355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2008 № 01 » Текст книги (страница 5)
Юный техник, 2008 № 01
  • Текст добавлен: 8 октября 2016, 09:38

Текст книги "Юный техник, 2008 № 01"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
По следам маркиза Ворчестера

Если вы разбирали свой велосипедный насос, то заметили, что он очень прост. Но это лишь потому, что мощность его мала. А вообще-то насосы, как правило, очень сложны.

Часто вместо поршня цилиндрической формы в них применяются вытеснительные устройства, выполняющие ту же роль. Их придумано превеликое множество, и каждый месяц в мире патентуются десятки новых. Но вместе с тем изобретатели не теряют надежды создать насос предельно простой, вообще без движущихся элементов. Вот какой опыт поставил в 1661 г. маркиз Ворчестер (Англия). Пушечный ствол он наполнил водой на три четверти и заклепал. После этого развел под этой пушкой огонь… «По прошествии 24 часов она лопнула со страшным треском… я увидел, как вода била постоянным фонтаном в 40 футов высотой», – написал маркиз в своих дневниках. Опыт маркиза нетрудно повторить, использовав вместо пушки металлический пенал от лекарства. Заткните его пробкой, пропустив через нее тонкую трубочку. Если налить в пенал немного воды и подержать над огнем, то очень скоро вода закипит и из трубки начнет бить фонтан.

Маркизу Ворчестеру повезло, что он остался жив, и вы будьте осторожны. Вода в фонтане может быть горячей. Заранее наденьте защитные очки и вообще работайте лучше с учителем.


Рис. 1. Каких только насосов не придумало человечество!

Как вы убедились, тепло позволяет поднимать воду на значительную высоту. Но как поднять таким способом холодную воду, например, из подвала или шахты?

На протяжении веков водоподъемные машины работали на мускульной силе людей и животных. Лишь через 40 лет после опыта маркиза Ворчестера появилась первая водоподъемная машина, работавшая от тепла сгорания топлива. Создал ее англичанин Томас Сэвери.

Проделаем простой опыт.

Нальем в пластиковую бутылку горячую воду, завинтим пробку и быстро обольем холодной водой. Бутылка тотчас сомнется, а на стенках ее появятся капельки сконденсировавшегося пара. В бутылке возникло разрежение, и она была смята атмосферным давлением.

Теперь превратим эту бутылку в водоподъемную машину. Для этого сделаем в пробке отверстие и герметично закрепим в нем при помощи пластилина пластиковую трубочку.

Залейте бутылку горячей водой примерно на одну треть. Заверните крышку, а другой конец гибкой трубочки опустите в воду и поскорее облейте бутылку холодной водой. В ней тотчас образуется вакуум, и через трубочку в бутылку потечет струя воды.

Так примерно работали первые водоподъемные машины Сэвери. Одна из них в 1707 году была выписана императором Петром I из Англии и установлена в Летнем саду, где проработала много лет.

К сожалению, такие машины могли поднимать воду не более чем на 10 метров. Ведь подъем воды в них происходил, в сущности, под действием атмосферного давления.

Между тем имелось множество шахт, где нужно было откачивать воду с глубины 30 м и более. Можно, конечно, было поставить целую цепочку таких машин, но это сложно.


Рис. 2. Повторяем опыт маркиза Ворчестера.

Принципиально по-иному за это дело взялся в том же году Д. Папен. Он построил водоподъемную машину, в которой холодную воду из сосуда вытеснял пар, полученный в отдельном паровом котле. Теоретически, имея достаточно высокое давление, ее можно было бы поднять на очень большую высоту. Но необходимое для этого давление пара еще получать не умели, поскольку не умели делать достаточно прочные паровые котлы.

К этой идее вернулся в 1871 г. американец Генри Холл, создавший «пульсометр» – насос, состоящий из двух камер, в которые поочередно подавался то пар, то сжатый воздух. Поток его управлялся клапанами и поочередно выдавливал из них воду. Пульсометры отличались надежностью, работая без присмотра десятками лет.

