355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2004 № 09 » Текст книги (страница 3)
Юный техник, 2004 № 09
  • Текст добавлен: 17 сентября 2016, 20:17

Текст книги "Юный техник, 2004 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 3 (всего у книги 6 страниц)

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Много шума – и ничего?

Ученые продолжают исследования инфразвука.

Слышал по радио рассказ о том, как солдаты двух воюющих армий когда-то воздействовали друг на друга с помощью… музыкальных инструментов. Исторгая из своих труб, флейт, барабанов, даже скрипок как можно более громкие звуки, воины старались оглушить противника, повергнуть его в панику, обратить в бегство, а то и погубить. Причем в последнем случае им помогали специально обученные обезьянки, которые срывали с голов солдат противоборствующей стороны шумопоглощающие наушники.

Рассказ, понятное дело, фантастический. Но я подумал вот о чем: а действительно, ведь громкие звуки многие люди не переносят. Так не использовать ли их в качестве своеобразного оружия? Были ли такие случаи? Ведутся ли эксперименты в этом направлении в настоящее время? Каковы перспективы?

Андрей Солодовников,

г. Нижний Новгород


Так выглядит один из последних образцов прототипа «акустического оружия». С помощью этого аппарата можно возбуждать интенсивные колебания низких частот, скажем, для разгона демонстраций.


После иерихонских труб

… «Народ воскликнул, и затрубили трубами… И обрушилась стена города до своего основания»…Так рассказывает Библия об одном из самых загадочных сражений прошлого – падении Иерихона.

Археологические исследования нашего времени выявили удивительные факты. Город-крепость Иерихон действительно существовал в Палестине, на территории современной Иордании, в промежутке между седьмым и вторым тысячелетием до н. э. Остатки былых укреплений были найдены археологами. Причем, по мнению некоторых исследователей, стены города действительно были разрушены в короткий срок, а вовсе не пали жертвой времени и стихий…

Это открытие и подтолкнуло ученых к исследованию загадки феномена «иерихонских труб». Неужели можно создать некие устройства, от акустических колебаний которых не спасут и самые толстые стены?

Долгое время загадка оставалась неразрешенной. Хотя кое-что и прояснилось. Да, громкие звуки действительно плохо действуют на людей. Во времена Средневековья, говорят, даже существовала такая жестокая и мучительная казнь: человека сажали под колокол, и звук постепенно убивал беднягу. Да, каждое сооружение имеет свою собственную частоту колебаний. И если на той же частоте возбудить колебания от постороннего источника, то может наступить резонанс – вибрации сооружения будут становиться все сильнее, пока оно не разрушится. Хрестоматийным стал исторический анекдот о роте солдат, которая, шагая в ногу, протопала по мосту, и тот рухнул…

Но чем дальше продолжались исследования, тем убежденней становилось мнение исследователей о том, что еще большие разрушения, чем гром и грохот, могут нанести звуки… неслышимые.

Дело в том, что мы с вами собственными ушами слышим лишь часть акустических колебаний – примерно от 20 герц до 20 килогерц. Звуки ниже и выше этого диапазона наши барабанные перепонки не воспринимают. Звуки ниже 20 герц стали называть инфразвуками, а выше 20 000 герц – ультразвуками. В технике и медицине ныне чаще используют ультразвуки. Но это не значит, что и об инфразвуках ничего не известно.



По примеру «чародея физики»

Одним из первых на инфразвуки обратил внимание «чародей эксперимента» – знаменитый американский физик Роберт Вуд. В 1901 году он по просьбе своего приятеля, театрального режиссера, создал трубу с очень низким голосом. Когда Вуд задействовал ее в одном лондонском театре, надеясь, как и режиссер, вызвать этими звуками у зрителей чувство тревоги, необходимое по ходу спектакля, людей обуял ужас. Многие в панике бежали со спектакля. Театральный эксперимент пришлось прекратить.

Но об опыте Вуда не забыли. И во время Первой, и во время Второй мировых войн изобретатели по обе стороны фронта пытались найти военное применение инфразвуку.

Так, скажем, в 1940 году агенты абвера затеяли довольно хитроумную операцию. Они намеревались контрабандно ввезти на территорию Великобритании множество граммофонных пластинок с записями популярных мелодий. Но с одной хитростью: кроме слышимого звука, пластинки должны были исторгать и инфразвуки, которые бы вселяли панику в окружающих.

Операция с треском провалилась. А знаете почему? Оказалось, что техника того времени не способна была воспроизводить инфразвук.

