры – углеводы, жиры и белки. Эти биополимеры уже в свою очередь могут использоваться в качестве топлива другими живыми существами – бактериями, грибами, животными. В организме человека биополимеры пищи распадаются в желудочно-кишечном тракте на жирные кислоты и глицерин, полисахариды на моносахариды. Мономеры превращаются в организме в небольшие по величине моно-, ди – и трикарбоновые кислоты, которые уже способны окисляться с выделением определенного количества энергии.

Биологическое окисление происходит в митохондриях – особых внутриклеточных образованиях, которые являются энергетическими станциями клетки. Митохондрии имеют вид шарообразных или вытянутых пузырьков размером от одного до нескольких десятков микрон. В митохондриях-то, как раз и происходят окислительно-восстановительные реакции. В результате этих реакций высвобождается энергия. Самое большое количество митохондрий можно увидеть в печеночных и мышечных клетках – там, где энергия наиболее интенсивно синтезируется и потребляется. В клетках печени, например, митохондрии могут занимать до 22 % всего объема, и в каждой клетке их можно насчитать больше тысячи. Суть окислительно-восстановительных реакций, протекающих в митохондриях с выходом энергии кратко можно выразить следующим образом: карбоновые кислоты окисляются кислородом воздуха до углерода с водородом, отщепленным от карбоновых кислот.

Окисление водорода кислородом – это реакция гремучего газа О2+2Н2О. В лабораторных условиях она сопровождается взрывом. Если бы такая реакция происходила в живой клетке одномоментно, клетка погибла бы в результате выделения слишком большого количеств, энергии. Она бы попросту сгорела. Мудрая природа сделала процесс выделения энергии в клетке поэтапным. Высвобождающаяся в процессе биологического окисления энергия откладывается впрок и особым об разом консервируется.

Если рассмотреть отдельно взятую митохондрию под электронным микроскопом, то можно увидеть две полупроницаемые оболочки две мембраны: наружную и внутреннюю. Наружная мембрана гладкая, а вот внутренняя образует большое количество складок – крист. Эти кристы служат для увеличения поверхности мембраны, ведь именно в ней идет непосредственное образование энергии. Пространство между двумя мембранами митохондрии заполнено студнеобразной жидкостью. Окисление глюкозы и карбоновых кислот происходит в наружной мембране митохондрий. Если возникает необходимость в малых количествах энергии или при небольших или умеренных нагрузках, то выработка энергии идет бескислородным путем. Одна молекула глюкозы расщепляется на 2 молекулы молочной кислоты. При этом выделяется энергия, которая аккумулируется в виде 2-х молекул АТФ. АТФ – это универсальное топливо всех живых клеток. Аккумуляция энергии в виде АТФ просто необходима, т. к. энергия выделяется в одно время, а используется в другое, вырабатывается в одном месте, а потребляется в другом. АТФ как аккумулятор энергии позволяет организму использовать полученную энергию в различных органах и в любое время, вне зависимости от создавшейся ситуации. АТФ является своеобразным энергетическим «товарным складом». Энергия на таком складе запасается, но где и когда она будет израсходована, никто не знает. Неравномерность расхода энергии в течение суток и неизвестность того, какое количество энергии будет израсходовано за один раз, наводит на мысль о том, что чем больше по объему будет такой склад, тем лучше для организма. При больших и сверхмаксимальных нагрузках выработка энергии осуществляется уже с помощью кислорода. Глюкоза распадается на более простые, чем молочная кислота части и вступает в наружной мембране в цикл Кребса. Цикл Кребса – это целая цепь химических реакций. В этих реакциях водород постепенно, маленькими порциями отщепляется от одного окисляемого вещества и передается другому, от другого третьему и т. д., до тех пор, пока не соединится с кислородом воздуха с образованием воды. Энергия при этом высвобождается тоже не сразу, а постепенно, частями, аккумулируясь в виде АТФ. При кислородном окислении одной молекулы глюкозы образуются уже не 2, а целых 38 молекул АТФ.

