355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2009 № 10 » Текст книги (страница 5)
Юный техник, 2009 № 10
  • Текст добавлен: 7 октября 2016, 13:53

Текст книги "Юный техник, 2009 № 10"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

ЭКСПЕРИМЕНТ
Солнечное оружие Архимеда


Если верить легенде, во время осады Сиракуз римлянами в 212 году до нашей эры, защитники города сожгли римский флот, при помощи зеркал и отполированных до блеска щитов сфокусировав на триремах по приказу Архимеда солнечные лучи. Со временем к легенде начали относиться именно как к легенде, и возобладало мнение, что корабли поджигали метко брошенные зажигательные снаряды, а сфокусированные лучи солнца служили лишь прицельными метками для баллист, как лучи современных лазерных прицелов.

Первым, кто взглянул на легенду о зеркалах, как на задачу, был, по мнению историков, византийский математик, механик и архитектор Анфимий Тралльский, живший в VI веке. В своем труде «Об удивительных механизмах» он попытался дать объяснение оптических свойств зажигательных зеркал и даже, по некоторым свидетельствам, сумел построить систему из семи шестиугольных зеркал, одно из которых помещалось в центре, а остальные – по сторонам. С помощью этой системы Анфимий якобы сжег дом обидевшего его соседа Зенона.

Впрочем, по свидетельству современника Анфимия, византийского историка Агафия, Анфимий дом не сжег, а лишь напугал соседа и его гостей «грозой». Гром имитировали удары по металлическим листам, а «молнией» был направленный на дом обидчика солнечный зайчик.

Так осуществимо ли «солнечное оружие»?

Наверняка вы поджигали с помощью лупы в солнечную погоду сухие листья или обрывки бумаги. Мощность луча в подобных опытах не превышает мощности излучения лампочки от карманного фонаря, но вся она сосредоточена на ничтожной площади пятна, и это позволяет получить температуру 500 °C и выше. Если сконцентрировать энергию на борту деревянной триремы, то, конечно, и она заполыхает.

Увеличительных стекол во времена Архимеда не было, но роль линз могли играть вогнутые зеркала или система из множества плоских зеркал, нацеленных в одну точку.

Остается лишь понять, каковы должны были быть размеры одиночного вогнутого зеркала или системы плоских зеркал. Ведь одно дело зажечь сухой лист, который находится в 5 см от лупы, другое – римские суда, стоявшие на якоре в пятидесяти метрах от стен Сиракуз. Маленькой линзой их не поджечь. И вот почему.

Часто мы говорим, что «линза или вогнутое зеркало собирает свет». Если говорить точнее, ни линзы, ни вогнутые зеркала, вообще никакие оптические устройства свет не собирают, а только лишь создают действительное изображение источника света.

Значит, для того, чтобы поджечь триеру, Архимед должен был на ее борту получить изображение солнца.

Чем меньше будут его размеры, тем лучше, значит, будет выше энергия и соответственно температура. Каковы же будут размеры изображения солнца, если мы наведем его на борт судна, стоящего на расстоянии 50 м?

На рисунке показано, как получается действительное изображение солнца при помощи линзы. Его размеры определяют центральный и осевой луч. На этих лучах мы построили подобные треугольники ОАВи OCD.


А дальше – давайте считать.

Диаметр Солнца около 1,4x10 6км, расстояние от Земли до Солнца 150x10 6км, расстояние от линзы до триеры – 0,05 км. Из подобия треугольников следует, что диаметр изображения Солнца равен 0,46 м, а площадь примерно 0,17 м 2. И уменьшить его невозможно. А площадь входного отверстия собирающего устройства составит около 10 м 2. При этом форму и конструкцию собирающего устройства теория не оговаривает. Они могут быть любыми.

Так что, исходя из несложных расчетов, можно сделать вывод, что солнечное оружие возможно. Более того, создать его не так уж сложно, достаточно лишь направить в одну точку лучи зеркал общей площадью 10 м 2.

