355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2009 № 05 » Текст книги (страница 4)
Юный техник, 2009 № 05
  • Текст добавлен: 10 октября 2016, 06:21

Текст книги "Юный техник, 2009 № 05"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ПАТЕНТНОЕ БЮРО



В этом номере мы расскажем о дирижабле без двигателя Андрея Селивановаиз Архангельска, электрическом насосе Серафима Букжлииз Кишинева (Республика Молдова), а также о доме из надувных блоков Александра Огородоваиз г. Колпашева Томской области.


АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1113

ДИРИЖАБЛЬ БЕЗ ДВИГАТЕЛЯ

Андрей Селиванов из Архангельска предложил тепловой дирижабль, который, по его словам, не нуждается в двигателе. Гондола дирижабля снабжена крыльями, как у планера. Когда зажигается горелка, аэростат начинает подниматься. В этот момент крыльям придается такой наклон (угол атаки), что появляется тяга, направленная вперед. Затем горелка гаснет, и начинается спуск. Крыльям придают другой наклон, опять же, создающий тягу, направленную вперед.

Если применить легкие крылья от планера, то на каждые 100 метров подъема или спуска аэростат будет пролетать до 5 км.

Андрей заблуждается, утверждая, что его дирижабль летает без двигателя. На самом деле и тепловой аэростат, и его крылья образуют систему, которая вся целиком является тепловым двигателем, к работе которого применимы все законы термодинамики. В частности, ее КПД зависит от разности температур цикла его работы: чем больше разность между самой высокой и самой низкой температурой воздуха, наполняющего аэростат, тем КПД выше.

Материал оболочек современных тепловых аэростатов выдерживает температуру воздуха не более 120 °C. При спуске она снижается примерно до 100 °C. Термический КПД такого аэростата из-за потерь тепла через оболочку окажется маловат и не превысит 1–2 %. Это, конечно же, очень мало. Для серьезного повышения КПД есть только один путь – увеличение температуры воздуха в аэростате. Сегодня существуют синтетические пленки, выдерживающие более 700 °C. Если сделать дирижабль из них, то термический КПД его в принципе может достигнуть 50 %. Правда, часть тепла уйдет через стенки оболочки, но все равно расход топлива может оказаться ниже, чем у дирижабля с обычными двигателями.

Отметим, что еще в 1880 г. с проектом аналогичного аэростата, только наполнявшегося не воздухом, а перегретым паром, выступил французский изобретатель А. Дерваль. Его аэростат также был снабжен крыльями. Он то поднимался, то опускался и при этом продвигался вперед.

По подсчетам Дерваля, аэростату объемом 3500 м 3для полета со скоростью 5 км/ч было нужно на час 80 кг воды и 10 кг угля. Столь малая скорость получалась из-за очень низкой эффективности крыльев того времени. Аэростат так и не был построен. А проект Дерваля известен лишь историкам техники, и юный изобретатель про него вряд ли знал. Экспертный совет ПБ присуждает Андрею Селиванову Авторское свидетельство.



АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1114

НАСОС ПРИНЦИПИАЛЬНО НОВОГО ТИПА…

…предложил восьмиклассник Серафим Буюкли из Кишинева. Насос представляет собою электрический конденсатор, составленный либо из двух изолированных друг от друга половинок металлического конуса, либо из двух непараллельных пластин. При подаче напряжения на обкладки таких конденсаторов вода, по мнению Серафима, «начнет втягиваться в ту сторону, где силовые линии гуще».

Насос действительно будет работать, но несколько не так, как думает изобретатель…

Начнем с того, что обычная вода электропроводна. Поэтому разность потенциалов между обкладками конденсатора будет ничтожна, а электростатические силы очень малы, и насос вряд ли сможет работать. Дистиллированная вода – другое дело. Она ток не проводит, так что электростатические силы проявятся в полной мере. Вообще же это устройство пригодно для любых непроводящих жидкостей и газов.

Чтобы понять, как работает насос Серафима Буюкли, достаточно обратить внимание на то, что под действием электрического поля находящаяся в конденсаторе жидкость притягивается к одной из стенок и соскальзывает с нее, словно сани со снежной горы.

Для выполнения расчета сил, действующих на жидкость в насосе, мы используем принцип наименьшего действия – принцип Мопертюи.


Пьер Луи Мопертюи(1698–1759).

В сильно упрощенном виде он формулируется так: «Всякая система стремится перейти в состояние, при котором ее потенциальная энергия минимальна» (именно поэтому книга падает на пол, а не на потолок).