Как образуется АТФ? При переносе атомов водорода (и соответствующих ему электронов) от одного вещества к другому образуется перепад концентраций ионов водорода. В результате такого перепада концентраций электронов наружная мембрана митохондрий заряжается положительно, а внутренняя – отрицательно. Образуется энергетический мембранный потенциал, т. е. попросту говоря, разница полюсов, как в батарейке. Энергия возникшей разницы потенциалов и затрачивается на синтез АТФ. Получается, что каждая митохондрия – это живая миниатюрная батарейка.

Если окисление происходит во внешней мембране митохондрий, то АТФ синтезируется во внутренней. Митохондрия – одно из самых поразительных изобретений природы. Если вдуматься, то митохондрии есть ни что иное, как живые молекулярные электростанции! Внутренняя мембрана митохондрий содержит так называемые дыхательные ферменты. Одни дыхательные ферменты присоединяют и отсоединяют атом водорода, передавая его с вещества на вещество. Другие отвечают за передачу электронов. В результате работы дыхательных ферментов и происходит генерация электрического мембранного потенциала, который запускает синтез АТФ. В процессе совершения химической, осмотической и механической работы, как, оказалось, расходуется не только энергия, запасенная в виде АТФ. Все виды работ могут совершаться и непосредственно за счет использования электрического мембранного потенциала без участия АТФ. Такой электрический потенциал между двумя мембранами митохондрий наряду с АТФ есть конвертируемая форма энергии в живой клетке. АТФ растворима в воде и хорошо подходит для использования в водной среде. Мембранный потенциал используется для совершения работы внутри липидных клеточных мембран, которые обладают водоотталкивающими свойствами. От такой работы зависит очень многое, в т. ч. и чувствительность клеток к гормонам, работа белков, каналов, через которые различные вещества проникают – внутрь клетки и выводятся из нее и т. д.

Совокупность окислительно-восстановительных реакций, протекающих в клетке, с использованием кислорода и называется «дыханием». Дыхание – это длинная цепь окислительно-восстановительных реакций, где водород, а так же электроны переносятся с окисляемых веществ на кислород воздуха. Путь прохождения водорода и электронов с окисляемого вещества на кислород является довольно длинным. Такой длинный путь имеет большое физиологическое значение, т. к. позволяет постепенно использовать энергию, освобождающуюся в результате переноса водорода и электронов от одних веществ к другим. Без постепенности, как мы уже знаем, бывают только взрывы.

Кислород – самый эффективный конечный присоединитель электронов. Самым эффективным он является потому, что позволяет добиться наибольшего выхода энергии по сравнению с другими веществами, способными присоединять электроны.

Основное количество энергии все ткани и органы получают за счет кислородного окисления веществ. Бескислородное окисление в обычных условиях является второстепенным, как менее эффективное в энергетическом отношении. Кислородное и бескислородное окисление в нормальных тканях сосуществуют, дополняя друг друга. Энергетически малоэффективное бескислородное окисление является в организме тем резервным механизмом, который может очень сильно активизироваться в экстремальных условиях. Бескислородное окисление может стать тем спасательным кругом, который позволяет клеткам выжить даже в условиях тяжелого, чрезмерно выраженного кислородного голодания.

Классическим примером здесь может послужить работа скелетной мышцы. При очень большой нагрузке (интенсивный бег, тяжелое базовое упражнение и т. д.) мышцы ставятся в экстремальные условия. Возникает опасный для мышечных клеток энергетический дефицит. Тут же срабатывает защитный механизм: интенсивность бескислородного окисления, например, в поперечно-полосатой мышце возрастает в 100, а иногда даже в 1000 раз и более по сравнению со спокойным состоянием. Чем выше уровень тренированности, тем большая интенсивность бескислородного окисления может быть достигнута при больших нагрузках.