Нередко сжатый воздух в пульсометры давали компрессоры, работавшие от двигателей внутреннего сгорания. При этом топливо сгорало в цилиндрах двигателя и создавало давление, которое двигало его поршень. Далее эта сила через механизмы двигателя и компрессора передавалась на поршень, сжимавший воздух. На всех этих этапах возникали громадные потери. Неудивительно, что англичанину Л.Н.Гемфри пришла мысль создать насос, в котором давление вспышки топлива непосредственно действовало на воду. В нем вода, подобно поршню ДВС, совершала возвратно-поступательное движение и сжимала смесь топлива с воздухом. Ее поджигали электрической искрой, и происходил взрыв.


Рис. 3. Охлажденная бутылка способна поднимать воду на значительную высоту.


Рис. 4. Пульсометр мог работать десятки лет без присмотра.

Насосы Гемфри обладали дешевизной, простотой и надежностью, но имели слишком большой расход топлива и поэтому не прижились.

В начале 1980-х годов советский инженер Г.П. Примов раскрыл причину низкого КПД насосов Гемфри. Она заключалась в очень низкой степени сжатия горючей смеси. Из-за этого она при расширении отдавала в форме механической работы лишь незначительную часть своего тепла.

Изобретатель понял, что повысить степень сжатия насоса Гемфри невозможно, и пошел иным путем. К прочному стальному баллону объемом около кубометра он присоединил необходимую арматуру и примерно на 6/7 наполнил его водой. В оставшуюся седьмую часть он закачал от обычного компрессора смесь воздуха и топлива под давлением 7 атм. После этого он при помощи свечи зажигания воспламенил эту смесь. Когда она сгорела, давление в баллоне поднялось до 30 атм, изобретатель открыл кран брандспойта, и из него вырвалась струя длиною около 1 км. Мощность ее примерно в 10 раз превышала мощность компрессора и составляла около 500 л.с.

Для того чтобы получить такую струю при помощи насосов, работающих от дизеля, понадобилась бы установка весом около 20 т. Бак Примова можно было увезти на небольшом грузовичке. Компрессор же был самый обыкновенный, который мы часто видим при ремонте дорог. Вот так завершилась более чем трехсотлетняя эпопея создания водяного насоса без подвижных частей.


Рис. 5. Аппарат Примоваразвивал мощность в 400 кВт.

А. ВАРГИН

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Плывут по небу облака

Всем хорошо известно, что планета Земля обладает магнитным полем, которое легко обнаружить обычным компасом. Но у Земли есть еще и электрическое поле, направленное сверху вниз, от ионосферы, заряженной положительно, к поверхности, заряженной отрицательно. Ионосфера проводит электричество, поскольку в ней много свободных электронов и ионов, создаваемых солнечным излучении ем, космическими лучами и другими факторами.

Земля тоже неплохой проводник, а вот воздух над ее поверхностью – диэлектрик. Таким образом, мы живем как бы между обкладками большого сферического конденсатора размером во весь Земной шар, заряженного до разности потенциалов более 300 000 В.

У поверхности Земли есть небольшой ионный ток, направленный сверху вниз. Его плотность, измеренная чувствительными приборами, составляет несколько пикоампер на квадратный метр. По всей же поверхности Земли этот ток достигает тысяч ампер. Современной науке еще не совсем ясны механизмы генерации атмосферного электричества: по одной из теорий отрицательный заряд к Земле переносят молнии, ведь в каждый момент на Земле бушует около двух тысяч гроз. Перед грозой и в других случаях активной электризации в атмосфере напряженность поля сильно возрастает.

На рисунке 1 условно показана электрическая цепь циркуляции зарядов в нижних слоях атмосферы.


Рис. 1

Видно, что под облаками поле даже меняет направление, поскольку нижняя часть облака заряжена отрицательно.

Исследователь атмосферного электричества И. М. Имянитов пишет: «При высоких значениях электрического поля у земной поверхности порядка 500…1000 В/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т. д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землей и атмосферой».

Простой электрометр, который мы советуем собрать, позволяет провести массу интересных наблюдений и обнаруживать медленно изменяющиеся электрические поля не только от грозовых облаков за окном, но даже от наэлектризованной расчески, перемещаемой по комнате.

Основа прибора – полевой транзистор КП303Г, специально предназначенный для электрометрических устройств, но можно использовать транзисторы этого типа и с другим буквенным индексом и даже полевые транзисторы других типов. Устройство собрано в пластиковой банке из-под продуктов, антенной служит металлическая крышка, например, от круглой коробки конфет, как видно на рисунке 2.