Возможно, подобными расчетами руководствовался французский натуралист, биолог, математик, естествоиспытатель и писатель XVIII века Жорж Луи Бюффон, будто бы сумевший в присутствии короля Людовика XV поджечь на расстоянии 50 метров дубовую доску с помощью установки из 128 плоских зеркал, каждое из которых пускало зайчик в строго определенную и единую для всех точку.

Но, если эксперимент Ж.Л. Бюффона можно подвергнуть сомнению, то опыт греческого инженера Ионаса Сакса опровергнуть трудно. В 1973 г. он собрал близ Афин 70 солдат. Каждый держал в руках медное зеркало размером 91x50 см. По команде они сожгли солнечными зайчиками лежавшую на берегу в 50 м от них просмоленную лодку.

Столь же удачный эксперимент такого рода в 2005 году провели студенты Массачусетского технологического института: 129 зеркал со стороной 0,3 м расставили на скамейках и, поочередно закрывая и открывая накидки, навели на цель. Затем накидки по команде были удалены. Лучи солнца «ударили» в полноразмерный макет кормы триремы, сделанной из досок красного дуба. Макет вспыхнул мгновенно.

Проверить оружие Архимеда можете и вы. Если расстояние до мишени сократить до 10 м, то опыт можно провести в любом школьном дворе. Потребная площадь зеркал сократится в 25 раз – с 10 до 0,4 кв.м. То есть 28 человек с обычными круглыми зеркалами диаметром 14 см вполне могут вместе составить систему с необходимой суммарной площадью зеркал.

Этого достаточно для воспламенения модели. Но вообще-то лучше обойтись без огня. Поэтому модель триремы можно вырезать из тонкого пенопласта для отделки стен и закрасить ее черной гуашью. Температура плавления пенопласта около 120 °C. Эффект от облучения должен сказаться мгновенно. Макет, правда, не вспыхнет, а «потечет».

Воспроизводство солнечного оружия Архимеда – прекрасный веселый эксперимент для большой компании, да еще и на свежем воздухе. Но необходима осторожность! Все участники должны быть в темных очках и обязательно стоять в одну линию на расстоянии 10 м от цели.

Никто не должен подходить к мишени, это крайне опасно. Эксперименты производите только в присутствии взрослых.

А. ВАРГИН

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Сверхрегенараторы – уникальные приемники


Сверхрегенератор (его еще называют суперрегенератор) – это совершенно особый вид усилительного, или усилительно-детекторного, устройства, обладающий при исключительной простоте уникальными свойствами, в частности, коэффициентом усиления по напряжению, достигающим миллиона! Это означает, что входные сигналы с уровнем в доли микровольта могут быть усилены до долей вольта. Разумеется, обычным способом такое усиление в одном каскаде получить невозможно, но в сверхрегенераторе используется способ усиления, предложенный в начале 1920-х годов Эдвином Армстронгом, радиолюбителем и изобретателем, подарившим миру еще и такие замечательные устройства, как регенератор (1914 г.)» супергетеродин (1918 г.) и радиовещание с ЧМ (1930-е годы).

Полностью теорию работы сверхрегенератора вы можете найти на сайте журнала ( http://utechnik.org), в разделе «Статьи». Здесь же скажем вкратце, что сверхрегенератор работает с выборками входного сигнала, взятыми в последовательные моменты времени. Затем происходит усиление выборки во времени, и через какой-то промежуток снимается выходной усиленный сигнал, часто даже с тех же точек, к которым подведен и входной. Пока совершается процесс усиления, сверхрегенератор не реагирует на входные сигналы, а следующая выборка делается только тогда, когда все процессы усиления завершены. Именно такой принцип усиления и позволяет получать огромные коэффициенты усиления, вход и выход не надо развязывать или экранировать, поскольку входные и выходные сигналы разнесены во времени и не могут взаимодействовать.

В сверхрегенеративном способе усиления заложен и принципиальный недостаток – слишком широкая полоса пропускания, – не позволяющий использовать его в АМ-диапазоне, но в значительно меньшей мере проявляющийся на FM.