На рисунке конденсатор с двумя расходящимися пластинами. Мысленно наполним его диэлектрической жидкостью, например, трансформаторным маслом, и подадим напряжение. Под его действием молекулы масла поляризуются и накопят некоторую энергию. (Отметим, что основная часть энергии конденсатора запасается в диэлектрике.)


В конденсаторном насосе С. Буюклижидкость перетекает от высокой напряженности поля к низкой.

При разрядке конденсатора она израсходуется на создание тока в его внешней цепи. В нашем конденсаторе напряженность поля выше всего в самой узкой части. Там наиболее высока и плотность энергии в единице объема диэлектрика. В широкой части и напряженность поля, и плотность энергии минимальны. Поэтому жидкий диэлектрик потечет от узкой части конденсатора к широкой. Здесь плотность энергии в единице его объема уменьшится примерно в 60 раз. Избыток энергии будет израсходован на движение жидкости.

При разности потенциалов 10 кВ для трансформаторного масла получаем скорость течения 0,02 м/с. Это уже технически значимый результат! Такой насос пригодится везде, где требуется подавать небольшие количества жидкости, например в лабораторных приборах, причем насос Серафима будет работать даже в космосе, в условиях невесомости.

Может такой насос перекачивать и газы. Воздух, например, он может перекачивать со скоростью 0,35 м/с. Получается неплохой вентилятор для охлаждения компьютера!

Экспертный совет единогласно присуждает Серафиму Авторское свидетельство ПБ.

ДОМ ДЛЯ ТУРИСТОВ


…из надувных блоков-кирпичей, скрепленных друг с другом липучками, предложил 11-летний Александр Огородов Из Томской области. Да, теоретически скрепить «кирпичи» друг с другом «липучками» можно. Но только теоретически.

Каждый кирпич, когда его начнут надувать, превратится в округлую фигуру со множеством складок. Соединить такие элементы между собою при помощи липучек не удастся. Как же быть? Есть два пути. Первый – это сделать кубик, который после наполнения сохранит прямоугольную форму. Для этого его стенки изнутри следует соединить множеством дополнительных перегородок и стяжек. Но такие блоки будут слишком сложны в изготовлении и дороги. А еще проще – делать дома цельными. Каждый видел, наверное, надувные замки, в которых детишки прыгают в свое удовольствие. По такому же принципу может быть сделан дом для туристов. Носить его за плечами в рюкзаке, конечно, тяжеловато. Но для путешественников с автомобилем его вес вполне приемлем. К слову сказать, цельный надувной дом окажется даже легче, чем набор блоков для его строительства.

Тем не менее Экспертный совет ПБ отмечает стремление Александра ОГОРОДОВА к изобретательству и желает ему новых идей.


Еще раз просим читателей более тщательно оформлять предложения. Их текст печатайте на компьютере или пишите от руки, но только разборчивым почерком! (На некоторые письма мы не смогли дать ответ из-за невозможности понять почерк писавшего.) Письма снабжайте, пожалуйста, четкими рисунками.

ФОТОКОНКУРС
«Наука – это красиво»

МИР УВИДИТ ВАШИ ОТКРЫТИЯ!

Издание «Наука и технологии России – STRF.ru» приглашает к участию в конкурсе фотографии «Наука – это красиво!» всех, кто хотел бы представить миру многообразие и красоту науки. Фотографии на конкурс принимаются со 2 марта по 20 мая по адресу: [email protected].

Основные номинации:

«Мир, скрытый от наших глаз».

«Наука – значит развитие».

Специальная номинация от компании «Нанотехнология – МДТ»: «Эстетика в «железе». Для участия в этой номинации принимаются работы, где в композиции присутствует оборудование компании или элементы ее фирменного стиля. Победитель получит специальный приз от компании.

Призы:

1 место – 15 000 рублей,

2 место – 9000 рублей,

3 место – 5000 рублей.

Все победители получат памятные дипломы.

Авторы работ, собравшие наибольшее количество откликов по итогам зрительского голосования, получат специальные «Призы зрительских симпатий».

Лучшие работы будут отобраны для участия в выставке «Наука – это красиво!», которая пройдет в Москве, Санкт-Петербурге, Новосибирске и других гостеприимных городах России.

