355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2011 № 07 » Текст книги (страница 2)
Юный техник, 2011 № 07
  • Текст добавлен: 26 июля 2017, 12:30

Текст книги "Юный техник, 2011 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Может ли реактор стать безопасным?



Катастрофы в Японии в очередной раз заставляют людей подумать: можно ли сделать АЭС безопасными или лучше отказаться от них совсем. Интересно, что вы думаете по этому поводу?

Алексей Калачев, г. Семипалатинск

Обычно крупные атомные реакторы строят на расстоянии в десятки километров от населенных районов, чтобы в случае аварии уменьшить угрозу для людей. Однако Сингапур, например, территория которого составляет всего 700 кв. км, не имеет такой возможности. Поэтому осенью 2010 года специалист по энергетической безопасности Хуман Пеймани из Национального университета Сингапура предложил помещать небольшие реакторы мощностью до 50 МВт под землю, на глубину около 50 м.

Сингапур расположен в безопасном с точки зрения сейсмической активности районе. А размещение корпуса реактора в толще гранита, на котором стоит этот город-государство, даст еще и естественную защиту от радиации.

Собственно, строить АЭС под землей предлагали еще советские академики П. Капица и А. Сахаров. В Железногорске (Красноярский край) уже 40 лет работает опытная подземная АЭС, и, как отмечают ее сотрудники, за это время не было ни одной нештатной ситуации.

Сейчас сотрудники американских компаний Hyperion Power и Terra Power предлагают свой вариант подобной конструкции.


Компактная установка Hyperion Power Module.

Реакторный модуль Hyperion столь невелик, что его можно смонтировать даже в подвале собственного дома. Конечно, никто не будет это делать. Наглухо запечатанный аппарат должен работать на большой глубине под землей. Причем помимо стального корпуса, Hyperion облачен еще и в бетонный кожух. Наружу выходят только несколько труб.

Компактная установка Hyperion Power Module, питаемая низкообогащенным ураном, способна выдавать до 27 МВт электроэнергии. Этого хватит на 20 тысяч среднестатистических домохозяйств или на не слишком крупное промышленное предприятие. Цена «ядерного» электричества составит 10 центов за киловатт-час, что сравнимо с нынешними ценами.

Стоить реакторы будут примерно 25 млн. долларов штука. Для сообщества в 10 тысяч домохозяйств это окажется весьма доступным приобретением – всего по 2500 долларов на хозяина. Три завода в разных частях света в период с 2013 по 2023 год способны выпустить 4000 таких установок. Перезаряжать реактор планируется на заводе-изготовителе. А перевозить можно на грузовике.

Первый экземпляр уйдет на одно из предприятий чешской компании TES, которая уже приобрела 6 реакторов, что называется, «с ватманского листа» и намечает купить еще 12. Интерес к Hyperion проявили и на Каймановых островах, в Панаме, на Багамах.

Впрочем, небольшие реакторы сами по себе – не новость. Достаточно вспомнить атомные субмарины, авианосцы и ледоколы. Но там ядерные установки обслуживают дипломированные специалисты. А как справятся с реакторами обыватели?

Авторы технологии уверяют, что жителям вообще не надо следить за реактором. Все сделает автоматика. Причем реактор сделан так, что никогда не выйдет на сверхкритический режим и не оплавится от перегрева. А из имеющегося в устройстве ядерного топлива при всем желании нельзя получить оружейный уран. Внутри основного модуля нет подвижных частей, что еще повышает надежность системы. Срок ее работы на одной заправке – от 5 до 10 лет. При этом ядерные отходы поместятся в объеме вдвое меньше футбольного мяча.

Эта разработка не единственная. Можно еще вспомнить мини-АЭС Toshiba 4S – небольшой реактор размерами с жилую комнату, способный поставлять в сеть 10 МВт.

Японцы предложили установить такую мини-станцию на Аляске – в городке Галена, где менее 700 жителей. Причем Toshiba готова поставить реактор бесплатно. Она будет лишь брать деньги за выработанное электричество – от 5 до 13 центов за киловатт-час. Если сравнить с нынешними затратами жителей на солярку, которую везут за тридевять земель, это почти даром.

Станция 4S должна проработать 30 лет без перезагрузки топлива (а это металлический сплав урана, плутония и циркония, который ранее никогда не выпускался как коммерческое ядерное горючее). Она может быть запущена в 2012 или 2013 году. Правда, теперь в связи с землетрясением в Японии и его последствиями сроки, наверное, будут пересмотрены.