Впрочем, изобретатели Третьего рейха на том не успокоились. Некий доктор Циппермейер пару лет спустя создал «ураганное орудие». Оно должно было производить акустические вихри за счет взрывов в камере сгорания. Затем ударные волны с помощью специальных раструбов направлялись на объект и должны были, по замыслу автора, сбивать самолеты противника. Уменьшенный прототип звукового орудия, говорят, разнес на испытаниях в щепки толстые доски на расстоянии около 200 м. Однако дальнейшие работы застопорились, поскольку тот же эффект оказалось невозможно воспроизвести на большем расстоянии от установки – самолеты спокойно летели дальше.

Тем не менее, когда в апреле 1945 года установку чудовищных размеров обнаружили союзники на полигоне в Хиллерслебене, они решили продолжить акустические эксперименты. Дальнейшие опыты подтвердили печальную славу сверхнизких колебаний. Люди, облучаемые инфразвуком, впадают в панику, страдают от сильной головной боли, теряют рассудок. При частоте 7 Гц наступает резонанс всего организма: «в пляс» пускаются желудок, сердце, легкие. Бывает, что мощные звуки разрывают даже кровеносные сосуды.


Акустические хитрости

Ну а чем занимаются исследователи инфразвука в наши дни? В «ЮТ» № 9 за 2002 год мы рассказывали об акустическом лазере – устройстве, способном сформировать узконаправленный звуковой луч, с помощью которого можно передавать звуковую информацию в точно назначенное место. Так, чтобы ее услышал лишь человек, которому она предназначена. Сейчас появились и другие возможности использования узконаправленных акустических волн.

Еще в 80-е годы прошлого века начала свое интенсивное развитие акустическая голография. В отличие от голографии оптической, акустическая голография нашла себе применение прежде всего в геофизике. С помощью сейсмических волн, проникавших глубоко в недра нашей планеты, ученые научились получать сведения о строении земных слоев, их особенностях, о расположении в подземных кладовых тех или иных полезных ископаемых.

В дальнейшем акустическую голографию стали использовать и в технике. На схеме показано, как можно увидеть изображение объекта в непрозрачной среде – например, в мутной воде.

Объект 1, погруженный в ванну с жидкостью, облучается пучком ультразвуковых волн, исходящих от источника 2. Волны, отраженные от объекта, попадают на поверхность жидкости. На эту же поверхность с другой стороны направляется опорный пучок, для которого в акустической голографии вместо обычного зеркала удобнее использовать еще один излучатель 3. Интерференция обоих пучков приводит к своеобразному искривлению поверхности жидкости. И в нем, как в зеркале, образуется изображение облученного предмета. Причем, как уверяют исследователи, в некоторых случаях им удается видеть не только его форму, но и внутреннее строение – например, раковины и прочие дефекты внутри металлической отливки.


Схема установки для акустической голографии. Цифрами обозначены:

1– объект; 2– первый излучатель ультразвука; 3– второй излучатель ультразвука; 4– зрительный прибор; 5– лазер, с помощью которого создается голографическое изображение.

А совсем недавно подобная технология пришла в медицину. Решетка излучателей, управляемая компьютером, формирует узконаправленную звуковую волну, которая фокусируется в любой заранее указанной точке как воздушной, так и водной среды. Последнее особенно интересно медикам, поскольку человеческое тело на 80 с лишним процентов состоит из воды. С помощью направленных акустических волн удается проводить высокоточное зондирование внутренних органов и даже осуществлять операции без разрезов. Так, под руководством нашего соотечественника, доктора Александра Щукина, работающего сейчас в США, сотрудники лаборатории имени Стефана Девидсона, штат Нью-Джерси, создают виртуальный «акустический палец», который позволит детально обследовать опухоли и дробить желчные камни, не внедряясь в организм.

Не забыта, впрочем, и возможность военного применения подобных устройств. По сведениям зарубежной печати, в США недавно найден способ резко увеличить КПД инфразвуковых установок, ранее едва достигавший 1 %. В итоге удалось создать прототип звуковой пушки, которая испускает две акустические волны в низкочастотном диапазоне. Главная хитрость заключается в том, что эти волны от излучателей можно сфокусировать на определенном удалении от источников. Интерференция волн приводит к резкому усилению колебаний, что, говорят, позволяет «выводить из строя крупные подразделения противника».