В спортивной литературе мы постоянно встречаем утверждения о том, что силовая мышечная работа осуществляется за счет бескислородного (анаэробного) окисления. Такие утверждения требуют уточнения. Прежде всего: какая мышечная работа? Те мышцы, которые сформировались у человека в процессе эволюции, не предназначены для совершения больших усилий. Они невелики по объему и осуществляют свою работу в основном за счет кислородного окисления поставщиков энергии. Силовые тренировки ставят мышцы в неестественные для них условия. Это и заставляет мышцу включать аварийное бескислородное окисление. Бескислородное окисление, хотя и является малоэффективным в энергетическом отношении процессом, совершенно необходимо организму для быстрого реагирования на бескислородные условия и экстремальные нагрузки. Ведь при экстремальных нагрузках организм переходит на бескислородный путь окисления только лишь потому, что кислородные транспортные системы просто не успевают, да и не могут доставить к работающему органу адекватное количество кислорода. В организме высокотренированного спортсмена даже очень тяжелая силовая работа обеспечивается энергией на 50 % за счет бескислородного окисления и на 50 % за счет окисления кислородного.

Некоторые органы, однако, интенсивно используют бескислородное окисление даже в нормальных условиях, без повышенной нагрузки. Конечные продукты такого окисления используются в пластическом обмене, например, миокарда. Сердечная мышца способна поглощать и утилизировать даже молочную кислоту. В отличие от скелетных мышц, которые выделяют молочную кислоту в качестве коночного продукта обмена, сердце имеет большой выбор в источниках энергии, и это дает большое преимущество. Такое преимущество сердцу просто необходимо, т. к. слишком многое зависит от работы этой самой трудолюбивой мышцы нашего организма. На 70 % сердце «питается» жирными кислотами и только на 30 % всеми остальными веществами – глюкозой, аминокислотами, молочной кислотой, кетоновыми телами, да и вообще всем тем, что «под руку попадет».

Мышечный рост как таковой в первую очередь зависит от объема тренировочных нагрузок. Все остальные факторы второстепенны. Что лимитирует работоспособность мышц? Их энергетическое обеспечение. Еще из курса школьной физиологии мы помним, что самыми слабыми являются те системы, которые наиболее молоды в эволюционном плане. Так, например, самая уязвимая часть человеческого организма – кора головного мозга. При прекращении дыхания либо выключения кровообращения она погибает уже через 6 минут, т. к. эго самое молодое в эволюционном плане образование. Дыхательный центр может обойтись без кислорода как минимум 20 минут. Это более древнее образование. Внутренние органы могут жить без кислорода до нескольких часов. Костные клетки до нескольких суток и т. д. На уровне клетки самыми молодыми в эволюционном плане образованиями являются митохондрии – молекулярные электростанции, обеспечивающие клетку энергией. В экстремальных условиях они выходят из строя в первую очередь. Поэтому, работа митохондрий – энергетическая составляющая клетки является самой уязвимой. Энергезировать клетку, усилить работу митохондрий и их потенциал – это самая главная задача в обеспечении мышечного роста и в обеспечении нормальной мышечной работоспособности. Вообще биоэнергетика – ключевое звено любого физиологического процесса. Точно так же, нарушение биоэнергетики – основное звено любого патологического процесса. Еще когда я был студентом, профессор, преподававший у нас патофизиологию, говорил: «Любую болезнь можно лечить как дефицит энергии. Если не знаете, чем человек болен, как его надо лечить, то лечите от энергетического дефицита и не прогадаете». Если не учитывать некоторых особенностей того или иного органа, в целом этот человек был прав.

Итак, нам теперь уже стало ясно, что основное звено, основное условие мышечного роста – энергетическое обеспечение. Процесс, который способен очень быстро, оперативно реагировать на изменение условий окружающей среды. Он обеспечивает энергией приспособление клетки к новым условиям, ее функциональную и структурную перестройку. Любой повреждающий агент, высокая или низкая температура, токсическое вещество, радиация, электромагнитные волны и т. д. в первую очередь выводят из строя легкоранимые мембраны митохондрий. Любое вещество, способное сделать митохондрии более сильными и более стойкими, автоматически повышает устойчивость клеток (и всего организма) к экстремальным факторам[28]28
  И не только к экстремальным. Даже старение организма зависит от его энергообеспечения. В эксперименте большой группе женщин в менопаузе давали энергизатор – янтарную кислоту. Через несколько месяцев у всех из них вновь появились месячные и способность к деторождению. За счет одной только энергизации удалось омолодить организм.


[Закрыть]
.

