355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2009 № 05 » Текст книги (страница 2)
Юный техник, 2009 № 05
  • Текст добавлен: 10 октября 2016, 06:21

Текст книги "Юный техник, 2009 № 05"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

ПО СЛЕДАМ СЕНСАЦИЙ
Автомобиль быстрее пули

Британские инженеры работают над созданием самого быстрого в мире автомобиля, который сможет развивать скорость 1000 миль в час (1600 км/ч). Эта машина, по словам разработчиков, будет мчаться не только быстрее скорости звука (1193 км/ч) – «звуковой барьер» на суше уже преодолен, – но и скорее, чем пуля, выпущенная из знаменитого пистолета Стечкина.


Если ученым удастся успешно завершить амбициозный проект, то скорость машины «Бладхаунд», которая названа так в честь сверхзвуковой зенитной британской ракеты, сможет превысить наземный рекорд скорости более чем на 400 км/ч. Существующий рекорд скорости, напомним, был установлен на соляном плато в американском штате Невада еще в 1997 году пилотом британских ВВС Энди Грином и равен 1220 км/ч.

Сейчас Э. Грин вместе с группой высококлассных специалистов поставил перед собой новую задачу – преодолеть барьер 1000 миль в час. Сделано это будет с помощью ракеты, уложенной на колеса.

Подробные сведения о разработке, стоимость которой составит более 12 млн. фунтов (20 млн. долларов), полтора года держались в строжайшем секрете. И лишь осенью 2008 года министр Великобритании по вопросам науки лорд Дрэйсон счел возможным подтвердить существование проекта и подчеркнуть, что «одной из главных целей создания данной машины является привлечение внимания британской молодежи к техническим наукам. Это поможет развитию высоких технологий в стране»…

Одновременно с работами по созданию рекордного реактивного болида его создатели подыскивают соответствующую трассу. Инженеры рассматривают возможность провести заезд в Южной Африке, США или Австралии, где на дне высохших соляных озер есть возможность подготовить идеально ровную дорогу длиной километров в тридцать.



Компьютерный рисунок « Бладхаунда» и схема его обтекания воздушными потоками.


Кстати…

А ЧТО У НАС?..

Идея построить советский сверхзвуковой автомобиль родилась в стенах Харьковского автодорожного института еще весной 1968 года. А через полтора года новость о том, что «русские стремятся создать самый быстрый в мире автомобиль», облетела планету.

Между тем, на самом деле болид ХАДИ-9 был лишь коллективным дипломным проектом студентов Сергея Шерстобитова, Александра Заговорова, Владимира Сегодина, Анатолия Корлякова и Анатолия Пурдыка.


Последняя разработка харьковчан, призванная штурмовать «звуковой барьер» – ХАДИ-312006 года.


Болид ХАДИ-91959 года выпуска.

Ребята в какой-то мере опирались на опыт старших товарищей. Еще в 50-е годы в лаборатории скоростных автомобилей Горьковского автозавода была создана скоростная машина с турбореактивным двигателем от истребителя МиГ, на которой гонщик М. Метелев достиг скорости 200 км/ч. В начале 60-х годов мастер спорта, неоднократный чемпион страны и мира Э. Лорент начал было строить машину, способную разогнаться до 900 км/ч, но осуществиться его идеям было не суждено.

Машина харьковчан, дорабатываемая несколькими поколениями студентов, была оснащена авиационной газовой турбиной с тягой 5500 кгс, гидравлической подвеской колес, каркасной рамой кузова. Ее длина 11 м, высота 1,10 м, масса – порядка 2500 кг. Торможение должно было осуществляться за счет парашютов и воздушных заслонок, а также реверса самой турбины.

В 1978 году многолетний труд был завершен. Новую авторакету успешно испытали на бетонке скоростной трассы в Чугуеве, а потом она была показана на очередной выставке НТТМ в Москве. Но «оседлать звук» нашим конструкторам не удалось до сих пор.