Кроме того, в ходе экспериментов было выявлено, что инфразвуковая пушка, направленная жерлом в глубь Земли, способна вызвать даже локальные землетрясения. Таким образом, получается, открыт путь к созданию сейсмического оружия. Но разговор о нем – это тема следующей публикации…

Максим ЯБЛОКОВ

С ПОЛКИ АРХИВАРИУСА
Последователь капитана Немо

Эта подводная лодка в зале Центрального военно-морского музея в Петербурге не могла не привлечь моего внимания, я прямо-таки остолбенел. Передо мной находился как бы «Наутилус» капитана Немо, описанный Жюлем Верном в его знаменитом романе – те же стремительные обтекаемые линии, остроносый полированный корпус из блестящего металла, выпуклые иллюминаторы….

Однако на пояснительной табличке буднично значилось: «Подводная лодка С.К. Джевецкого, 1876 г.»

Кто такой Джевецкий? Почему у российского изобретателя столь странная фамилия? Быть может, это псевдоним? Попробовал расспросить экскурсовода, но он лишь подтвердил, что изобретена лодка в России, иначе в экспозицию музея она бы вряд ли попала. И посоветовал покопаться в архивах и библиотеках. Что я и сделал.


Один из немногих сохранившихся портретов изобретателя.

И вот теперь мне известно, что в списке родоначальников российского подводного флота числится еще одно замечательное имя – Степан Карлович Джевецкий, он же Стефан Казимирович Држевецкий – выходец из богатого и знатного польского рода.

Но поскольку Польша в XIX веке входила в состав Российской империи, то и Стефан, родившийся в 1843 году, стал числиться российским подданным. Впрочем, первые годы детства, отрочество и юность он провел вместе с родными в Париже. Здесь закончил лицей, здесь поступил в Центральное инженерное училище, где, кстати, учился вместе с Александром Эйфелем – тем самым, кто потом сконструировал знаменитую на весь мир Эйфелеву башню.

По примеру товарищей по училищу Стефан Држевецкий тоже увлекся изобретательством, конструированием. И не без успеха. В 1873 году на Венской всемирной выставке его изобретениям был отведен даже специальный стенд. На нем, среди прочего, оказались и чертежи автоматического прокладчика курса для корабля. А когда выставку посетил генерал-адмирал великий князь Константин Николаевич, он настолько заинтересовался этим изобретением, что вскоре Морское ведомство России заключило с изобретателем договор на изготовление автоматического прокладчика по его чертежам.

Држевецкий переехал в Петербург, чтобы лично проследить за работами. Вскоре прибор был создан и показал себя настолько хорошо, что в 1876 году его испытания прервали, чтобы послать единственный образец на Всемирную выставку в Филадельфию.

В середине 70-х годов XIX века Држевецкого увлекла идея создания подводной лодки. Весьма вероятно, что не последнюю роль в этом сыграл и Жюль Верн со своим романом. В 1869 году в Париже начали печатать журнальный вариант «20 000 лье под водой», а Држевецкий, как мы знаем, владел французским столь же свободно, как и русским.

Так или иначе, но в 1876 году он подготовил первый проект небольшой подводной лодки. Однако в следующем году началась русско-турецкая война и осуществление идеи пришлось отложить до лучших времен.

Држевецкий пошел добровольцем на флот. А чтобы не раздражать именитых родственников, записался матросом-волонтером в состав машинной команды вооруженного парохода «Веста» под именем Степана Джевецкого. Он участвовал в сражениях с турецкими кораблями и за личную отвагу даже получил солдатский Георгиевский крест – награду, которой гордился до конца жизни.

Во время боев идея атаковать вражеские броненосцы с помощью небольших подводных лодок только окрепла. Джевецкий обратился со своим предложением в Морское ведомство, но чиновники сочли его идею чересчур уж фантастической.

В общем, Морское ведомство денег на разработку не дало. Тогда Джевецкий решил пойти путем капитана Немо. И осуществил выполнение задуманного на частном заводе Бланшарда в Одессе на свои средства. К августу 1878 года одноместная подлодка из листовой стали невиданных для того времени обтекаемых форм была построена.


Единственный подводник не только управлял 5-метровым кораблем, но и служил одновременно… его двигателем – он приводил в движение гребной винт, вращая педали привода, как на велосипеде. Погружение осуществлялось за счет заполнения балластной цистерны забортной водой. При всплытии ее вытеснял сжатый воздух, хранившийся в баллоне под давлением около 200 атмосфер.