Не вся энергия, высвобождаемая в результате окислительно-восстановительных реакций, в митохондриях запасается в виде АТФ. Часть энергии рассеивается в виде тепла в окружающее пространство. С одной стороны, это можно представить себе как потерю части энергии, с другой стороны – образование определенного количества тепла необходимого для поддержания стабильной температуры тела. Ведь только при такой температуре и могут протекать окислительно-восстановительные процессы в организме. Стоит только понизить температуру тела хотя бы на один градус, за этим сразу же последуют грубейшие нарушения обмена. Ученые-биоэнергетики во время исследований работы митохондрий установили, что очень многие вещества способны повышать проницаемость мембран митохондрий для ионов водорода и электронов, уменьшая разность потенциалов между наружной и внутренней мембраной.

Уменьшение разницы потенциалов приводит к тому, что намного меньше энергии запасается в виде АТФ, и намного больше ее рассеивается в виде тепла. Происходит как бы разделение окисления и образования АТФ, ведь эти два процесса протекают в разных частях митохондрии. На языке биохимиков такой процесс разделения называют «разобщением окисления и фосфорилирования». Это с одной стороны, уменьшает количество синтезированной АТФ, с другой стороны приводит к увеличению выработки тепла.


«Термогеники»

Вещества, разобщающие окисление и фосфорилирование называются разобщителями этого процесса. Американские ученые называют их «термогеники» за их способность повышать температуру тела. Термогеники помимо повышения температуры тела вызывают некоторый энергетический дефицит (ведь количество синтезированной АТФ уменьшается). Из-за этого энергетического дефицита организм начинает усиленно сжигать жировую ткань. Ведь жирные кислоты при сжигании дают наибольший выход энергии. Жиросжигающее действие термогенников используется в спорте для сжигания излишков подкожной жировой клетчатки. Классическим термогенником является 2,4-динитрофенол. Это очень старый химический реагент, который с незапамятных времен используется лабораториями всего мира в экспериментах. Он разобщает окисление и деформирование, повышает температуру тела, сжигает жировую ткань. В США 2,4-динитрофенол одно время очень широко использовался как в спортивной практике, так и для лечения ожирения. Пациентам очень нравилось то, что не надо соблюдать никаких диет. Жировая ткань «таяла» сама собой. В спорте 2,4-динитрофенол применяли культуристы, боксеры, борцы и все, кому необходимо было удержать свой вес в определенных рамках. Выяснилось, однако, что 2,4-динитрофенол разобщает окисление и фосфорилирования слишком сильно. Энергетический дефицит достигал таких степеней, что развивалась масса побочных эффектов. Самым тяжелым из них была слепота. Многие люди ослепли из-за дефицита энергии в сетчатке глаза. Сетчатка глаза потребляет энергии на единицу массы столько же, сколь и кора головного мозга, а иногда и больше. Поэтому она очень чувствительна к любому энергетическому дефициту. Слепота впрочем, была временной.

Отказ от 2,4-динитрофенола вынудил медиков начать поиск других термогенников с более мягким, физиологическим действием на организм[29]29
  Сейчас на Российском черном рынке спортивной фармакологии появились комбинированные, никем не сертифицированные препараты, содержащие в качестве одного из своих компонентов 2,4-динитрофенол Делают их в Китае и странах Латинской Америки. В Россию ввозят контрабандой. Будьте осторожны. Даже если вам покажут сертификат, знайте, что он поддельный. 2,4-динитрофенол запрещен к применению во всем мире.


[Закрыть]
. Очень сильным термогенным средством являются гормоны щитовидной железы – тиреоидные гормоны. Тиреоиды до сих пор применяются в эндокринологии для лечения ожирения. Беда только в том, что большие дозы тиреоидов разрушают не только жир, но и мышечную массу, отрицательно действуют на сердце и печень, вызывая состояние энергетического дефицита.