Схема сингапурского подземного реактора. Он считается наиболее безопасным. По крайней мере, при землетрясении есть шанс, что радиоактивного выброса на поверхность уже не будет.

Та же Toshiba испытывает прототип еще более компактной (2x2x6 м) АЭС с мощностью всего 200 кВт. Такая установка могла быть питать отдельный дом. Реактор предполагается снабдить системой защиты от проникновения. При малейшей попытке – тут же автоматически вызывается спецназ.

Тем не менее, никто уже не берется ставить реакторы на автомобили и локомотивы, а также на самолеты. Уж слишком велика опасность. В общем, для атомной энергетики, судя по всему, наступают не лучшие времена. Наверное, все-таки благоразумное человечество отдаст предпочтение альтернативным источникам энергии.

Публикацию по материалам зарубежной печати подготовил С. НИКОЛАЕВ

УДИВИТЕЛЬНО, НО ФАКТ…
Притяжение света



…Откроем учебник физики. Казалось бы, о природе света там сказано все: законы отражения и преломления, явления дифракции, интерференции, поляризации… И конечно, не забыты знаменитые опыты русского ученого П. Н. Лебедева, экспериментально обнаружившего давление света еще в 1900 году. Но вот в 1989 году московский ученый Е. И. Демин подал заявку на открытие, в которой утверждал, что свет обладает не только давлением, но и совершенно до этого неизвестным науке… притяжением…

Так писали мы в 1991 году (см. «ЮТ» № 4), рассказывая об опытах Евгения Ивановича, в частности, о таком эксперименте. Демин взял обыкновенную электрическую лампочку, на пути лучей поставил экран – обычную картонку, а за ним пробную массу, которую подвесил на коромысло крутильных весов.

До включения лампы масса оставалась неподвижной. Но когда лампочка загорелась, массивный шарик потянулся к экрану, за которым горел свет. Поначалу Демин подумал, что тут все дело в воздействии тепловых потоков от лампочки. Но когда экспериментатор поставил толстый экран из теплоизоляционного материала, эффект получился тот же: масса притягивается…

Более того, действие эффекта Демина проверяли в газовой среде, вакууме, жидкости, меняли источник света (вместо белой лампочки использовали синюю) – эффект упорно проявлялся вновь. И это понятно: ведь прежде чем представить эффект на суд строгой научной общественности, автор более 20 лет сам подвергал его всестороннему сомнению, опробовал всевозможные варианты эксперимента.

– Главная трудность, – сказал тогда Евгений Иванович, – в объяснении механизма явления. Даже высокие авторитеты физики, ознакомившись с эффектом, не спешат объяснить его природу…

И все же один смельчак-теоретик нашелся. Василий Петрович Селезнев – доктор технических наук, профессор, автор двух учебников по астронавигации для космонавтов, председатель секции физики Московского общества испытателей природы, где Демин также показывал свои опыты, – выдвинул такую версию:

У света есть силы отталкивания. Наиболее яркий пример тому – лазер. Так почему бы не быть и силам притяжения? – решил профессор. С точки зрения диалектики, такое положение вещей вполне возможно. Лучи света, попав на экран, влияют на его структуру, меняют его взаимодействие с окружающими веществами…

Профессор В.П. Селезнев, что называется, как в воду глядел. Правда, понадобилось еще двадцать лет, чтобы в данном эффекте смогли разобраться ученые из университета Фудань в Шанхае. Они недавно показали, что можно создать экзотические пучки света, которые способны притягивать, а не отталкивать объекты. И объяснили, как это может быть.

Когда свет падает на непрозрачный объект, поверхность отражает большую часть фотонов обратно. При этом давление фотонов отодвигает и сам объект, отталкивая его от источника света. Причем эффективность толчков зависит от величины объекта. Чем легче объект, тем ощутимее толчок.

Далее китайские исследователи показали, что для частиц размерами в тысячную долю миллиметра, свет может стать притягивающим. И частицы начнут двигаться к источнику излучения. А секрет заключается в том, что световые волны представляют собой не только фотоны, но еще и электромагнитные волны. Волны же могут возбуждать токи в крошечной частице, словно магнитом подтягивают ее к источнику излучения света.