Контактная информация:

Е – mail: [email protected]

Тел.: +7 (495) 930 8850, 930 8707

www.strf.ru

НАШ ДОМ
Печка с магнетроном



В 1946 году инженер американской компании Raytheon Перси Спенсерслучайно направил прототип радара, снабженный микроволновым излучателем, на шоколадку, лежавшую на столе. Та тут же расплавилась, и Перси понял, что у него получилось нечто особенное. С той поры микроволновые печи начали свое победное шествие по миру.

Сердце такой печи – магнетрон. Так называется вовсе не некий аппарат из фантастического фильма, а электровакуумный прибор – излучатель микроволн. Точно такой же, какие используются в радиолокаторах для облучения самолетов в небе. Только в данном случае микроволнами облучаются продукты, помещенные в камеру микроволновки; причем они, эти самые лучи, способны пронизывать мясо, картофель или иной продукт по всему объему. Именно потому и процесс приготовления того или иного блюда обычно занимает считаные минуты.

Несмотря на то что микроволновки используются на кухнях уже более полувека, у многих пользователей остаются сомнения: а не опасно ли пользоваться агрегатом, излучающим микроволны? Не может ли излучение проходить через окошко печи и причинять вред хозяину? Не влияют ли микроволны на качество продуктов? Не может ли излучение микроволновки испортить персональный компьютер, телевизор, сотовый телефон и прочую тонкую электронику?


Изобретатель Перси Спенсер.


Ответ на все вопросы будет однозначный. Нет, микроволны при закрытой дверце не могут вырваться из печи наружу, поскольку отражаются от металлической сетки, заделанной в стекло окна, а также от ее металлических стенок. Нет, микроволны не снижают полезность продуктов. Напротив, большинство исследований показывает: поскольку температура в микроволновой печи ниже, чем при готовке на плите или в духовке, а время приготовления пищи в ней меньше, то витамины в пище сохраняются лучше. Нет, закрытая печь не препятствует работе беспроводных сетей и бытовой электроники, поскольку электромагнитное излучение, как уже говорилось, не может выйти из печи наружу…

Однако во всех случаях следует оговориться: следите, чтобы дверка была всегда плотно закрыта, а сама печь и ее экран исправны. Кроме того, внимательно читайте инструкцию и руководствуйтесь в повседневной практике здравым смыслом.

Чтобы вы яснее понимали, что к чему, несколько слов о физике работы магнетрона и особенностях устройства типовой микроволновки.

Трансформатор, диод и конденсатор повышают сетевое напряжение со 127 или 220 вольт до 3000 вольт, а также превращают его из переменного в постоянное. Высокое напряжение подается на магнетрон. Излучатель генерирует микроволны, посылаемые антенной через волновод в рабочую камеру печи, где они отражаются ее металлическими стенками. Тарельчатая подставка вращает пищу в микроволновом поле, чтобы она нагревалась равномерно. В моделях без такой подставки для равномерного распределения мощности микроволн по объему камеры используется небольшая вращающаяся лопасть на конце волновода.



Вид и схема магнетрона:

1– магнит; 2– катод; 3– электрическое поле; 4– резона тор; 5– анод; 6– магнитное поле; 7– поток электронов; 8– проводник.

Сам же магнетрон работает так (см. схему). Высокое напряжение подается на нагреваемый катод. Он испускает электроны; которые притягиваются к положительно заряженным секторам анода. Магнит создает силовое поле, которое заставляет направленный от центра к периферии поток электронов вращаться. При этом в потоке формируются «острия». При прохождении каждого «острия» мимо полости, служащей резонатором, в нее поступает дополнительный отрицательный заряд, который затем утекает из нее до прибытия следующей «спицы». Эти колебания в силе заряда вызывают в резонаторах электромагнитное поле с частотой 2,45 ГГц. Присоединенная антенна резонирует на этой частоте, излучая микроволны.

Микроволновое излучение, распространяясь в пространстве печи, воздействуют на молекулы воды, которые имеются практически во всех видах пищи. А молекула Н 2О, как известно, асимметрична. Один из ее «концов» имеет положительный заряд, а противоположный – отрицательный.

Электрическое поле, создаваемое микроволнами, ориентирует молекулы в одном направлении. Но поскольку само направление поля меняется на противоположное 4,9 млрд. раз в секунду, то молекулы воды колеблются, тоже меняя ориентацию. При этом они сталкиваются, трутся друг о друга, в результате чего выделяется тепло. А чтобы нагрев шел равномерно, многие печи, как уже говорилось, имеют вращающуюся подставку, на которую и ставится тарелка или кастрюля с едой.