Самая простая схема регенератора или сверх-регенератора

Для лучшего уяснения процессов, происходящих в сверх регенераторе, обратимся к устройству, изображенному на рисунке 1, которое, в зависимости от постоянной времени цепочки R1C2, может быть и регенератором, и сверхрегенератором. Эта схема была разработана в результате многочисленных экспериментов и, как представляется автору, оптимальна по простоте, легкости налаживания и получаемым результатам.


Транзистор VT1 включен по схеме автогенератора – индуктивной трехточки. Контур генератора образован катушкой L1 и конденсатором С1, отвод катушки сделан ближе к выводу базы. Так согласовывается высокое выходное сопротивление транзистора (коллектора) с меньшим входным сопротивлением (базы).

Схема питания транзистора несколько необычна – постоянное напряжение на его базе равно напряжению коллектора. Транзистор, особенно кремниевый, вполне может работать в таком режиме, ведь открывается он при напряжении на базе (относительно эмиттера) около 0,5 В, а напряжение насыщения коллектор – эмиттер составляет, в зависимости от типа транзистора, 0,2…0,4 В. В данной схеме и коллектор, и база по постоянному току соединены с общим проводом, а питание поступает по цепи эмиттера через резистор R1.

Напряжение с нижней по схеме части витков катушки L1 приложено к переходу база – эмиттер транзистора VT1 и усиливается им. Конденсатор С2 – блокировочный, для токов высокой частоты он представляет малое сопротивление. Нагрузкой коллекторной цепи служит резонансное сопротивление контура, несколько уменьшенное из-за трансформации верхней частью обмотки катушки.

Устройство обладает рядом достоинств, к которым относятся простота конструкции, легкость налаживания и высокая экономичность: транзистор потребляет ровно столько тока, сколько необходимо для достаточного усиления сигнала. Подход к порогу генерации получается весьма плавным, к тому же регулировка происходит в низкочастотной цепи, и регулятор можно отнести от контура в удобное место. Регулировка слабо влияет на частоту настройки контура, поскольку напряжение питания транзистора остается постоянным (0,5 В), а следовательно, почти не изменяются и междуэлектродные емкости.

Описанный регенератор способен повышать добротность контуров в любом диапазоне волн, от ДВ до УКВ, причем катушка L1 не обязательно должна быть контурной – допустимо использовать катушку связи с другим контуром (конденсатор С1 в этом случае не нужен). Можно намотать такую катушку на стержень магнитной антенны ДВ – СВ-приемника, причем число витков ее должно составить всего 10–20 % от числа витков контурной катушки, Q-умножитель на биполярном транзисторе получится дешевле и проще, чем на полевом, который мы уже описывали.

Регенератор подойдет и для KB-диапазона, если связать антенну с контуром L1C1 либо катушкой Связи, либо конденсатором малой емкости (вплоть до долей пикофарады). Низкочастотный сигнал снимают с эмиттера транзистора VT1 и подают через разделительный конденсатор емкостью 0,1…0,5 мкф на усилитель ЗЧ. При приеме АМ-станций подобный приемник обеспечивал чувствительность 10…30 мкВ (обратная связь ниже порога генерации), а при приеме телеграфных станций на биениях (обратная связь выше порога) – единицы микровольт.


УКВ ЧМ-сверхрегенератор с низковольтным питанием

Теперь перейдем к практическим схемам сверхрегенераторов. Их в литературе, особенно давних лет, можно найти довольно много. Любопытный пример: описание сверхрегенератора, выполненного всего на одном транзисторе, было опубликовано в журнале « Popular Electronics» № 3 за 1968 г. Сравнительно высокое напряжение питания (9 В) обеспечивало большую амплитуду вспышек колебаний в контуре сверхрегенератора и, следовательно, большое усиление. Такое решение имеет и существенный недостаток: сверхрегенератор сильно излучает, поскольку антенна связана непосредственно с контуром катушкой связи. Подобный приемник рекомендуется включать лишь где-нибудь вдали от населенных мест, чтобы не создавать помех другим радиослушателям.