Правда, последнее время снова начались разговоры о создании в нашей стране рекордного автомобиля, способного развить скорость порядка 1500 км/ч! Но кто будет спонсировать этот проект и когда от слов перейдут к делу, пока неизвестно.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Клей для… речного рака?

Клеить иной раз лучше, чем шить или скреплять детали гвоздями, болтами, скобами. И потому с незапамятных времен люди ищут способ склеивать самые различные материалы быстрее и надежней.


По-видимому, первый достоверно подтвержденный исторический факт использования клея – творение неизвестных художников каменного века в пещере Ласко во Франции (датируется XVIII тысячелетием до н. э.). Чтобы живопись продержалась на сырых стенах пещеры как можно дольше, художники верхнего палеолита смешивали краски с каким-то природным клеем.

Изучение керамики, имеющей возраст около 6000 лет, показывает, что уже тогда люди научились использовать клей в качестве средства для быстрого ремонта. А древние египтяне еще за 3000 лет до нашей эры широко использовали клей при производстве различных деревянных изделий и папируса. Этот опыт у них переняли греки и римляне, которые тоже оставили следы клея в истории.

Конечно, в те времена клеи были исключительно природного происхождения. Причем в иных случаях и изобретать ничего не пришлось. Вон, к примеру, гуммиарабик – клей для бумаги – имеет в своей основе смолу вишневого дерева.

Потом клеи научились варить. Давно и широко известен клейстер – клей на основе крахмала. А вспомните хотя бы традиционный столярный клей, желто-коричневые плитки которого состоят в основном из белка, вываренного из хрящей и сухожилий животных. Для более тонких работ иногда применяют рыбий клей, изготовляемый примерно по той же технологии, что и столярный, но с использованием рыбьих хрящиков.

На него, кстати, в 1750 году в Великобритании был выдан первый патент. По мере развития промышленности были запатентованы и другие клеи – костный, казеиновый.

Яичные белки и желтки добавляли не только в состав красок, чтобы они прочнее держались на сводах расписываемых храмов, но и при возведении крепостных стен. И надо сказать, многие стены на таком цементе, простояв тысячелетия, благополучно сохранились и до наших дней.

И в наши дни, когда, казалось бы, все клеи синтетические, продолжаются исследования природных клеящих соединений; специалисты снова и снова обращаются в лабораторию природы. Почему? Поясним хотя бы на одном красноречивом примере.

В офис крупной компании – производителя современных синтетических клев – пришло письмо. Сотрудники лаборатории биологического факультета Университета штата Джорджия в Атланте обращались с просьбой решить их проблему: «Мы занимаемся функциональной магниторезонансной томографией. В качестве модели для исследований мы используем речных раков, реакции которых удобно моделировать и изучать. Однако томография требует достаточно длительной экспозиции, и чтобы картинка не смазывалась, нам необходимо зафиксировать рака внутри пластиковой камеры маленького томографа – например, приклеить его панцирь в нескольких местах. Более того, необходимо зафиксировать (хорошо бы опять-таки с помощью клея) его глазные стебельки, поскольку при их движениях двигается и мозг рака. А самое главное заключается в том, что нам необходимо проводить исследования на одной и той же особи множество раз.

Таким образом, нам нужен водостойкий клей, который бы склеивал очень быстро, был бы нетоксичен и растворялся в относительно нетоксичном растворителе. Существует ли такой продукт?»

По слухам, химики компании-производителя, прочитав список требований, только развели руками: «Дескать, нет таких клеев в природе»… И ошиблись. Потому что в природе подобные клеи как раз существуют. Это доказал недавно профессор биоинженерии Рассел Стюарт из Университета Юты. Он и его коллеги заинтересовались некоторыми способностями морского песчаного червя. Этот обитатель подводных глубин строит себе жилище из песчинок и осколков ракушек, скрепляя их выделяемым им клейким веществом.