В керамической и стеклянной посуде, которая обычно используется в микроволновках, молекул воды нет, поэтому микроволны их не нагревают; керамика и стекло нагреваются исключительно за счет теплопроводности от горячей пищи. Искрить печь будет лишь в том случае, когда в нее попадает посуда, например, с золотыми цветочками.

Искры вызываются концентрацией заряженных частиц в местах, где электрическое напряжение сильно изменяется на очень малых расстояниях. При этом возникает коронный разряд, или искрение.

Некоторые продукты – жирные или покрытые кожурой (картофель, морковь, сладкий перец), а также имеющие пленки или природные мембраны (печенка, яичный желток) могут устраивать в печи микровзрывы из-за быстро выделяющегося пара. Чтобы этого не случалось, овощи и печенку надо надрезать, яичный желток проколоть.

Современные микроволновки, как правило, имеют прерыватели, которые выключают печь тотчас, как только вы попытаетесь открыть ее дверку. Так что микроволновое излучение из нее не вырвется. Тем не менее, не «нервируйте» печь, не заглядывайте в нее то и дело, чтобы проверить, готово ли блюдо. Воспользуйтесь таймером. Тем более что в нынешних печах достаточно набрать на табло вид продукта, его количество, и встроенный микропроцессор сам подсчитает, сколько времени его готовить, самостоятельно включит и выключит печь.

От вас же требуется немногое. Аккуратно эксплуатируйте печь. Не проводите с ней экспериментов. Периодически очищайте камеру от брызг жира. И при малейшей неисправности обращайтесь к услугам опытного мастера.

Ю. КОЗИН, В. ЧЕТВЕРГОВ


Кстати…

КАК ВЫБИРАТЬ МИКРОВОЛНОВКУ?

Перед тем как отправиться в магазин за покупкой, стоит прояснить следующее.

Главный параметр, определяющий возможности микроволновки, – полезный объем рабочей камеры, от которого зависит и ее мощность. Небольшие печи (полезный объем 16–20 литров) предназначены в первую очередь для разогрева готовых блюд и разморозки небольших порций. Цыпленок или курица средних размеров – вот их предел. Для большой семьи нужна габаритная печь с камерой от 23 литров. Самые объемистые (около 40 л) без проблем вместят и гуся или индейку.

Стоит обратить внимание и на покрытие рабочей камеры. Как правило, это эмаль. Она практична, легко чистится. Камеры с керамическим покрытием чистятся еще легче, но требуют осторожного обращения, так как хрупки. Наиболее дорогие печки оснащаются камерой из нержавейки.

Кроме обычных, бывают и инверторные микроволновки – они на 20–40 % дороже. Их преимущество вот в чем. Обычные СВЧ-печи дозируют мощность, включая и выключая нагреватель. Если вам нужно всего лишь разморозить или подогреть продукт, инверторная печь обеспечит плавную подачу тепла в камеру.

И, наконец, о цене. Небольшие печки (16–20 л) с механическим управлением ориентировочно стоят от 1600 руб., с электронным управлением – от 2000 руб.; 23 л – от 2500 руб.; 30 л – от 4500 руб.; 40 л – от 5000 руб. Наличие гриля добавит к цене от 500 до 1 тыс. руб., а комплект – гриль плюс конвекция – прибавит дополнительные 1,5–2 тысячи рублей.

КОЛЛЕКЦИЯ «ЮТ»


Пистолет Beretta 92оказался самой известной моделью фирмы Fabbrica D" armi Pietro Beretta SpA, поскольку конструкторам удалось совместить в ней функции гражданского, служебного и полицейского оружия.

Серийное производство пистолета началось в 1976 году. В том же году для итальянской полиции был выпущен вариант Beretta 92Sс механизмом безопасного спуска курка. Эта модель довольно быстро вытеснила предшественницу и начала свое шествие по планете. Так, например, этот пистолет, выиграв в 1985 году международный конкурс, поступил на вооружение армии США, заменив знаменитый Кольт М1911 45-го калибра.

В целом пистолеты серии Beretta 92в конце концов заслужили репутацию надежного оружия и потому состоят на вооружении более чем 50 стран мира. Все служебные пистолеты серии Beretta 92имеют рамку из алюминиевого сплава и стальной затвор.