Схема простого УКВ ЧМ-приемника с низковольтным питанием, разработанного автором на основе базовой схемы, приведена на рисунке 2.


Антенной в приемнике служит сама контурная катушка L1, выполненная в виде одновитковой рамки из толстого медного провода (ПЭЛ 1,5 и выше). Диаметр рамки 90 мм. На частоту сигнала контур настраивают конденсатором переменной емкости (КПЕ) С1. Ввиду того, что от рамки сложно сделать отвод, транзистор VT1 включен по схеме емкостной трехточки – напряжение ОС на эмиттер подается с емкостного делителя С2СЗ.

В. ПОЛЯКОВ, профессор

(Окончание следует)

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ


В фильме «Матрица» показано, как можно увернуться от пуль. Кинокартина, понятное дело, фантастическая, но все-таки: можно ли увернуться от пули на самом деле?

Антон Перевозчиков,

г. Тула

Представьте себе, недавно корпорация IBM и в самом деле запатентовала технологию уклонения от пуль. В патенте описывается специальный защитный костюм. Встроенные в него датчики следят за пулями, выпущенными из огнестрельного оружия. Полученная информация используется компьютером для просчета траекторий их движения. В случае, если пуля направлена точно в тело, запускаются специальные электроприводы, встроенные в обмундирование, которые автоматически отклоняют те или иные части тела так, чтобы пуля прошла мимо. В случае если это невозможно, приводы могут сместить тело так, чтобы попадание пули нанесло наименьший ущерб солдату.

Патент под названием Bionic Body Armorбыл зарегистрирован в феврале 2009 года под номером 7484451 в Патентном ведомстве США. Однако некоторое время спустя текст документа был удален из открытого доступа. И теперь остается лишь гадать, сделано это из соображений секретности или в разработке обнаружены принципиальные просчеты…


Вам не кажется, что в последнее время почему-то почти не стало публикаций в прессе, касающихся «барабашек» и прочих проявлений полтергейста. Почему так получается?

Н. Карпенко,

Краснодарский край

Парапсихолог Андрей Ли, возглавляющий службу «скорой помощи при полтергейсте» (оказывается, есть и такая в Москве) уверен, что в нынешней ситуации виноват… наступивший кризис. «Я не шучу, – сказал он. – Дело в том, что из всех обращений к нам по поводу полтергейста лишь 2–3 % случаев заслуживают внимания исследователей паранормальных явлений. Остальное – баловство самих жильцов, кого-то из членов семьи, соседей. И когда у людей появились серьезные проблемы, им стало не до шуток»…

Кроме того, и мода на подобные явления прошла. Если раньше, сообщив о полтергейсте, можно было надеяться на публикацию в газете или на сюжет в телепередаче, то теперь СМИ практически не реагируют на подобные случаи. Надоело все это и журналистам, и читателям.


Говорят, чуть ли не сто лет назад в нашей стране начали делать первые автомобили. Неужто за такой срок наша автомобильная промышленность не могла выйти на мировой уровень? Почему так получилось?

Екатерина Семенова,

г. Краснодар

Верно, ровно 100 лет назад из ворот Русско-Балтийского завода в Петербурге выехал первый серийный российский автомобиль «Руссо-Балт». В основу его конструкции легла машина бельгийской фирмы Fondu, но скоро российские конструкторы создали собственные оригинальные модели, завоевавшие европейское признание. Они отличались надежностью и превосходными ходовыми качествами, что неоднократно подтверждалось наградами, завоеванными нашими автомобилистами в многочисленных международных авторалли. Среди владельцев «Руссо-Балтов» были царь Николай II, великий князь Константин Константинович, граф Сергей Витте, князь Борис Голицын, промышленник Эдуард Нобель и другие влиятельные люди.