Клей этот не боится воды, совершенно нетоксичен: правда, с точки зрения заказчика он обладает одним недостатком – клеит, что называется, намертво. Поэтому придется еще поискать некий растворитель, который бы позволял освобождать того же рака из клейкого плена.

А пока профессор Стюарт и его коллеги нашли клею песчаного червя новую работу. Они провели эксперимент и подбросили жителю морского дна вместо песчинок частички костной и суставной тканей коровы. И что же? Оказалось, что клей морского червя прочно склеивают и эти фрагменты. Причем клей не только скреплял, но и обволакивал элементы сустава, сглаживая все неровности, делая получившийся монолит весьма гладким.


Морской песчаный червь.

«Врачам известно, что после повреждения сустава восстановить его первоначальную форму, как правило, не удается, – рассказал по этому поводу профессор Стюарт. – А шероховатости неминуемо приведут к артриту и воспалению сустава».

Взяв за основу клей морского червя, бионики затем усовершенствовали рецептуру и синтезировали новый клей, с помощью которого скоро станет возможным собирать воедино поврежденные ткани организма. Причем при склеивании новым клеем поломанные кости, как полагают, будут срастаться гораздо быстрее и лучше. Кроме того, однородная органическая структура клея сведет риск появления послеоперационных осложнений к минимуму.

Сейчас клей проверяют на подопытных животных. По мере накопления опыта, хирурги перейдут к экспериментам с участием людей. Полагают, что наиболее эффективным будет применение клея при сравнительно небольших повреждениях – переломах коленей, запястий, лодыжек, суставов, лицевых костей…

Кроме того, в состав клея экспериментаторы намерены добавить еще обезболивающие средства, а также антибиотики, чтобы устранить возможность воспаления.

Некоторые медики предлагают еще вводить в состав клея стволовые клетки. Попадая вместе с клеем в поврежденный сустав, стволовые клетки будут затем трансформироваться в клетки костной ткани, регенерируя кость и устраняя все следы повреждения.

Так что, как видите, природные клеи еще не сказали своего последнего слова в истории.

С. НИКОЛАЕВ

УДИВИТЕЛЬНО, НО ФАКТ!
Комары – кладоискатели



 
Муху странную бери.
Муху в банку посади,
С банкой по полю ходи,
За приметами следи.
Если муха чуть шумит —
Под ногами медь лежит.
Если усиком ведет —
К серебру тебя ведет…
 

Поэт Н. Заболоцкий, написавший эти строки, рассказывал, что сюжет стихотворения о «царице мух» был навеян сочинениями средневекового ученого Агриипа Неттесгейского, жившего в начале XVI века.

Впрочем, о том, что «живые приборы» чувствуют то, что не дано человеку, в народе знают издавна. Множество примет основано именно на этом свойстве живых организмов. Ласточки высоко летают – к вёдру, к хорошей погоде. Чайки ходят по песку – жди шторма… Шахтеры раньше брали с собой под землю канареек – эти птички очень чувствительны к рудничному газу, главному виновнику подземных катастроф. Муравьи перед ненастьем закрывают входы в свой муравейник. А японцы испокон века разводят аквариумных рыбок – предсказателей землетрясения. За несколько часов до начала бедствия они начинают метаться по аквариуму…

Не обошли вниманием подобные факты и ученые.

Известный наш генетик Н. Кольцов еще в 20-е годы XX века ставил опыты по определению чувствительности живых организмов. В двухсотлитровый сосуд с водой, в котором размещались одноклеточные существа – сувойки, он добавлял всего одну каплю примеси. И ножки сувойек тотчас поджимались!..

Позднее некоторыми исследователями, например академиком В. Шулейкиным, было выдвинуто предположение, что живые организмы обладают повышенной чувствительностью к видам излучения, которые не в состоянии зафиксировать ни человеческие органы чувств, ни созданные людьми приборы. Взять хотя бы инфразвук – сверхнизкие (ниже 16 Гц) колебания. Человеческое ухо их не слышит, а вот морские блохи и медузы – вполне. Первые из них, благодаря такой чувствительности, благополучно выбираются за черту прибоя при приближающемся шторме, а вторые заблаговременно уплывают подальше в океан, чтобы их, напротив, не выбросило волнением на берег.

