355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2008 № 01 » Текст книги (страница 4)
Юный техник, 2008 № 01
  • Текст добавлен: 8 октября 2016, 09:38

Текст книги "Юный техник, 2008 № 01"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ПАТЕНТНОЕ БЮРО



В этом выпуске ПБ мы расскажем про вертолет-трансформер Александра Сидуковаиз г. Новосибирска, о космическом роботе О.Н. Гуськоваиз г. Горки Могилевской области (Республика Беларусь) и о проекте скоростной подводной лодки Юрия Воробьеваиз Архангельска.


АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1099

ВЕРТОЛЕТ-ТРАНСФОРМЕР

Создать вертолет, способный превращаться в самолет, предлагает Александр Сидуков из г. Новосибирска. Вертолет – полезная машина, но летает он значительно медленнее, чем самолет, и вот почему.

Его подъемную силу создает большой воздушный винт, лопасти которого вращаются в горизонтальной плоскости; тот же винт за счет небольшого наклона оси создает и горизонтальную тягу.

Присмотримся к тому, что происходит на лопастях.

Одна из них движется вперед по направлению полета, и к ее собственной скорости прибавляется скорость полета. При этом растет сопротивление воздуха и снижается подъемная сила. Противоположная же лопасть винта в этот момент, наоборот, движется назад. Скорость полета вычитается из ее собственной. Это также вызывает резкое снижение подъемной силы.

Возникает ситуация, когда винт не держит машину в воздухе и не тянет, а мощность двигателя не позволяет достичь больших скоростей; 300–350 км/ч – вот предел для вертолета обычной схемы. Потому конструкторы работают над летательными аппаратами, которые сочетают в себе свойства вертолетов и самолетов. Так появилась идея вертолета-трансформера, способного взлетать вертикально, превращаться в самолет и летать с большой скоростью, а затем снова становиться вертолетом и садиться вертикально.

Вертолеты-трансформеры имеют небольшие крылья и отдельные винты, создающие горизонтальную тягу. Но одного этого для достижения высоких скоростей недостаточно. Несущий винт по-прежнему продолжает мешать быстрому полету, поэтому было предложено после набора достаточно высокой скорости его останавливать. А что же с ним делать дальше?

Одно время конструкторы были рады и тому, чтобы винт просто как можно меньше мешал. В полете его разворачивали вдоль корпуса, в положение, когда его сопротивление невелико. Машина превращается в самолет и летит за счет тяги вспомогательного винта и крыльев. Однако превращение такого аппарата из самолета в вертолет сопровождалось потерей равновесия и приводило к катастрофе.

Тогда нашли иное решение. Согласитесь, каждая лопасть винта – это своеобразное крыло. Вот и попытались конструкторы, остановив винт, закрепить его так, чтобы лопасти стали поперек набегающего потока воздуха и каждая из них превратилась бы в крыло. А лопастям винта придали симметричный профиль. Такие лопасти и получающиеся из них крылья оказывают воздушному потоку более высокое сопротивление. Но этим можно пренебречь, поскольку появляется возможность создания вертолета, летящего со скоростью самолета.

Александр Сидуков пошел в этом же направлении еще дальше. Лопасти его винта после остановки разворачиваются немного назад и весь винт в целом превращается в стреловидное крыло, пригодное для работы даже на сверхзвуковых скоростях.

Правда, и в этом случае одну из лопастей набегающий поток обтекает «задом наперед», что может привести к опрокидыванию машины. Однако Александр предусмотрел механизм изменения кривизны. Это позволит выровнять их сопротивление и подъемную силу.

Экспертный совет ПБ присудил Александру Сидукову авторское свидетельство.



Разберемся не торопясь

СОЛНЕЧНЫЙ РОБОТ – ЗАВОЕВАТЕЛЬ ПЛАНЕТ

Для работы в опасных условиях далеких планет О.Н. Гуськов из г. Горки Могилевской области (наш автор, к сожалению, не указал своего имени) предлагает создать робота, внешне похожего на человека. В голове его располагаются микрофон, громкоговоритель и две телекамеры – глаза. Робот будет работать от солнечных батарей, а команды управления получать с Земли. Главное его назначение – строительство жилья для людей и управление космическими кораблями. Автор предусмотрел также лазерное оружие «для защиты от чужих космических кораблей».

Надо сказать, что над подобными конструкциями инженеры и ученые работают давно и добились немалых успехов. Известно несколько вариантов подобных машин. Но есть, конечно, и нерешенные задачи. Так, например, пока не удалось добиться, чтобы двуногий робот сохранял равновесие на больших скоростях, как человек. Но нужно ли роботу, предназначенному для далеких планет, сходство с человеком?