Тактико-технические характеристики:

Длина пистолета… 217 мм

Длина ствола… 125 мм

Патрон:

… 9 х 19 мм Парабеллум (92 серия)

… 40SW (96 серия)

… 9 х 21 мм (98 серия)

Емкость магазина:

… 15, 17 патр. (92, 98 серии)

… 11 патр. (96 серия)

… 10, 13 патр. (Compact L)

… 8 патр. (Compact М)

Вес пистолета в зависимости от модели… 900–970 г


Если не вглядываться, Peugeot 4007можно спутать с Citroen C-crosserи Mitsubishi Outlander XL. Это не случайно: платформа этих машин разработана совместно французами и японцами, а разница лишь в деталях дизайна.

Машина достаточно просторна. Багажник имеет объем 510 литров, но его можно увеличить втрое, если сложить задние сиденья. При немалых габаритах автомобиль довольно маневрен, хорошо держит дорогу, а руль хорошо чувствует водителя. Подвеска оборудована автоматической системой стабилизации, поэтому автомобиль уверенно и без заносов входит в резкие повороты.

Стандартный двигатель Peugeot 4007может работать на 30 %-ном биотопливе. На машину по заказу может быть установлен двухлитровый дизель мощностью 134 или бензиновый мотор объемом 2,4 л.


Технические характеристики:

Длина автомобиля… 4,640 м

Ширина… 1,810 м

Высота… 1,680 м

Колесная база… 2,670 м

Колесный просвет… 210 мм

Снаряженная масса… 1,800 т

Полная масса… 2,410 т

Максимальная скорость… 200 км/ч

Время разгона до 100 км/ч… 9,9 с

Объем двигателя… 2179 см 3

Мощность… 156 л.с.

Расход топлива на 100 км:

в городе… 9,5

на трассе… 5,9

Емкость бака… 60 л

ПОЛИГОН
Эскадрилья жар-птиц

Если верить легенде про Икара и Дедала, то первый полет человек совершил на крыльях, сделанных из перьев птиц. В 80-е годы прошлого века этот полет удалось повторить на аэроплане «Госсамер Альбатрос», приводимом в действие мускульной силой человека. Это доказывает, что сил человека для полета Икара и Дедала в принципе достаточно.

«Госсамер Альбатрос» был сделан из материалов нашего времени – углепластика и тонкой пленки. Но кто сказал, что птичьи перья хуже?..

Вообще-то, роль птичьих перьев в истории авиации не так уж мала, и дело не только в легендах. 28 апреля 1784 г. взлетела первая модель вертолета, построенная французскими учеными Лануа и Бьенвеню. С винтами из… перьев орла. А знаете ли вы, что прототипом первого реально летавшего аэроплана оказалась крохотная модель с крыльями летучей мыши и пропеллером из хвоста куропатки?..

Мир спортивных летающих моделей необъятен. Есть такие, что сравнимы по размерам с небольшим самолетом, но намного превосходят его в скорости. Известны модели, способные подниматься в стратосферу, перелетать моря и океаны. Но есть и огромный мир моделей комнатных, способных часами летать в большом зале. Их делают из стеблей сухой травы и покрывают тончайшими пленками, в которых интерферируют лучи света, заставляя модели переливаться всеми цветами радуги, словно жар-птиц. Из столь легких материалов удается делать микросамолетики с размахом крыльев более полуметра и весом всего… 2–3 грамма.

А особый класс моделей – это, конечно, модели из упомянутых уже птичьих перьев. Они красивы и порою очень необычны на вид. А кроме того, предоставляют авиамоделисту огромную свободу действий.

Все авиамодели так или иначе повторяют облик больших самолетов и имеют одну и ту же выбранную сто с лишним лет назад аэродинамическую схему: два крыла и хвост. Ради прочности и компактности было бы желательно количество пар крыльев увеличить, расположив друг над другом или в ряд.

Такие самолеты-мультипланы строили не раз. Но их крылья всегда начинали сильно мешать друг другу, и схема теряла все свои преимущества. Те же проблемы возникали и при изготовлении моделей мультипланов. А вот модели из птичьих перьев могут иметь от двух до десяти пар крыльев (быть может, и больше!) и практически не влияют друг на друга.

Дело в том, что перо птицы «работает» в воздухе иначе, чем обычное крыло самолета, поскольку состоит из множества отдельных пластинок и проницаемо для воздуха, а подъемная сила, как показывают новейшие исследования, возникает в основном за счет «прилипания» потока воздуха к его верхней поверхности. Не будем сейчас вдаваться в физические тонкости процесса (если вам будет интересно, мы вернемся к нему в одном из последующих номеров), а перейдем к постройке ваших жар-птиц.