А основатель космической биологии А. Чижевский даже сконструировал аппарат для прогнозирования солнечной активности, главной «деталью» которого были крошечные бактерии. Они меняли свою окраску при малейшем изменении режима солнечной активности.

Не стоит думать, что исследования окружающего мира с помощью «живых приборов» – дела давно минувших дней. Вот какой совершенно необычный метод поиска полезных ископаемых предложила недавно доктор биологических наук Л. Комарова.

По своей научной специализации она – сциаридолог, один из четырех в мире. А сциариды – это крохотные комарики, которые являются чуть ли не самыми многочисленными представителями насекомых на планете. Они могут жить везде – в грибах, в земле, в деревьях, в дверях и оконных рамах. Причем существа эти настолько малы, что их почти никто не замечает. Тем более что вреда от них людям никакого: сциариды не кусаются и не пьют нашу кровь, как обыкновенные комары. А вот о том, какой от сциарид прок, сама исследовательница узнала совсем недавно, да и то почти случайно.

В одну из своих экспедиций она заглянула в Алтайский государственный университет в Барнауле, к человеку, который некогда привел ее в науку. Это с его легкой руки она написала кандидатскую диссертацию по сциаридам. Правда, сам доктор географических наук Г. Барышников насекомыми никогда особо не интересовался. Его больше занимали поиски кладов в подземных кладовых природы. И он рассказал бывшей своей ученице, как разработал вместе с коллегами новый метод поиска полезных ископаемых. И даже показал «секретную» карту Алтая, на которой были указаны места, где, по мнению ученого, стоило бы поискать новые месторождения нефти, угля, золота, алмазов и других полезных ископаемых.

Увидев набросанную от руки карту с крестиками, Комарова сначала не поверила своим глазам. Изображение во многом совпадало с той схемой, на которой она сама обозначила места скопления найденных ею на Алтае древних сциарид. Тут ученые и призадумались: откуда столь удивительные совпадения?

Первое, что удалось выяснить, почему в определенных местах в течение столь долгого времени смогли сохраниться популяции сциарид. Оказалось, что доисторические комары обитают в так называемой переходной зоне Алтайской горной системы, где высока концентрация полезных ископаемых. Так что получается, что наличие комаров-сциарид может быть приметой, помогающей искать нефть или газ.

К сказанному добавим, что попытки использовать патенты живой природы в науке и технике делались неоднократно и далеко не всегда приводили к положительным результатам. Отчасти потому утрачен сегодня интерес к науке бионике, которой еще четверть века тому назад прочили блестящее будущее. Далеко не всегда биологам и биофизикам удается понять, как именно, на каком принципе работают «живые приборы». Но даже поняв это, инженерам и ученым редко когда удается создать столь же чувствительные аналоги.

Вот какая история, к примеру, случилась лет 15 тому назад на биофаке Московского государственного университета. Биофизики умудрились тогда записать на осциллограф сигналы, шедшие от вкусовых щетинок комара-пискуна. Выяснилось, что каждому химическому соединению, которое комар пробует, соответствует определенная последовательность электрических сигналов. Причем датчики-щетинки срабатывали при концентрации всего-навсего в сотые доли грамма примеси на литр.

Казалось бы, вот возможность создания электронных сверхчувствительных анализаторов вкуса. Однако их нет и поныне. И вот почему. Стоило поменять одного комара на другого, как характер электрических импульсов менялся, воспроизводимости результатов добиться не удавалось. Поэтому и интерес к подобным экспериментам стал затухать. Что толку от сверхчувствительности живых датчиков, если их показания нельзя расшифровать?

Со временем, впрочем, ситуация стала меняться. Серия исследований, проведенная под руководством члена-корреспондента РАН Л. Пирузяна, показала, что в качестве таких датчиков можно использовать даже клетки крови. А живые клетки – уже достаточно стандартные образования, чтобы на один и тот же раздражитель всякий раз реагировать одинаково.