В. ЧЕТВЕРГОВ

ЗА СТРАНИЦАМИ УЧЕБНИКА
Быстроногий беглец



Меркурий находится ближе всех других планет к Солнцу. И потому до недавних пор о нем было известно довольно мало. Ведь наблюдать за Меркурием с Земли – значит, смотреть прямо на Солнце. Увидеть на его фоне Меркурий астрономам удается лишь в короткие минуты заката и рассвета – на вечерней и утренней заре. И все-таки наша копилка сведений об этой планете пополняется с каждым днем.


«Заяц» на орбите

Еще халдейские пастухи, провожая и встречая рассветы и закаты более десяти тысяч лет назад, заметили яркие точки на небосводе, сопровождающие дневное светило. То одна из звезд-спутников ненадолго появлялась вслед за Солнцем после заката, то другая в предутренние часы возвещала восход светила.

Знали о существовании этих звездочек и древние египтяне, давшие им имена богов Сета и Горуса – спутников Великого Ра, бога солнца. Индусы называли их Буддой и Рохинеей. Лишь древние греки догадались, что наблюдатели видят на закате и восходе одно и то же небесное тело. А жители Древнего Рима назвали его Меркурием, в честь посланца богов – быстроного покровителя торговли и путешествий, которого скульпторы часто изображали стремительно бегущим юношей с крылышками на сандалиях и шлеме.

Наблюдать за Меркурием действительно трудно. Особенно в средних и высоких широтах, где сумерки наступают медленно, а горизонт большей частью закрыт облачностью. Так что не случайно даже великий польский ученый Николай Коперник не смог заметить изменения его фаз, подобно тому, как мы замечаем фазы Луны.

А это было очень важно. Поскольку, разрабатывая гелиоцентрическую систему, Коперник говорил о том, что не Земля, а Солнце находится в центре мира. Противники же его ссылались на Меркурий, якобы опровергавший его гипотезу. «Если Меркурий обращается вокруг Солнца, – говорили они, – то у него должны наблюдаться фазы, подобные лунным»…

Коперник в ответ только разводил руками: у него не было фактов, чтобы опровергнуть слова своих оппонентов. Он лишь надеялся, что со временем «люди создадут инструменты, которые так усовершенствуют зрение, что позволят видеть их» (то есть фазы Меркурия).

И Коперник оказался прав. Современные астрономы отчетливо различают: когда Меркурий виден на небе подальше от дневного светила, вид у него точно такой же, как у нашей Луны в первой или последней четверти: в телескоп виден лишь светлый серп. По виду пятен на этом серпе наблюдатели в свое время заключили, что Меркурий повернут к Солнцу все время только одной стороной, так же, как и Луна к Земле. Были даже составлены карты этого полушария, не внушавшие, впрочем, большого доверия: слишком уж разными они получались у разных авторов.


«Планета ошибок»

Да и вообще с Меркурием связано столько недоразумений, что некоторые исследователи не случайно прозвали его «планетой ошибок». Вот вам хотя бы такие факты.

Одним из первых, кто стал наблюдать за Меркурием в телескоп, был городской судья и астроном-любитель из города Лилиенталь по имени Иоганн Иероним Шретер, живший во второй половине XVIII – начале XIX веков.

Рассматривая Меркурий в телескоп, почтенный судья-астроном однажды заявил, что им открыты на поверхности Меркурия горы высотой до двадцати километров, моря и реки… Сами понимаете, что такие детали больше говорили о богатой фантазии судьи, нежели о его хорошем зрении и качествах его инструмента.

Другой случай связан с именем французского математика и астронома Урбана Леверье. В истории астрономии он прежде всего известен тем, что в 1846 году, исследуя неправильности, или неувязки, как их называют специалисты, в движении Урана, указал место, где следовало искать причину возмущений – неизвестную планету. Так был открыт Нептун.

И в движении Меркурия Леверье заметил некие неточности. По его расчетам получалось, что ближайшая точка орбиты Меркурия к Солнцу – перигелий орбиты – движется на 31 секунду в столетие быстрее, чем положено.

Леверье резонно решил, что объяснить феномен можно следующим образом – вокруг Солнца по орбите, более близкой, чем у Меркурия, обращается еще одна неизвестная нам планета. Своим полем тяготения она и вносит возмущения в движение Меркурия. Авторитет Леверье после случая с Ураном был чрезвычайно высок, и гипотетическая планета даже получила имя. Назвали ее Вулканом. Оставалось ее только обнаружить…

За поиски Вулкана принялись многие наблюдатели. И многие видели таинственную планету. Но все почему-то наблюдали ее в разных местах. Наконец, собрав данные о 50 сообщениях, Леверье попытался вычислить орбиту Вулкана и предсказал, что 22 марта 1877 года она пройдет по диску Солнца так, что ее можно будет заметить.