Рис. 2

В боковой стенке банки вырезано отверстие под измерительную головку – микроамперметр на 100 мкА. Вполне подойдут и иные головки, например, от индикатора уровня записи старого магнитофона. На другие боковые стенки корпуса выведены выключатель питания (любого типа), кнопка для «обнуления» показаний, ручка потенциометра установки нуля, а также заземляющий винт или клемма, к которой надо прикасаться пальцем, держа корпус в руках. Схема прибора показана на рисунке 3.


Рис. 3

Большинство деталей смонтировано прямо на выводах головки и других закрепленных деталей. Расположение элементов особого значения не имеет. Следует позаботиться лишь о хорошей изоляции проводов от затвора транзистора к антенне и кнопке «обнуления». Лучше, если эти провода провести просто в воздухе. Конденсатор емкостью 150 пФ (она некритична и может быть от 100 до 1000 пФ) должен иметь малый ток утечки, иначе заряд с затвора и антенны будет стекать слишком быстро. Для питания подойдет батарея типа «Крона» или «Корунд» на 9 В, ее можно закрепить скобочкой из одножильного монтажного провода в изоляции. Потребляемый устройством ток чрезвычайно мал, не более 0,1 мА, поэтому батареи хватит очень надолго. Вид на монтаж сверху (при снятой крышке-антенне) показан на рисунке 4.


Рис. 4

Для уменьшения утечек перед сборкой хорошо вымойте с мылом все детали и просушите их феном.

Собрав все и тщательно проверив правильность соединений, временно отсоедините один вывод оксидного конденсатора 2200 мкФ, включите питание и подождите несколько минут. Затем, удерживая нажатой кнопку «обнуления», выведите стрелку прибора на середину шкалы потенциометром установки нуля. Присоедините оксидный конденсатор на место, еще раз нажмите кнопку и опять подождите. Стрелка должна вернуться на середину шкалы. Теперь, отпустив кнопку, вы уже будете замечать по отклонению стрелки все изменения электрического поля вокруг прибора, например, перемещение вашего тела, а уж движение заряженной расчески – на расстоянии нескольких метров!

Иногда заряд накапливается и на пластиковом корпусе прибора. Чтобы его снять, достаточно провести рукой по корпусу, прикасаясь одновременно к заземляющему винту.

Смысл ваших манипуляций в следующем: нажимая кнопку, вы соединяете затвор транзистора с потенциометром, позволяющим установить ток через транзистор 50 мкА (середина шкалы). При отпущенной кнопке конденсатор 150 пФ сохраняет потенциал затвора, но если на антенну воздействуют электрические поля, то напряжение на затворе изменяется, что и отмечает прибор. Резистор сопротивлением 47 кОм ограничивает максимальный ток через головку, а оксидный конденсатор 2200 мкФ позволяет лучше передать быстрые (с периодом менее 100 с) изменения напряжения на антенне.

В заключение несколько советов: прибор реагирует на сильно наэлектризованные облака даже из комнаты, с подоконника, поэтому не старайтесь выходить на открытые места или поднимать прибор высоко перед грозой – это опасно.

В. ПОЛЯКОВ, профессор

НАШИ ЧЕМПИОНЫ
Знакомьтесь: Катя Лютина

Письма Кати ЛЮТИНОЙиз Воронежа с ответами на вопросы «Приза номера» мы не раз встречали в редакционной почте. А в «ЮТ» № 8 за 2007 г. она стала победителем конкурса. Мы попросили Катю рассказать о том, как ей удается готовить обстоятельные правильные ответы.

Вот ее рассказ.



Мне 16 лет. Журнал я читаю два года. Мне нравятся ваши обложки. Кроме того, в журнале довольно часто печатаются научные статьи, из которых можно узнать немало интересного про новые открытия и изобретения в мире. С удовольствием читаю фантастические рассказы читателей, поскольку я тоже делаю попытки писать и мне это очень интересно…

Что касается моей методики ответа на вопросы, то я прежде всего внимательно читаю сам журнал и многое узнаю из него. Также пользуюсь энциклопедиями и учебниками (например, ответ про резьбу в пушечных стволах я нашла в учебнике истории). Интернетом пользуюсь не часто.