В итоге у исследователей стали проходить даже такие чудо-эксперименты. Представьте себе: в пустую комнату зашел некто, постоял минуту и вышел. После этого можно довольно скоро определить, что приходивший человек был в синем вельветовом костюме, что у его шариковой ручки нет колпачка, а сам человек был слегка раздражен, скорее всего бытовыми неприятностями.

Ну, а поскольку живые клетки могут существовать все-таки относительно недолго – самое большее 3–4 месяца, то исследователи стали подумывать об их замене синтетическими аналогами. И кое-чего уже добились. Например, в том же МГУ созданы электронные «носы», которые определенные вещества – скажем, наркотики определенного сорта – распознают лучше, чем специально обученные собаки.

Со временем дело может дойти и до создания чувствительных детекторов, которые будут работать на принципах, помогающих странной мухе, описанной Заболоцким, узнавать, где «под ногами медь лежит». И будут приводить геологов к новым залежам полезных ископаемых.

В. ВЛАДИМИРОВ , Г. МАЛЬЦЕВ

У СОРОКИ НА ХВОСТЕ


МЫШЬ ПОДВОДИТ ЛЮБОПЫТСТВО. Говорят, устройство под названием Mouse RADAR – самая высокотехнологичная мышеловка в мире. Она работает без всяких приманок – в ее удлиненный корпус мыши забираются через маленькие, словно входы в норки, дверки исключительно из любопытства. Но как только зверек оказывается внутри, сенсор срабатывает, и дверки блокируются.

Мигающая лампочка оповестит хозяина о произошедшем событии, а если его нет дома, то мышеловка автоматически отправит SMS на мобильный телефон либо письмо по e-mail на его служебный компьютер, а также на компьютер местного отделения обслуживающей фирмы. Из компании прибудет техник и извлечет несчастную мышь из мышеловки.

ЭЛЕКТРОННАЯ ПОЧТА – ТОЖЕ НАРКОТИК?Психологи сегодня говорят о новой мании – мейлоголии и ее представителях мейлоголиках – людях, не мыслящих своей жизни без электронной почты. «Причина такого вида зависимости – неуверенность в себе, – считает психолог Томас Даниэльссон. – И человек инстинктивно ищет подтверждения, что о нем еще кто-то помнит»…

Психолог, написавший книгу «Под стрессом до сумасшествия», считает, что мейлоголики со временем теряют способность к обычному общению, нормальному восприятию окружающего мира, а значит, не являются полноценными работниками.

Самое удивительное, что помочь этой группе пациентов опять-таки способен… Интернет. По электронной почте они получают специальную программу, следуя которой они воспитывают уверенность в себе. А раз в месяц мейлоголики, по мысли исследователей, должны обсуждать в чате или по телефону, удалось ли им достичь прогресса на пути к избавлению от свой мании.

РОБОТ С ЖИВЫМ МОЗГОМ. Первого киборга, движением которого управляет живой мозг, создали английские ученые под руководством профессора кибернетики Кевина Уорвика – мозг крысы контролирует движение электронного устройства и позволяет роботу ориентироваться в пространстве. Робот-грызун – не только новое слово в создании электронных машин. Ученые утверждают, что он поможет в исследовании работы клеток головного мозга и причин таких заболеваний, как болезни Альцгеймера и Паркинсона.

ДЕРЕВЬЯ ТОЖЕ ЛЕЧАТСЯ. Попадая в стрессовые ситуации, деревья начинают вырабатывать вещество, по своему составу очень напоминающее ацетилсалициловую кислоту, известную в народе как аспирин. К такому выводу пришли американские ученые из Национального центра исследований атмосферы. По их мнению, выделение деревьями химиката служит двум целям. Во-первых, аспирин играет роль защитника их иммунной системы, во-вторых, выделяя вещество в воздух, деревья подают сигнал об опасности соседям. И те тоже начинают готовиться к возможным неприятностям.