Для наблюдения за окружающей обстановкой в верхней части лодки Джевецкий установил прозрачный колпак, укрепленный железной проволокой. Для большей скрытности наблюдения был также разработан простейший выдвижной перископ.


Одна из первых разработок Джевецкого.

В августе 1878 года Джевецкий начал лично испытывать лодку в море под Одессой. И едва не погиб, пытаясь поднырнуть под яхту «Эриклик». Вахтенный офицер заверил изобретателя, что глубина под килем более 10 футов (3,05 метра), тогда как фактически оказалось менее 5 футов. При попытке поднырнуть под яхту лодка застряла, и только счастливый случай помог Джевецкому освободиться. Ведь воздуха в лодке едва хватало на 20 минут пребывания под водой. После этого случая изобретатель придумал, как увеличить запас воздуха за счет баллона высокого давления.

Проведя соответствующие усовершенствования, осенью 1879 года Джевецкий продемонстрировал возможности своего изобретения группе офицеров на рейде Одесского порта. Он под водой приблизился вплотную к барже, установил мину под ее днищем, а затем, отойдя на безопасное расстояние, произвел подрыв. После этого главный командир Черноморского флота и портов Н.А. Аркас, бывший в составе группы офицеров-наблюдателей, настоял на учреждении специальной комиссии для дальнейшего испытания лодки.

Но пока шли испытания, война кончилась, необходимость в диверсиях отпала. Комиссия выразила пожелание, чтобы «для практических военных целей» в будущем была построена лодка большего размера. Однако чиновники Морского ведомства и в этот раз отказались финансировать проект.

Джевецкий решил не отступать. Он стал посещать всевозможные технические совещания и заседания, пропагандируя свою идею. В конце концов, одно из его выступлений заинтересовало генерал-лейтенанта М.М. Борескова, известного инженера и изобретателя. Он сумел растормошить чиновников, и изобретателю дали-таки возможность довести проект до практической стадии. Для этого прежде всего требовалось увеличить размеры лодки, чтобы разместить в ней, кроме командира, еще 2–3 человека в качестве «движущей силы».

Джевецкий разработал соответствующий проект. И в конце 1879 года в обстановке глубокой секретности «подводный минный аппарат», как значился он в документах, был спущен на воду. При водоизмещении 11,5 т аппарат имел длину 5,7, ширину 1,2 и высоту 1,7 м. Обшивка его состояла из 6-миллиметровых стальных листов, закрепленных на 14 стальных шпангоутах. Четыре человека экипажа приводили педальными приводами в движение два поворотных винта, обеспечивающих как ход вперед или назад, так и способствовавших управлению всплытием и погружением, а также разворотами вправо-влево.

Чтобы лодка могла дольше оставаться под водой, Джевецкий предусмотрел систему очистки воздуха с помощью регенерационного патрона. При плавании же на перископной глубине для притока воздуха служила вентиляционная труба – прообраз шнорхеля.

Вооружена была лодка двумя пироксилиновыми минами, располагавшимися в специальных гнездах на носу и корме. При подходе под днище неприятельского корабля одна из них или обе сразу отцеплялись, а потом подрывались издали электрозапалами.

Лодка понравилась чинам Военно-инженерного ведомства, и ее даже представили царю Александру III. При демонстрации в Гатчине Джевецкий с командой не раз проходил под шлюпкой, в которой сидела императорская чета, а потом подвел лодку к пристани, вылез наружу и галантно поднес букет цветов императрице.

Довольный император тут же поручил военному министру уплатить Джевецкому 100 000 рублей за оригинальную разработку и организовать постройку еще 50 таких же лодок для обороны с моря портов на Балтийском и Черном морях.

Меньше чем за год лодки были построены и приняты Инженерным ведомством. Половину требуемого количества изготовили в Петербурге, а другую – во Франции на машиностроительном заводе Платто. И тут, похоже, имел случай промышленного шпионажа. Брат известного французского инженера Губэ работал чертежником у Платто. И через некоторое время Губэ подал заявку на патент, в которой описывался похожий подводный аппарат.

Так или иначе, в 1882 году все работы были завершены. Большую часть лодок – 34 штуки – отправили для усиления обороны приморских крепостей Черного моря, остальные оставили для защиты Кронштадта. Ходовые испытания показали, что три (а не четыре) человека вполне могли выполнять боевую работу в течение двух часов, поддерживая скорость хода до 3 узлов. Рабочая глубина погружения равнялась 8 метрам.