При внешней простоте современный робот устроен очень сложно.

Наш «Луноход-1», запущенный на Луну в октябре 1970 г., уже мог выполнять многие из задач, на него возлагаемых. Аппарат двигался по Луне и строго выполнял все предписанные ему действия по командам с Земли. Ходовая часть его состояла из восьми колес с электромоторами, и никаких проблем с устойчивостью лунохода не существовало. Ничто не мешает оснастить подобный аппарат парой или даже двумя парами механических рук, и он сможет выполнять многие строительные работы, будучи при этом гораздо проще двуногого робота.

И все же работы идут во всех направлениях. Ведь где-то, например, при исследовании пещер или при возведении на Луне каркаса сложного сооружения может понадобиться устройство, по своей «анатомии» полностью подобное человеку.

А оружие… Нужно ли оно роботу-строителю?

Допустим, появились инопланетные корабли, стоит ли с ними воевать? Сам факт их появления означал бы, что мы, люди, не единственные во Вселенной разумные существа! Согласитесь, это было бы здорово!


ПОЧЕТНЫЙ ДИПЛОМ

СВЕРХСКОРОСТНАЯ ПОДВОДНАЯ ЛОДКА

«Я читал, что у нас разработана торпеда «Шквал», движущаяся под водой со скоростью более 100 м/с, – пишет Юрий Воробьев из Архангельска. – Такая скорость достигнута за счет применения в торпеде секретного способа снижения сопротивления. Предлагаю на этом принципе построить сверхскоростную подводную лодку».

Рассмотрим предложение Юрия. Начнем с того, что секрета в примененном на торпеде способе снижения сопротивления нет. Его открыл еще в 1921 году великий русский аэрогидромеханик П.Д. Рябушинский. Он снабдил обтекаемое тело этаким «пятачком» на носу и поместил его в быстрый поток воды. Сначала давление потока на тело было огромным, но затем снизилось почти до нуля: тело оказалось заключено внутри прозрачной полости – каверны. Вода, обтекая каверну, нигде не соприкасалась с поверхностью тела, и обычных сил трения не было. Оставалась лишь небольшая сила удара потока воды по крохотному пятачку в носу тела. Эти эффекты и позволили резко снизить сопротивление торпеды.


Дмитрий Павлович Рябушинский(1882–1962)

Торпеду «Шквал» начали испытывать в 60-е годы прошлого века. Почему ее не построили гораздо раньше? Дело в том, что такой торпеде необходима очень большая тяга для выхода на режим кавитации в первые секунды старта, а обычный винт обеспечить этого не мог.

Поэтому на «Шквале» применяется целая батарея ракетных двигателей. Но торпеда «Шквал», напомним, способна работать при малом давлении – на глубине до 20 м, где каверна образуется сравнительно легко. Современные же подводные лодки ради скрытности передвижения вынуждены забираться на многие сотни метров вглубь.

Высокое давление на больших глубинах будет прижимать стенки каверны к корпусу лодки, а без нее сопротивление воды резко возрастет. К тому же, на больших глубинах из-за высокого давления резко уменьшается объем выделяющихся газов, и тяга реактивного двигателя стремительно падает. Он не сможет обеспечить скорость, достаточную для образования каверны вокруг корпуса подводной лодки.

Таким образом, принципы движения торпеды «Шквал» явно не пригодны для глубин, на которых действуют подводные лодки, так что сверхскоростную подводную лодку на этом принципе не создать.

Впрочем, есть, наверное, другие способы. Ими пользуются, например, морские животные. Если вам придет в голову что-то интересное – пишите. А Юрию Воробьеву за постановку интересного вопроса Экспертный совет ПБ присуждает Почетный диплом.


Торпеда « Шквал» движется в воде со скоростью самолета.


Тело, помещенное в стремительно мчащийся поток воды, оказывается заключено внутри практически пустой полости-каверны.

НАШ ДОМ
Борьба с морозом



Россия наша, как известно, расположена отнюдь не на экваторе. И даже при нынешнем глобальном потеплении морозы во многих регионах бывают нешуточные. Да и отопление зачастую оставляет желать лучшего. Словом, если вы уже начали мерзнуть, надо утепляться.


Работаем с пеной

Морозные узоры на стеклах, конечно, красивы. Но их наличие, между прочим, говорит о том, что вы плохо подготовили окна к зиме. Именно окна – главные транжиры тепла в домах и квартирах, уверяют специалисты. До 40 % потерь приходится именно на них. А потому ими и займемся.