Тем не менее, когда началась Первая мировая война, ставка была сделана на зарубежный автотранспорт: дескать, наши автомобили слишком дороги и ненадежны. С той поры так и повелось: наша автомобильная промышленность все время равнялась на Запад вместо того, чтобы опираться на умы отечественных конструкторов. К чему все это привело, вы и сами теперь видите…

ДАВНЫМ-ДАВНО


Ежедневно в мяч играют 250 миллионов взрослых людей и бесчисленное множество детей. В момент игры мощность каждого взрослого составляет 0,6 л.с., а общая мощность их всех – примерно 110 миллионов кВт. Это половина мощности всех электростанций нашей огромной страны! Словом, мяч достаточно популярен, чтобы поинтересоваться его историей.

Играть в мяч люди стали давно. Впервые кожаный мяч придумали египтяне за 3500 лет до н. э. А 10 веков спустя у жителей Америки появился каучуковый мяч. Его делали из застывавшего в дыму костра сока растения гевея. Мяч той поры весил до 5 кг и, попав в человека, мог нанести серьезную травму.

Надувной кожаный мяч стал известен древним римлянам в I веке до нашей эры. Но эти мячи пропускали воздух и их часто приходилось поддувать.

Шотландский химик Чарлз Ренни Макинтош (1766–1843), прославившийся изобретением непромокаемой одежды, изобрел и надувной мяч с камерой из каучука и оболочкой из ткани, пропитанной каучуком. Эти мячи игрокам понравились. Они долго сохраняли давление и отличались малым весом. Однако в жаркую погоду каучук размягчался и даже плавился.

В 1839 г. американец Ч. Гудьир изобрел вулканизированную резину. Из нее стали делать все, что раньше делали из каучука, в том числе и мячи.

В конце XIX века появились однослойные детские надувные мячи из резины. В наше время их часто делают из более прыгучего и эластичного пластика на основе винила.

На этом, впрочем, совершенствование мяча не заканчивается. Созданы мячи с электронными устройствами для точного определения силы удара. На очереди электронное управление полетом мяча. Отношение Всемирного олимпийского комитета к этой новинке пока не известно, но, как бы там ни было, промышленность продолжает выпускать миллиарды различных мячей каждый год.

ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Может ли солнцелет подняться в небо на полюсе, например, Северном?

2. Можно ли вести бетонирование на морозе? Схватится бетон или просто замерзнет?

3. Из скольких составляющих состоит белый цвет?

ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ

«ЮТ» № 5 – 2009 г.

1. Сторонний наблюдатель слышит хлопок, когда самолет преодолевает звуковой барьер, потому что звуковые волны доходят до него, накладываясь друг на друга, а так как самолет будет лететь быстрее собственной звуковой волны, то пилот хлопка не услышит.

2. В космосе запахи будут разноситься, так как вакуум не препятствует движению ароматических молекул.

3. На уровне моря грузоподъемность аппарата на воздушной подушке будет выше, так как плотность воздуха здесь больше и вентиляторы работают производительнее, чем на высоте, где плотность воздуха меньше.

* * *

А почему?Какие тайны хранил пароход «Сентрал Америка», затонувший в XIX веке? Почему киты пускают фонтаны? Как человек учился ловить… свое собственное отражение? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в древний и красивый приволжский город – Самару.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.

ЛЕВШАСамый большой в мире по грузоподъемности автомобиль ЯГ-12 с колесной формулой 8x8 прошел по Красной площади Москвы в 1933 году под овацию руководителей государства. Что это за машина и какова ее судьба, вы узнаете в следующем выпуске журнала и, пользуясь развертками, сможете выклеить бумажную модель грузовика ЯГ-12 для своего «Музея на столе».

Электронщики познакомятся с разработками, улучшающими связь мобильных телефонов вдали от ретрансляторов. Провести досуг вам помогут новые головоломки Владимира Красноухова. А умельцы в рубрике «Секреты мастерства» узнают, как восстановить старинную потолочную лепнину, и приобретут навыки отделочных работ.

* * *




    Ваша оценка произведения:

Популярные книги за неделю