Одна из лодок этого типа была продемонстрирована генерал-лейтенанту М.М. Борескову. Тот посоветовал увеличить дальность действия подлодки. Тогда на все лодки установили специальные зацепы-рымы, чтобы поднимать их кранами из воды и на судах доставлять в район боевых действий. Так Джевецкий решил проблему увеличения дальности плавания.

Кроме того, в 1883 году изобретатель предложил Военно-инженерному ведомству оснастить лодки небольшими торпедами для атак с места и на ходу, а также заменить педальный механизм электродвигателем. Наконец, вместо гребного винта он разработал гидрореактивные движители по бортам. В результате переоснащения одна из лодок с гребным винтом и экипажем из двух человек во время испытаний на Неве развила скорость в 4 узла, двигаясь против течения. На второй лодке провели испытания водометных движителей. Они показали возможность повышенного маневрирования, однако скорость лодки на испытаниях не превысила 3 узлов, и Джевецкий от водомета отказался.


По обтекаемости подлодка Джевецкогонапоминала «Наутилус» капитана Немо.

Тем временем точка зрения на использование подлодок во время военных действий стала меняться. Из оружия обороны береговых крепостей, они стали превращаться в средство нападения на вражеские транспорты и боевые корабли в открытом море. Для таких целей малые подлодки Джевецкого уже не годились. Их сняли с вооружения, а самому изобретателю предложили разработать проект более крупного подводного корабля. Он справился с поставленной задачей и в 1887 году представил требуемый проект.

Для движения в надводном положении Джевецкий предусмотрел паровую машину, работающую на нефти, а под водой – электродвигатель с питанием от батареи аккумуляторов, им самим же сконструированных. По расчету надводная скорость должна была достигать 15–16 узлов, подводная – 10 узлов. Лодка вышла на испытания и показала неплохие мореходные качества. Однако прежде чем погрузиться, экипаж должен был загасить топку парового двигателя, что не позволяло лодке быстро погружаться в экстренных случаях, и вице-адмирал Пилкин проект не одобрил.

Тогда Джевецкий несколько переработал проект и в 1896 году предложил его французскому Морскому министерству. В результате на конкурсе «надводный и подводный миноносец» Джевецкого водоизмещением 120 т получил первую премию в 5000 франков, а торпедные аппараты после испытаний поступили на вооружение французской подводной лодки «Сюркуф».

Российскому же правительству изобретатель предложил новую подлодку, использующую бензиновый двигатель как для надводного, так и для подводного хода. Проект вскоре утвердили. И в 1905 году Петербургскому металлическому заводу был выдан заказ на постройку опытного корабля «Почтовый». Осенью 1907 года начались испытания подлодки, а в 1909 году в море вышел уникальный корабль, имевшей единый двигатель для подводного и надводного хода.

Лодка во многом превосходила иностранные образцы своего времени. Однако при работе двигателя лодку наполняли пары бензина. Кроме того, двигатель изрядно грохотал, а пузырьки воздуха, постоянно сопровождавшие движение «Почтового», не позволили использовать лодку как боевую. Кроме того, изобретатель предложил вообще удалить экипаж из подлодки, а управлять ею дистанционно, по проводам. Так впервые была сформулирована идея, к практическому осуществлению которой приступили лишь столетие спустя.

Разработки Джевецкого вообще постоянно опережали время. И, разочаровавшись в возможности их осуществления на морском флоте, изобретатель, в конце концов, подобно контр-адмиралу А.Ф. Можайскому, переключился на создание флота воздушного.

Еще в 1882 году он стал членом Парижского воздухоплавательного общества, летал на аэростате из Парижа в Амьен. В 1888 году, после возвращения в Россию, Джевецкий стал членом VII – воздухоплавательного отдела Русского технического общества (ранее он был членом лишь IV – морского отдела). Он разработал теорию птичьего полета, написал несколько научных статей об авиации, выступил в 1889 году на Воздухоплавательном конгрессе в Париже с докладом об оптимальной величине угла атаки…

В 1912 году он спроектировал и первый в своей жизни экспериментальный самолет, но построить его помешали Первая мировая война, а потом революция…


Самолет Джевецкого.

Советскую власть С.К. Джевецкий не принял, уехал за границу, снова в Париж. Умер он в апреле 1938 года, немного не дотянув до 95 лет. А до наших дней дожил единственный экземпляр лодки Джевецкого. Тот самый, что стоит ныне в зале Центрального военно-морского музея в Санкт-Петербурге.

Андрей СМИРНОВ


    Ваша оценка произведения:

Популярные книги за неделю