Тиреоидные гормоны очень любил принимать легендарный Мухамед Али. Помимо своей способности сжигать жировую ткань, тиреоидине гормоны сильно повышают двигательную реакцию (иногда в 2–3 раза) и скорость мышления. Качества в боксе не самые последние. Многие спортивные газеты обвиняли Али за такую чрезмерную фармакологическую стимуляцию своего таланта, однако в те времена тиреоидные гормоны к допингам не относились и их принимали все кому не лень. Однако за все когда-нибудь приходится платить, и своим внешним состоянием здоровья Али отчасти обязан злоупотреблением тиреоидных гормонов. В настоящее время тиреоидные гормоны из спортивной практики почти ушли, но в медицине пока еще применяются очень широко Я говорю «пока», потому что из практики они постепенно уходят как раз в силу многочисленных побочных действий. Сердечные аритмии и инфаркты миокарда под действием тиреоидных гормонов встречаются даже у молодых двадцатилетних людей, не говоря уже о людях более старшего возраста.

Сильным термогенным действием обладает кофеин. После употребления большой дозы чая или кофе становиться жарко не столько из-за горячего напитка, сколько из-за термогенного действия кофеина. Кофеин умеренно разобщает окисление и фосфорилирование, сжигая подкожно-жировую клетчатку. Однократно проявляемая сила под действием кофеина увеличивается, но силовая выносливость и работоспособность падают из-за вызываемого им умеренного энергетического дефицита, К тому же кофеин при ежедневном употреблении истощает центральную нервную систему, в конечном итоге ускоряя старение организма. Производители чая и кофе прекрасно знают об этом, однако усиленно рекламируют свой товар. В настоящее время на российском телевидении наибольший удельный вес занимает реклама кофе и чая. По мере развития истощения нервной системы человек выпивает кофеиносодержащих напитков все больше и больше. Развивается зависимость. По этой причине потребление чая и кофе на всей планете растет. Соответственно растут прибыли чайных и кофейных компаний.

Намного более ценным, нежели кофеин, термогенником является эфедрин – алкалоид, получаемый из эфедры хвощевой. Эфедрин сильнее кофеина разобщает окисление и фосфорилирование, однако мышечную работоспособность он не снижает, а наоборот – повышает. Даже однократный прием эфедрина увеличивает мышечную силу. Это позволяет одновременно со снижением жира увеличить спортивные нагрузки и даже добиться роста мышечной массы. За применение эфедрина (который, кстати говоря, причислен к допингам) был однажды дисквалифицирован такой известный культурист как Шон Рэй. Сборная СССР по лыжам в 70-х годах потеряла, чуть ли не половину всех своих золотых медалей из-за дисквалификаций, связанных с допинг-контролем на эфедрин. Преимущество эфедрина перед кофеином в том, что он даже при ежедневном приеме не истощает нервную систему. В отличие от тиреоидных гормонов эфедрин не оказывает отрицательного действия на сердечную мышцу. Несмотря на то, что себестоимость производства эфедрина крайне низка, стоит он дороже других термогеников из-за более высокого спроса.

Мы живем в удивительное время. Эфедрин и кофеин, хоть и причислены к допингам, почему-то очень широко применяются в жиросжигающих композициях современного спортивного питания. Так, многие продукты спортивного питания содержат комбинацию кофеина, эфедрина и кристаллических аминокислот. Эфедрин и кофеин сжигают жир, вызывая термогенный эффект, а кристаллические аминокислоты стимулируют анаболизм, не давая распадаться мышечной ткани.

Термогенным эффектом обладают фенамин и другие амфетамины. Эти препараты чрезвычайно широко применяются в спортивной практике, хотя тоже причислены к допингам. Их особенность в том, что они как никакой другой класс соединений истощают нервную систему, вызывают зависимость и привыкание. На моих глазах люди пытались покончить с собой уже через месяц регулярного приема амфетаминов.

Очень многие жиросжигателн, ввозимые в Россию контрабандным путем, содержат амфетамины, хотя на этикетках этого не указано. Печальным примером здесь может служить всем известный «Гербалайф». При анализе этого, с позволения сказать «продукта», ничего, кроме травы с примесью амфетаминов обнаружено в нем не было.

Физиологичным, естественным разобщителем окисления и фосфорилирования является сауна. Парная баня по ряду исследований последних лет даже превосходит сауну по силе воздействия. Высокая температура затрудняет работу митохондрий из-за умеренной и обратимой температурной деструкции (денатурации) белков. Происходит разобщение окисления и фосфорилирования, что и дает жиросжигающий эффект.