Во-первых, потому, что считаю: пользоваться подсказками всемирной паутины – не честно. Во-вторых, по-моему, в сети мало что можно найти сразу по делу – среди предлагаемой информации немало и всякой чепухи.

Немного о себе. Я родилась в Ташкенте в 1991 году, потом в связи с перестройкой наша семья вынуждена была оттуда уехать. Сейчас живу в Воронеже, учусь в средней общеобразовательной школе № 13, в 11-м классе. Мне 16 лет. С детства увлекаюсь радиоэлектроникой, в школе отдаю предпочтение техническим наукам, с которыми в дальнейшем хочу связать свою карьеру.

Отчасти это влияние моих родителей: они работают в федеральном Государственном научно-исследовательском испытательном центре, занимаются проблемами радиоэлектроники. Еще папа преподает в Воронежском высшем авиационном инженерном училище.

Дома у меня есть поделки: радиоприемники, прибор для изучения кода Морзе, Кот-лакомка, электронная мандолина. А еще пять моих устройств были представлены в том же Воронежском высшем авиационном училище среди других работ курсантов и школьников. Это макеты приемника прямого усиления и приемника стереосигналов, выпрямитель, детекторный приемник, монтажная панель для транзистора. На них мне выданы удостоверения как рационализатору. В этом учебном году я собираю электромузыкальный инструмент «терменвокс» и на его примере изучаю применение правил тригонометрии в радиотехнике.

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ


Последнее время в продаже стали все чаще появляться энергосберегающие лампочки. Стоят они довольно дорого, а потому вопрос: оправдывают ли они себя? И еще говорят, что излучение таких ламп вредно. Это так?

Денис Лекомцев,

г. Орел

По существу, такие источники света представляют собой те же лампы дневного света, только конструктивно оформленные так, что их можно вворачивать в обычный электропатрон. Отсюда их преимущества и недостатки. Эти лампы действительно потребляют меньшую мощность при большем световом потоке, чем обычные лампы накаливания, так что со временем затраты могут окупиться.

С другой стороны, спектральный состав излучаемого света, а также мерцание излучения не совсем благоприятны для зрения. Так что лучше подобные лампы использовать для общего освещения, например, в люстрах, но не для настольных ламп и прикроватных светильников.


Слышал, что японцы наконец-таки научились предсказывать землетрясения. Как им это удалось?

Андрей Лукин,

г. Петропавловск-Камчатский

Инженеры японской компании SunShineдействительно предложили систему EQGuard, которая, как они надеются, позволит спасти тысячи жизней. В основу работы этой системы положена информация, которую передает Метеорологическое агентство Японии. А оно, в свою очередь, опирается на данные традиционных сейсмодатчиков. Таким образом, система EQGuardпредставляет собой не более чем оповещатель, который примерно за 20 секунд до начала подземных толчков через громкоговоритель начинает громко отсчитывать секунды, призывая жителей как можно быстрее покинуть свои дома.


Слышал, что порошок, который используется в лазерных принтерах и ксероксах, очень вреден для здоровья. Так ли это?

Наталья Касатонова,

г. Тамбов

Совместно со своими немецкими коллегами австралийские исследователи провели недавно серию экспериментов, подвергнув испытаниям 32 типа лазерных принтеров. В результате они выяснили, что больше всего лазерные принтеры «пылят» при печати первых 4–5 страниц. Но даже в это время уровень запыленности помещения, где работает такой принтер, значительно ниже, чем, скажем, на улице со средней интенсивностью автомобильного движения.

И все же мы бы рекомендовали при перезарядке картриджей лазерных принтеров соблюдать осторожность, аккуратность и пользоваться марлевыми повязками, которые можно купить в любой аптеке. А также тщательно убирать после перезарядки все следы случайно просыпанного порошка.


Говорят, большинство изобретений, открытий и прочих новаций осуществляется жителями больших городов. Так ли это? А если так, то почему такое происходит?