Лучше всего, конечно, поставить в квартире стеклопакеты. Сейчас с этим проблем нет: заплатите – и вам поставят новые окна всего за несколько дней. Но если такой радикальный способ вам не по карману – тоже ничего страшного. Грамотная теплоизоляция обычных окон позволяет поднять температуру в помещении сразу на 4–5 градусов.

Начните с поиска мест, где больше всего утекает тепло. Сделать это можно с помощью горящей свечи. Проведите ею медленно вдоль каждой оконной рамы. Там, где пламя начнет рваться внутрь квартиры, и происходит утечка тепла. Холод проходит не только через щели в рамах, дыры между рамой и стеной; он пробирается также через неплотности соединения стекол и рам.

Все эти утечки нужно ликвидировать. Желательно, конечно, законопатить щели, как с внутренней, так и с наружной стороны рамы. Но до этого обычно ни у кого руки не доходят. Поэтому раньше затыкали щели изнутри ватой, а сверху проклеивали все стыки газетной бумагой.


Однако на дворе все-таки XXI век. И лучше воспользоваться современными материалами и средствами. Стоят они не так уж дорого. Итак, вам понадобится силиконовый герметик (180 рублей за баллон), пистолет для него (80 рублей), профильный оконный уплотнитель (20–50 рублей погонный метр), теплосберегающая пленка (270 рублей квадратный метр) и монтажная пена (250 рублей за баллон).

Начинают утепление с самых крупных зазоров между рамой и стеной. Заделывают их монтажной пеной. При этом важно помнить, что, застывая, пена увеличивает свой объем в 2–3 раза, сжимая при этом деревянные рамы. Чтобы их не перекосило, не полопались стекла, нужно прибить (а лучше привинтить шурупами) к раме временные бруски-распорки. Убрать их можно через 14 часов или даже через сутки после окончания работы.

Для лучшего застывания пены мастера предварительно обрызгивают щель водой из пульверизатора. Затем пускают саму пену из расчета заполнения щели примерно на треть глубины. Причем при заделке вертикальных щелей начинать работу лучше снизу, тогда жидкая пена не будет чересчур растекаться.

Свежие швы опять-таки обрызгивают водой из пульверизатора, а затем – примерно через полчаса – срезают излишки пены ножом. Убрать случайные пятна от пены лучше сразу же, пока они не застыли. В крайнем случае используйте для растворения ацетон или подобный растворитель.


Уплотнители бывают разные

Теперь займемся щелями между переплетом и оконным стеклом. Здесь потребуются силиконовый герметик и монтажный пистолет. Для качественной изоляции нужно аккуратно снять штапик (рейку, которая удерживает стекло на месте), вынуть стекло, нанести герметик на раму, затем вернуть стекло и штапик на место.

Но это лучше было делать осенью. Сейчас придется делать все проще и хуже. Нанесите герметик по периметру стекла с той стороны, где нет штапика, стараясь, чтобы он заполнил щели между стеклами и рамой.

Далее воспользуйтесь самоклеящимся уплотнителем, который прикроет щели между створками окна и рамой.

Чтобы измерить размер щелей, заверните в полиэтиленовую пленку пластилиновую колбаску и прищемите ее рамой. Толщина слепка и даст нужную информацию.

В продаже ныне бывают уплотнители разных типов.

Профиль в виде буквы «Е» годится для зазоров в 2–3,5 миллиметра, в виде «Р» – для щелей в 3–5 миллиметров, «D» для отверстий в 3–7 миллиметров.

Отмерьте шнур уплотнителя с таким расчетом, чтобы его не нужно было растягивать по периметру створки окна. Конец уплотнителя срезают под углом 45 градусов, снимают на небольшом участке защитный слой и приклеивают этот кусочек ближе к верхнему краю рамы, затем очищают следующий участок и приклеивают его вплоть до нижнего уровня. После чего аккуратно и плотно закрывают створки окна.



Пленка тоже пригодится

Если вы полагаете, что принятых мер еще недостаточно, можно использовать теплоотражающую пленку. Такая пленка толщиной 35–50 микрон с покрытием, которое пропускает видимый свет, но отражает до 90 % инфракрасного (теплового) излучения, сослужит вам хорошую службу круглый год.

Летом, в жару, она будет отражать излишнее тепло, рвущееся в дом с улицы. Ну, а зимой, напротив, тепло будет отражаться внутрь, гарантированно повышая температуру в помещении на 1–2 градуса.

Для установки на окна лучше всего подходят низкоэмиссионные пленки LE 35 и LE 50. Работать с ними нужно в хлопчатобумажных перчатках, чтобы поверхность пленки оставалась чистой. Довольно часто говорят, что для закрепления пленки на стекле достаточно прижать ее к чистому стеклу и нее сколько раз протереть сухой тряпочкой. Дескать, пленка после этого сама прилипнет к стеклу за счет электростатических сил.