Витамины

Классическим примером стимулятора окислительно-восстановительных реакций является аскорбиновая кислота. Витамин С в малых дозах проявляет свое истинно витаминное действие, предотвращая возникновение цинги, а в больших дозах начинает проявлять фармакологическое действие усиливая процессы биологического окисления и энергезируя сразу все клетки организма. В организме человека аскорбиновая кислота превращается в дегидроаскорбиновую кислоту и наоборот. Существуя в этих двух формах, она может оказывать как окислительное, так и восстановительное действие, в зависимости от того, что на данный момент необходимо. Витамин С обладает антиоксидантным действием, блокируя образование в организме высокотоксичных свободных радикалов.

Все ведущие культуристы США принимают витамин С в дозах не мене 10 г в сутки. С легкой руки биохимика Лайнуса Поллинга аскорбиновую кислоту в больших дозах применяют для лечения простуд, в комплексной терапии воспалительных заболеваний и даже в онкологии. Сам Поллинг начал принимать витамин С в 56 лет по 3 грамма в сутки и прожил 93 года (причем последние 18 лет с раком предстательной железы), принимая в последние годы жизни уже по 18 (!) грамм аскорбиновой кислоты в день.

Способность витамина С в больших дозах излечивать, а так же предупреждать развитие простудных заболеваний представляется очень ценным качеством в соревновательном периоде. Банальная простуда может сделать участие в соревнованиях невозможным, и тогда годы тренировок пойдут прахом. Умело, используя фармакологические эффекты аскорбиновой кислоты, этого можно избежать. Громогласные заявления Поллинга о пользе сверхвысоких доз аскорбиновой кислоты конечно же были профинансированы американскими производителями. Они просто использовали имя двукратного нобелевского лауреата. Никаких научных исследований не проводилось и все утверждения о пользе больших количеств витамина С были голословными. На практике, однако, все эти утверждения подтвердились. Научных данных нет до сих пор, а спасенных от смерти людей уже миллионы. Здесь мы имеет редчайший случай того, что насквозь фальшивая и продажная реклама оказалась правдой. Думаю, что этого не ожидали даже сами рекламодатели.

Сильным неспецифическим стимулятором окислительно-восстановительных процессов является никотиновая кислота. Подобно аскорбиновой кислоте, никотиновая кислота в малых дозах проявляет витаминное действие, а в больших фармакологическое. Помимо свое о энергезирующего действия, никотиновая кислота способна стимулировать надпочечники, половые железы, а также функцию поджелудочной железы и активность пищеварительных желез. Витамин РР (другое название никотиновой кислоты) блокирует выход в кровь из подкожной жировой клетчатки свободных жирных кислот. В больших дозах никотиновая кислота способна в 2 раза повысить содержание в крови эндогенного (собственного) соматотропина. Выброс этого гормона в крови является ответной реакций на снижение содержание в крови жирных кислот. Для получения выраженного анаболического и стимулирующего действия никотиновую кислоту применяют в больших дозах: от 3 до 10 грамм в сутки. Обладает никотиновая кислота и антиоксидантным действием. Хорошо копирует алкогольную абстиненцию и похмелье.

Хорошим энергезатором является такой витамин, как пангамат кальция (витамин В15). Он стимулирует окислительно-восстановительные реакции. Под действием витамина B15 увеличивается содержание гликогена в печени и мышцах, возрастает содержание в мышцах креатинфосфата. Креатинфосфат сейчас очень популярен в виде различных пищевых добавок, однако, мало кто знает, что можно стимулировать синтез в печени и в мышцах собственного креатинфосфата, если приникать в достаточно больших дозах (до 1 грамма в сутки) витамин В15. Тогда и никаких добавок не понадобится.