Анатолий Казаков,

г. Пенза

Своеобразное «правило 15 процентов» было недавно выведено группой американских исследователей во главе с профессором Луисом Бекенкорфом. Они установили, что в городе с 2-миллионным населением число уличных происшествий, преступлений, а также всевозможных новшеств на 15 % больше, чем в городе, где живет 1 млн. жителей. Аналогичный прирост наблюдается и для города с населением в 4 млн. и т. д.

«В мегаполисе темп жизни выше, число людей, с которыми контактирует каждый житель, значительнее, – объясняет профессор Бекенкорф. – Отсюда и большее число происшествий, более быстрый обмен идеями»…

ДАВНЫМ-ДАВНО

Первая подземная железная дорога появилась в Лондоне в 1863 году. Строили ее открытым способом в траншеях глубиною 6 метров. Паровозы тянули составы в широких тоннелях с множеством вентиляционных отверстий для удаления дыма и пара. Впоследствии эту дорогу решили дополнить новыми линиями более глубокого заложения, воспользовавшись опытом строительства тоннеля под Темзой в 1824–1843 годах.


Руководил строительством тоннеля французский инженер Марк Изамбар Брюнель. Первоначально он задумал создать машину, которая, словно червь, должна была ввинчиваться в землю, разрушая перед собою породу мощными лезвиями. Построить такую машину М.И. Брюнель не сумел и применил проходческий щит, состоявший из двенадцати трехэтажных стальных секций, в каждой из которых работал один землекоп. Секции защищали его от возможного обрушения породы, а по мере ее выработки их передвигали домкратами.

В начале 1930-х годов Советское правительство приняло решение о строительстве метро в Москве. С самого начала оно рассматривалось как грандиозное бомбоубежище, и уже потому строили на большой глубине. Для его строительства тоже применили проходческие щиты. На первых порах в них работали люди с отбойными молотками, но вскоре их заменили миниатюрные пневматические экскаваторы. В начале 1980-х годов в Московском метро начал работать проходческий щит с многометровой фрезой спереди.

Так через сто шестьдесят лет осуществилась идея Брюнеля.


ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Вода течет по трубе. Как изменится ее скорость, если где-то в одном месте начать трубу сильно подогревать?

2. Почему зимой на стекле образуются морозные узоры? Объясните физику процесса.

3. Почему поставленный стоймя карандаш падает при малейшем толчке, а судно-«конек» стоит вертикально даже при сильном волнении моря?

ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ

«ЮТ» № 8 – 2007 г.

1. Радиосвязь с подлодкой будет лучше в пресной воде. Соленая вода проводит электрический ток, и в ней потери радиоволн будут больше.

2. Геккон бегать по потолку на Марсе вряд ли сможет, поскольку там очень разреженная атмосфера, присоски будут очень плохо работать.

3. Делать люстры с лампочками от карманного фонаря не стоит. Маломощные лампочки, даже собранные вместе, имеют меньшую светоотдачу, чем одна мощная лампа.

* * *

Поздравляем с победой Иру БОРОДКИНУиз п. Озерный Тверской области. Она получит приз – диктофон Panasonic.

Правильно ответили на все вопросы и наши многократные чемпионы Екатерина ЛЮТИНАиз Воронежа и Владислав ДИДЕНКОиз Краснодара, а также Олег ИЛЬИНиз Нижнего Новгорода.

Спасибо всем участникам конкурса.

Желаем успеха на следующих этапах.

* * *

А почему?Могут ли люди жить без вирусов? Из скольких камней сложена пирамида Хеопса? Почему обыкновенные весы надо считать одним из самых великих изобретений человечества? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в столицу Греции Афины.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики. 

ЛЕВША– Современная бронированная дозорно-разведывательная машина преодолеет бездорожье и водные преграды. Она без подготовки вступит в бой после десантирования с воздуха, поражая пехоту, наземную технику противника и даже вертолеты. О такой машине вы многое узнаете из журнала и сможете выклеить модель для своего «Музея на столе».

– Итоги очередного конкурса «Хотите стать изобретателем?» и новые технические задачи.

– Любители электроники узнают об уникальной HiFi акустической системе без… динамиков. А юные историки познакомятся с экипировкой древних египетских воинов и изготовят для себя костюмы и вооружение для показательных военных игр.

Как всегда – будут головоломки и полезные советы.

* * *




    Ваша оценка произведения:

Популярные книги за неделю