Но мы бы все же рекомендовали вам подстраховаться и дополнительно приклеить пленку по периметру с помощью прозрачного скотча.

И в заключение вот вам еще два совета, которые позволят сохранить больше тепла в доме. Во-первых, проветривайте помещение недолго, но интенсивно. Лучше открыть окно на непродолжительное время. Воздух успеет смениться, но не успеет охладить поверхности в помещении. А вот держа постоянно приоткрытой форточку, вы за свой счет обогреваете улицу.

Во-вторых, не ленитесь закрывать окна на ночь плотными шторами. Они послужат дополнительными теплоизоляторами как раз в самое холодное время суток.

И. ЗВЕРЕВ


Кстати…

ПОЛЕЗНЫЕ СОВЕТЫ

Если в окне по какой-то причине лопнуло стекло, его, конечно, придется заменить. Лучше всего это сделает вызванный на дом стекольщик. Но можете и вы сами.

Замерьте длину и ширину стекла с учетом тех допусков, что скрыты за штапиком, и закажите новое стекло в мастерской. Дома аккуратно вытащите старое стекло и замените на новое. А до тех пор, пока нового стекла нет, заклейте трещину прозрачным скотчем. И из окна меньше дуть будет, и есть гарантия, что осколок треснувшего стекла не выскочит невзначай из рамы, не нанесет кому-нибудь травмы.

КОЛЛЕКЦИЯ «ЮТ»


По мнению специалистов, Fiat C.R.42 Falco(«Сокол») был одним из лучших в мире бипланов. Прочный, быстрый и маневренный, он мог постоять за себя в стычках с более скоростными самолетами. Крылья самолета были из дюраля и стали, а их обшивку делали полотняной, с металлической передней кромкой. Верхнее крыло, состоявшее из двух соединенных в центре секций, поддерживалось над фюзеляжем V-образными стойками. Стойки и колеса закрывали обтекатели, а хвостовое колесо не убиралось.

Самолеты вооружали одним 12,7-мм и одним 7,69-мм пулеметами, позже стали ставить по два 12,7-мм пулемета с боекомплектом из 400 патронов на ствол, а на некоторые самолеты устанавливали два дополнительных 12,7-мм пулемета в подкрыльевых обтекателях. Самолет мог также нести две 100-кг бомбы.

К 1942 году, когда производство самолета прекратили, было собрано почти 1800 экземпляров Falco, но уцелело только 113 машин.


Технические характеристики:

Длина самолета… 8,25 м

Высота… 3,06 м

Размах верхнего крыла… 9,70 м

Размах нижнего крыла… 6,50 м

Площадь крыла… 22,42 м 2

Мощность двигателя… 840 л.с.

Крейсерская скорость… 399 км/ч

Максимальная скорость… 441 км/ч

Практическая дальность… 780 км

Скороподъемность… 710 м/мин

Практический потолок… 10 210 м

Экипаж… 1 чел.


Компактный пятидверный седан с передним приводом и поперечно расположенным двигателем, TATA Indicaвпервые был представлен в октябре 1998 года. Машина была оснащена 4-цилиндровым рядным двигателем объемом 1,4 л, мощностью 60–75 л. с. или дизельным двигателем объемом 1,4 л и мощностью 54 л. с. Стоил автомобиль всего 5100 долларов, что немного для Европы, но немало для Индии. Тем не менее, для фирмы « Tata Group» создание первой целиком индийской машины стало осуществлении ем давней мечты.

Поначалу покупатели раскритиковали модель, но уже через полгода большинство недостатков было исправлено, и на свет появилась новая версия – V2. Сейчас этот автомобиль можно назвать народным: по продажам он занимает в Индии одно из первых мест.


Технические характеристики:

Количество дверей… 5

Длина… 3,66 м

Ширина… 1,625 м

Высота… 1,485 м

Снаряженная масса… 930 кг

Максимальная масса… 1380 кг

Объем двигателя… 1405 см 3

Мощность двигателя… 60 л.с.

Максимальная скорость… 150 км/ч

Объем топливного бака… 37 л

Время разгона до 100 км/ч… 15 с

Расход топлива:

в городе… 10 л/100 км

на шоссе… 6 л/100 км

ПОЛИГОН
Причуды кипящего потока

В классе нетрудно поставить опыты по оптике, электростатике, магнетизму. А вот как быть, к примеру, со сверхзвуком?