Однако астрономы ничего не увидели. И рассудили, что либо большинство наблюдателей принимали за Вулкан круглые солнечные пятна плюс собственную фантазию, либо Леверье ошибся в расчетах.

Однако на деле все оказалось интереснее. В начале XX века смещение перигелия – а оно оказалось даже большим, чем вычислил Леверье, поначалу объяснили с помощью общей теории относительности, созданной Альбертом Эйнштейном. До недавних пор смещение перигелия Меркурия считалось даже одним из важных доказательств справедливости этой теории.

Тем не менее, смещение движения Меркурия вызвано не только им. В непосредственной близости от Солнца, внутри орбиты Меркурия, астрономы обнаружили еще один, третий по счету, пояс астероидов. Два других находятся значительно дальше. Один – между орбитами Марса и Юпитера, а второй – вообще на окраине Солнечной системы. Так что Леверье все-таки оказался прав в своем предвидении. И гипотетический Вулкан скорее всего является одним из астероидов недавно открытого пояса.


Открытия Скиапарелли

Но вернемся к Меркурию. И сведем еще одно знакомство – с известным итальянским астроном Джованни Скиапарелли. Наблюдая за Меркурием в течение 8 лет, в декабре 1889 года Скиапарелли подытожил их результаты на ежегодном заседании Римской академии наук.

Прежде всего, он рассказал о пятнах, увиденных им на поверхности Меркурия. И даже представил собственноручно нарисованную карту этих пятен. Скиапарелли утверждал, что время от времени пятна меняют свои очертания и часто мутнеют. Это позволило итальянскому астроному предполагать, что у Меркурия есть атмосфера, в которой бушуют бури…

Но главное, перемещение этих пятен позволяет сделать вывод, что Меркурий обращается вокруг собственной оси с периодом, равным времени его облета вокруг Солнца – 88 земных суток. Это означало, что Меркурий, как Луна к Земле, повернут к Солнцу всегда одной стороной. Такая точка зрения порождала удивительную двуликую природу планеты в представлениях астрономов. На дневной, солнечной, стороне близкое светило должно раскалять поверхность Меркурия до 430 °C. Зато на ночной, теневой, стороне планеты температура едва ли повышается выше абсолютного нуля, то есть выше минус 273 °C.


Астроном Джованни Скиапарелли.

Фантасты на основе полученных данных попытались представить картину, которая может предстать перед глазами исследователей на Меркурии. На одной стороне планеты текут оловянные реки и испаряются свинцово-цинковые болота. На другой, во тьме вечной ночи, потоки жидких газов переносят льдинки из замерзшего метана и кислорода, громоздя огромные торосы и сугробы из них.

А между раскаленной, дневной, и замороженной, ночной, половинами располагается полоса светотени – зона терминатора – шириной около 300 км. Именно в этой полосе, по мнению некоторых специалистов, может существовать жизнь. Причем некоторые горячие головы договариваются даже до того, что некие живые существа могут обитать даже на горячей стороне Меркурия! Жарко? Ну и что же, ведь они могут иметь не обязательно земную структуру. На нашей планете основой органической жизни являются углеводороды плюс вода. На горячей стороне Меркурия у странных существ основа жизни – кремний! И вот уже воображение рисует странных камнеподобных, малоподвижных кремниевых обитателей Меркурия с поликристаллической кожей и жидким стеклом вместо крови, которые усваивают энергию непосредственно из солнечного света, подобно тому, как это делают кремниевые батареи на межпланетных зондах…


Работа для роботов

Кстати, именно межпланетные роботы-исследователи помогли уточнить сведения о Меркурии. Так, сейчас есть данные, что период обращения планеты вокруг своей оси не 88 земных суток, а только 59! А это означает, что Меркурий, возможно, все же плывет вокруг Солнца, медленно поворачиваясь. Когда в 1974–1975 годах мимо Меркурия на расстоянии всего нескольких сотен километров трижды прошел американский космический летательный аппарат «Маринер-10», специалисты увидели, что по рельефу поверхности планета очень похожа на Луну. По внутреннему устройству она оказалась ближе к Земле, чем к Луне. Хотя реальной атмосферы на ней нет. А вот магнитное поле, хоть и слабее раз в сто, чем у Земли, – нашлось.