Модель с каркасом из сушеных стебельков травы и обтяжкой из тончайшей пленки, сравнимой по толщине с длиной световой волны, весит всего 3,5 г.



Первая в мире летающая модель вертолета с винтом из перьев и двигателем из китовою уса.


Первая удачно летавшая модель самолета имела винт из перьев куропатки.

Подберите несколько пар одинаковых маховых перьев из крыла курицы. Те, что крупнее, пойдут на крылья, остальные – на хвостовое оперение. Соединить их можно с помощью рамки из алюминиевой проволоки.

Перья хвостового оперения подрежьте так, чтобы открыть внутреннюю полость. Стержни перьев, предназначенных для крыльев, обрежьте, отступив от опахал примерно на 5 мм. Их внутреннюю полость очистите от рыхлой ткани на глубину 20 мм.

Приступаем к сборке.

Внутрь каждого пера пустите каплю клея, лучше резинового, и наденьте их на плечи рамки. Пока клей не засох, отрегулируйте наклон (угол атаки) крыльев и хвостового оперения. Чтобы перья хвоста не расходились, обмотайте их нитками с клеем. К носовой части рамки прилепите грузик из пластилина. Отрегулируйте его так, чтобы центр тяжести модели находился на первой трети хорды (ширины) крыла. Как только клей подсохнет, можно приступать к испытаниям. Мягкая алюминиевая проволока позволит вам произвести дополнительную регулировку модели.


Два крыла из куриных перьев на рамке из тонкой алюминиевой проволоки – вот вам и планер.



Два крыла один за другим – схема-тандем и…


…триплан – обычно летают плохо. Но с крылом из перьев они побивают все рекорды.

Вот еще один опыт. Сделайте рамку с парой дополнительных плечей в одной плоскости, и у вас получится модель стрекозы. Если дополнительные плечи расположить друг над другом, то получится модель планера-биплана.

Попробуйте оценить качество полета модели. Для этого выпустите ее из рук, легко подтолкнув, и замерьте, сколько она пролетела по прямой и насколько при этом снизилась от точки запуска. Поделив величину дальности полета на высоту снижения, вы получите величину, называемую аэродинамическим качеством. Она показывает, во сколько раз сила тяги, необходимая для горизонтального полета, меньше, чем вес. Этой величиной оценивают качество всех летательных аппаратов. Как правило, аэродинамическое качество моделей из перьев лежит в пределах от 7 до 15 и не зависит от числа и расположения крыльев.

У обычных авиамоделей такое качество достигается с большим трудом и только при условии, что они имеют схему моноплана. Если же их сделать по схеме стрекозы, биплана или мультиплана, то качество не превысит 3–5.

Вот схема модели микровертолета. Его фюзеляж сделан из ржаной соломинки с наружным диаметром 4 мм. Модель имеет два винта. Лопасти одного укреплены посередине на пенопластовой бобышке, закрепленной на фюзеляже. Другого – расположены внизу на такой же бобышке, закрепленной на валу резиномотора. В торец соломинки вклеена металлическая шайба с отверстием, через которое проходит вал.

Между шайбой и бобышкой нижнего винта на вал надета стеклянная бусинка диаметром 3–4 мм – «подшипник» резиномотора. Сам же резиномотор состоит из двух резиновых жилок сечением 1x1 мм (их можно вытянуть из бельевых резинок). В качестве лопастей винтов применены перья длиной 60–70 мм.

Вертолет работает так. При вращении его нижнего винта возникает реактивная сила, заставляющая фюзеляж вращаться в противоположном направлении. Но, поскольку оба винта сделаны зеркально-симметрично, они дают тягу, направленную вверх. Максимальная высота подъема этой модели 3–5 м. Полет ее происходит плавно и очень красиво.


Эта модель вертолета с винтом из перьев и корпусом из соломинки взлетает под потолок самой высокой комнаты.


Подробности для любознательных

Перо состоит из множества повторяющих форму друг друга элементов. Их принцип работы науке пока не понятен.

Лишь недавно ученые обратили внимание на странную закономерность в строении крыла птицы. Общий контур крыла поразительно напоминает контур отдельного пера. Но присмотритесь к перу! Оно состоит из тысяч отдельных пластинок такой же формы – каждая пластинка состоит из других аналогичных пластинок…

А. ИЛЬИН

Рисунки автора


    Ваша оценка произведения:

Популярные книги за неделю