Процессы в реактивных двигателях самолетов показать в школе, казалось бы, просто невозможно, поскольку скорость звука в воздухе достаточно велика – 340 м/с и для их получения нужны сверхзвуковые аэродинамические трубы огромной мощности. Обычно они кратковременно работают от запаса сжатого воздуха из баллона.

Стремясь уменьшить размеры и мощность аэродинамической трубы, изобретатели предлагали применять в них вместо воздуха иные газы, в которых скорость распространения звука была бы меньше. Однако успеха они не добились. Размеры и мощность сократились ненамного, зато появились другие трудности, газы оказывались дороги, ядовиты, неудобны в работе. И все же решение здесь есть.

В 70-е годы прошлого века ученые подметили, что смесь воды и небольшого количества (1–5 %) водяного пара течет по трубам медленнее, чем просто вода, хотя теоретически ее скорость может достигать скорости звука. Для воды скорость звука – 1440 м/с, для пара – 300 м/с. Оказалось, скорость звука в пароводяных смесях удивительно низка и может доходить до 6–8 м/с, отчего порою и «не хочет» такая смесь течь по трубам.

С пароводяными смесями многие из нас встречались, даже того не подозревая. Бывает, повернешь водопроводный кран – и раздается грохот. Это вскипает вода, проходя через кран.

Откуда в кране может взяться столько тепла, чтобы вода вдруг вскипела? Вспомним, что температура кипения воды зависит от давления. Она кипит при 100 °C лишь при нормальном атмосферном давлении. Если же давление снизить, то снижается и температура кипения.

Так, в горах на высоте 3000 м вода кипит при 90 °C, а на высоте 16 тыс. м вода закипает при 18 °C.

При открывании крана вода начинает течь через узкий зазор и скорость ее в этом месте по закону Бернулли возрастает, а давление становится столь низким, что вода вскипает и в ней образуется множество пузырьков пара. Далее, пройдя узкое место, вода свое движение замедляет, давление в ней повышается, пузырьки пара схлопываются, создавая при соударении тот самый шум, что мы слышим.


При повороте крана образуется узкая щель. В ней вода течет с большой скоростью, давление понижается, и она закипает. Образуются пузырьки пара. В широком месте трубопровода пузырьки схлопываются.

Если воду пропустить через расширяющееся сопло, она может превратиться в пароводяную смесь, а скорость ее превысит скорость звука, допустимую в этой смеси. На срезе сопла возникнет скачок уплотнения – тонкий пароводяной слой с очень высоким давлением.

Подобные процессы подробно исследованы ведущими специалистами Автономного некоммерческого общества «Аспект-Конверсион» В.А. Коссом и его коллегами, и это позволяет продемонстрировать в школьных условиях обтекание тела сверхзвуковым потоком.

Абсолютная величина его скорости для природы процесса безразлична и на виде наблюдаемой картины не скажется. Потому и не стоит создавать поток воздуха с самолетными скоростями более 330 м/с, а можно ограничиться скоростями 6 – 10 м/с.

Вместо воздуха мы возьмем пароводяную смесь, содержащую по массе около 1–5 % водяного пара, для которой такие скорости – это уже скорость звука. Чтобы разогнать ее до такой скорости, нам потребуется в тысячи раз меньшая энергия, чем для разгона такого же количества воздуха.

На последнем рисунке изображена схема школьной установки для демонстрации картин сверхзвукового обтекания. Установка работает от водяного насоса, дающего давление 2,5–3 атм., а в городах для ее работы достаточно давления водопровода. Изучаемый предмет располагается в сверхзвуковом участке – расширяющейся части сопла. Но поскольку процесс необходимо наблюдать, сопло в этом месте нужно сделать прозрачным и плоским. (Такие сопла впервые применил великий немецкий аэрогидромеханик Людвиг Прандтль (1875–1953). Возникающие при обтекании ударные волны можно увидеть в теневой проекции, освещая сопло лампочкой от карманного фонаря в абажуре из черной бумаги.

Запускается установка следующим образом. Сначала получим на экране или белой стене теневую проекцию прозрачного сопла. После этого откройте кран и плавно увеличьте подачу воды. Постепенно вы увидите, что в сопле образовался пар, и в определенный момент в его расширяющейся части появится четкая тень скачка уплотнения. После этого можно при помощи куска проволоки ввести в сопло пробное тело и увидеть появление на нем ударных волн.


Установка для демонстрации спектров сверхзвукового обтекания:

1– сужающийся канал; 2– плоское сопло Лаваля; 3– изучаемое тело; 4– точечный источник света.

А. ИЛЬИН


    Ваша оценка произведения:

Популярные книги за неделю