Запуск космического зонда Messenger.

По мнению некоторых ученых, в глубоких кратерах околополярных областей, на дно которых никогда не заглядывает солнце, может даже существовать лед. Ну, а где есть вода, пусть даже в замерзшем состоянии, там возможна и жизнь, полагают исследователи.

Для дальнейшего изучения планеты в январе 2008 года к Меркурию приблизился космический зонд Messenger (MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft). Его аппаратура предназначена для изучения химического состава поверхности, а также магнитного и гравитационного поля планеты.

Ранним утром 18 марта 2011 года межпланетный зонд НАСА «Мессенджер» (Messenger в переводе означает «Посланник») вышел на орбиту вокруг Меркурия. Таким образом, он стал первым аппаратом, который на некоторое время превратился в искусственный спутник первой планеты Солнечной системы – до сих пор посланные с Земли зонды всегда пролетали мимо.

Аппарат был запущен с Земли в августе 2004 года. Ради экономии топлива зонд отправили к Меркурию «обходным путем». К орбите планеты он выходил с помощью серии гравитационных маневров, используя для корректировки курса и скорости силы притяжения других планет. За 6,5 года «Посланник» преодолел более 7,8 млрд. км, совершил 15 оборотов вокруг Солнца, один раз пролетел мимо Земли, два – мимо Венеры и три – мимо самого Меркурия. С помощью «Мессенджера» ученые намерены составить подробные карты поверхности Меркурия.

С. СЕРГЕЕВ

У СОРОКИ НА ХВОСТЕ


«ПЕСНИ» КОЛЛАЙДЕРА. Группа американских физиков, занимающихся исследованием звуковых проявлений окружающей среды, представила программное обеспечение, с помощью которого можно будет услышать процессы, происходящие в Большом адронном коллайдере (БАК). Поток данных о столкновении частиц переводят в акустические сигналы.

«Человеческое ухо прекрасно подходит для обнаружения очень слабых изменений в звучании, – сказал по этому поводу один из разработчиков, Ричард Добстон. – Новый звук всегда привлекает внимание»…

Звучание частиц в коллайдере будет меняться в зависимости от их типа, скорости и энергии. При этом получается своеобразная мелодия, которая отражает процессы в недрах коллайдера.

Кстати, сама по себе идея озвучивания физических процессов не так уж и нова: она реализована в счетчиках Гейгера, которые информируют об уровне радиации частотой щелчков.

«ЛАСТИК» ДЛЯ ПАМЯТИ. Исследователи из Университета Джонса Хопкинса (США) пришли к выводу, что удаление некоторых рецепторных белков из области мозга, отвечающей за страх, позволит человеку легче избавиться от травмирующих его психику воспоминаний. Ученые отмечают, что белки эти вполне можно разрушить при помощи медикаментов.

Эффект уже проверен в эксперименте. Во время своих исследований ученые будоражили мышей звуковым сигналом, после которого следовал удар электрическим током. Вскоре мыши начинали панически бояться звука, в их мозгу образовывались те самые белки страха.

Сейчас ученые намерены выяснить, как можно удалить из мозга эти белки химическим путем. Так что, вполне возможно, им вскоре удастся создать что-то вроде «таблетки забвения» или «ластика», стирающего память.

БУМАГА ПРОЧНЕЕ… ЧУГУНА. Группа ученых из Швеции и Японии создала бумагу, которая превосходит по прочности чугун и лишь немного уступает стали. По словам одного из авторов работы, Ларса Берглунда из Королевского технологического института, новинку можно будет использовать, например, для создания сверхпрочной клейкой ленты или синтетических заменителей биологических тканей.

Причем, в отличие от сверхпрочной бумаги из титанового нановолокна, новинка но сути – самая обычная бумага, состоящая из обычной целлюлозы. Весь секрет в параметрах волокон и их расположении.

По словам ученых, естественные волокна целлюлозы, пока они находятся в дереве, очень прочны, однако они разрушаются при традиционных методах производства бумаги. Сейчас же удалось придумать такую технологию, при которой исходные биополимерные цепочки переносятся в толщу листа с минимальными повреждениями. Для этого был подобран набор ферментов, а также придуман новый способ механической обработки, нежно отделяющий нужные волокна.


    Ваша оценка произведения:

Популярные книги за неделю