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ
Перфокарты XXI века

Мы уже рассказывали вам (см. «ЮТ» № 8 за 2001 г.), как и почему в нынешнем столетии некоторые специалисты предлагают вернуться к вавилонской клинописи. И вот недавно пришло новое сообщение примерно на ту же тему – специалисты всемирно известной компьютерной фирмы IBM решили снова вспомнить о перфокартах.

Перфокартами, если кто не знает, называются кусочки картона с пробитыми в них в определенном порядке дырочками. В приемном устройстве гребенка контактов скользит по картону, время от времени попадая в отверстия. При этом замыкаются контакты и вырабатываются электрические сигналы, которые и служат определенными командами. Именно таким образом осуществлялось около полувека назад управление первыми ЭВМ.

Впрочем, перфокарты пытались использовать еще в XVIII веке создатели первых механических вычислительных машин. А самые первые перфокарты были придуманы для шарманок – механических органов, которые с их помощью могли без помощи музыканта играть ту или иную мелодию.


Так выглядит новая перфокарта под электронным микроскопом при различном усилении. Вверху показана сама перфокарта, внизу – вид шина гребенки и его острие.

Подобные же перфокарты 200 с лишним лет тому назад французский механик Жозеф Мари Жаккар приспособил для ткацких машин, которые с помощью перфокарт могли ткать кружева. И вот перфокарты возвращаются в новом качестве и на новом уровне технологического исполнения.

По мнению многих специалистов, существующие устройства хранения информации не вполне удовлетворяют потребностям индустрии XXI века. Скажем, жесткий диск невозможно встроить в сотовый телефон.

Дело дошло до того, что, хотя в свое время именно IBM первая предложила потребителям жесткие диски, подразделение по их производству уже продано японской компании Hitachi, а в цюрихской лаборатории IBM под руководством Питера Веттигера, начались работы над новым проектом Millipede.


Идут работы над новым проектом в Цюрихской лаборатории.

Фактически новый носитель будет представлять собой ту же перфокарту, с той лишь разницей, что сами карты настолько малы, что увидеть их можно лишь в электронный микроскоп, а размер отверстий в них будет не более 10 нанометров. Таким образом удастся значительно повысить плотность записи, и она обещает превысить аналогичный показатель современных жестких дисков в 20 раз! На чипе размером с почтовую марку можно будет разместить содержимое весьма солидной библиотеки в 25 млн. томов.

Для кодирования информации применяется своеобразная гребенка из тысячи шипов, которые, разогреваясь до 400 °C, проделывают отверстия в специальной полимерной пленке. При считывании эти же шипы фиксируют наличие перфорации. Причем сами шипы неподвижны, а перемещается лишь термопленка. Материал, из которого она изготовлена, позволяет осуществлять перезапись до 100 тысяч раз – при повторном нагреве отверстия затягиваются. Скорость чтения записи повышается по мере увеличения числа шипов в гребенке.

Через год исследователи планируют создать прототип с 4000 шипов и размером рабочей поверхности пленки всего в 7 квадратных миллиметров.

Как предполагают, он может быть использован для производства карманных устройств, например, тех же сотовых телефонов. По расчетам ученых, использование технологии Millipedeпозволит довести емкость памяти сотового телефона до 10 гигабайт, что соответствует объему двух DVD-дисков. Это, в свою очередь, даст возможность создавать и миниатюрные персональные видеомагнитофоны, устойчивые к ударам и воздействию неблагоприятных внешних факторов. Кроме того, предполагается, что новые чипы будут потреблять весьма мало энергии – не более 100 милливатт.

Плюсом Millipedeявляется еще и то, что весь процесс изготовления чипов может быть осуществлен практически на том же оборудовании, что используется сегодня для производства полупроводников. А это, конечно, позволит сделать новые носители памяти достаточно дешевыми.


    Ваша оценка произведения:

Популярные книги за неделю