Карнитин (витамин Вт) переживает сейчас пик популярности. Его энергезирующее действие обусловлено тем, что он повышает проницаемость мембран митохондрий для жирных кислот и стимулирует процесс их окисления. Жирные кислоты по сравнению с белками и углеводами дают при окислении в 2 раза большее количество энергии. Однако окисляются в организме они с большим трудом. Проблема окисления жиров – одна из самых сложных в медицине. Усиливая окисление жирных кислот, карнитин способен поднять биоэнергетику на принципиально иной, более высокий уровень. Способность карнитина усиливать утилизацию жира приводит к выраженному энергетическому эффекту. Жиросжигающий эффект карнитина тем более ценен, что не сопровождается термогенным эффектом. Карнитин не только не разобщает окисление и фосфорилирование, но наоборот еще больше сопрягает эти процессы. Под его влиянием запасы АТФ в клетке увеличиваются. Особенно ценно то, что помимо энергезирующего и жиросжигающего эффектов, карнитин обладает анаболическим действием, в умеренной степени стимулируя рост мышечной массы. Для проявления жиромобилизующего и анаболического действия карнитина его необходимо применять в больших дозах: до 6–8 грамм в сутки. Иначе получить ощутимого эффекта не удается. В малых дозах карнитин обладает лишь витаминным действием. При определенных условиях печень сама способна синтезировать необходимое количество карнитина. Надо только уметь поставить организм в эти условия.


Органические кислоты

Самые распространенные органические кислоты – это янтарная и лимонная кислота[30]30
  Есть еще яблочная, виннокаменная, уксусная и др. органические кислоты, однако особой роли в энергообеспечении организма они не играют.


[Закрыть]
.

Янтарная кислота (сукцинат) называется так потому, что впервые она была получена из янтаря. Крестоносцы во время своих походов перетирали янтарь и смешивали его в кубках с вином, которое пили для поддержания сил. Янтарная кислота воздействует непосредственно на митохондрии. Будучи естественным биогенным веществом, постоянно образующимся в организме, она включается в цикл Кребса, окисляясь; выходом большого количества энергии, запасаемой в виде АТФ. При этом янтарная кислота усиливает окисление других веществ: жирных кислот, углеводов, молочной и пировиноградной кислот и т. д.

В результате активизируется как кислородное, так и бескислородное окисление. Энергезирующее действие янтарной кислоты довольно велико. На фоне ведения сукцината митохондрии значительно увеличивается в размере. Число крист внутри них растет. В эксперименте cyкцинат продляет жизнь животных и вызывает некоторое омоложение и организма.

Одно из самых ценных свойств янтарной кислоты – способность усиливать утилизацию молочной кислоты. Молочная кислота способна окисляться в печени, почках и кишечнике с образованием глюкозы и ее дальнейшим окислением. Мышечная выносливость во многом зависит от способности организма утилизировать молочную кислоту. Усиливав утилизацию молочной кислоты, сукцинат значительно увеличивает мышечную выносливость и позволяет существенно повысить тренировочные нагрузки.

Активизируя и защищая самые легкоранимые внутриклеточные образования – митохондрии, янтарная кислота повышает устойчивость организма ко всем без исключения стрессовым воздействиям: физическим, химическим, биологическим. Сукцинат – универсальное защитное и биостимулирующее средство, защищающее организм от любого агрессивного внешнего агента путем мощного усиления энергетики клеток. При сильном недостатке кислорода, когда затрудняется окисление пищевых веществ, янтарная кислота сама включается в окислительно-восстановительные реакции. Сукцинат способен выводить из организма токсические продукты за счет значительного улучшения работы печени и почек. Янтарная кислота улучшает работу головного мозга, повышает продуктивность мышления и работоспособность. Янтарная кислота способна повысить кислотность желудочного сока за счет активизации работы желудочных желез.

В спортивной практике янтарная кислота используется как недопинговое средство для повышения выносливости во время соревнований и предсоревновательном периоде, как восстановитель после тяжелых физических нагрузок. Янтарная кислота широко применяется в качестве пищевой добавки в спортивные продукты питания и напитки. В чистом виде, как фармакологический препарат, янтарная кислота в России уже давно выпускается в таблетках, а также входит в состав комбинированного препарата «Лимонтар». Суточные дозы сукцината колеблются от 50 мг до нескольких граммов.


    Ваша оценка произведения:

Популярные книги за неделю