Текст книги "Юный техник, 2002 № 08"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 1 (всего у книги 5 страниц)
ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 8 август 2002
Популярный детский и юношеский журнал.
Выходит один раз в месяц.
Издается с сентября 1956 года.
КАРТИНКИ С ВЫСТАВКИ
Наука, техника и молодежь
Несмотря на июльскую жару, нашлось немало любопытных, пожелавших взглянуть, чем их удивит очередной Всероссийский смотр научно-технического творчества молодежи, прошедший недавно на ВВЦ. Среди них оказался и наш специальный корреспондент С.НИКОЛАЕВ. Сегодня он рассказывает лишь об одном из экспонатов выставки. О других работах и их авторах, которых вы видите на снимках, мы напишем в следующих номерах журнала.
РОБОТ-КРОТ ПРОТИВ ПОЖАРОВ
Выкрашенная в черный цвет машина и в самом деле на первый взгляд напоминала механического крота. В немалой степени тому способствовали две мощные фрезы, выдвинутые вперед. Чувствовалось, что машина предназначена для вгрызания в земные толщи.
Но почему тогда на табличке значилось, что это робот-пожарный?
Все прояснилось в разговоре с создателями этой удивительной конструкции, представителями Центра технического творчества учащихся республики Марий Эл из г. Йошкар-Ола.
Модель робота МРК и его создатели.
– Один из самых тяжелых для тушения пожаров, это когда горят торфяники, – начал разговор со мной один из создателей робота, 11-классник Владимир Ефремов. – Горение происходит под землей и, чтобы добраться до очага пожара, приходиться вскрывать вышележащие пласты…
Еще одна особенность таких пожаров – труднодоступность.
Торф образуется на болотах, где нет дорог. Поэтому в качестве движителя ребята использовали два шнека, приводимые в действие дизелями. А топливо для них помещается в баках, размещенных внутри полых цилиндров-шнеков.
– Сделав первую прикидку, – продолжил рассказ своего друга Александр Кудрявцев, – мы обратились за консультациям к сотрудникам МЧС и нашим местным пожарным. По их словам, пожар на торфяниках – не самая большая беда в нашей стране. Куда хуже когда горят леса. Тут и площади возгорания больше, и ущерб значительнее. Пришлось нам модернизировать свою конструкцию…
Шарик в воздухе поддерживают не забавные ладошки, приводимые в движение электромотором, а воздушная струя.
Как лучше всего чистить шланги? Ответ на этот вопрос знают ребята из Подмосковья.
Проект необычного архитектурного комплекса, похожего на приземлившийся звездолет, представили ребята из г. Майкопа – столицы республики Адыгея. Они полагают, что в таком дворце смогут наилучшим образом разместиться, например, участники смотра НИМ 2100 года.
Радиоуправляемая модель копия современного пограничного катера, изготовляемого с применением технологии «стеллс», необычно смотрится рядом с парусником. Но корабли обоих типов сегодня можно увидеть не только на одной выставке, но и в одном море.
Изготовлены модели в Центральном морском клубе «Гермес» г. Москвы при непосредственном участии Додонова-старшегои Додонова-младшего.
В иностранном разделе выставки ребята из Франции представили модель робота, предназначенного для собирания мячей.
А это еще одна разработка ребят из г. Йошкар-Ола. Оксана Кудрявцевавместе с руководителем И.А.Кудрявцевым, старшим научным сотрудником Марийского государственного технического университета, создала проект спортивной игровой площадки для детей с ослабленным зрением.
Проект «Юла», поясняют его создатели, представляет собой особым образом устроенную игровую площадку, на которой могут свободно ориентироваться не только зрячие, но и слепые дети. Она устроена в виде своеобразного лабиринта (см. схему), в каждом из трех секторов которой высеивается особая трава, цветы и кустарники. Так что дети могут сразу на ощупь и по запаху определить, где они находятся.
Кроме того, каждая из спиральных дорожек имеет небольшой наклон в поперечном направлении. Таким образом плохо видящие дети, у которых очень чувствителен вестибулярный аппарат, могут быстро сориентироваться, находятся они на дорожке или сошли с нее. Кроме того, движение по дорожкам организовано так, чтобы все дети двигались в одном направлении, не сталкиваясь друг с другом.
Цифрами на схеме обозначены:
1– дорожка для ходьбы; 2– дорожка для отдыха; 3– газон с кустарником; 4, 5и 6– игровые секторы; 7, 8и 9– искусственные холмы с двойными спиралями дорожек; 10– дорожка для бега; 11– зона отдыха; 12– центральная зона отдыха; 13, 14и 15– периферийные зоны отдыха; 16– вход-выход; 17– старт беговой дорожки; 18– финиш беговой дорожки; 19– объемная рельефная схема площадки; 20– рекламный щит для объявлений.
Самые юные участники НИМ – ребята из Школы сильного мышления г. Зеленограда представили свои проекты и бумажные модели, которые заинтересовали многих посетителей выставки.
В результате, кроме земляных фрез, которые пригодятся и в этом случае – с их помощью можно быстро проделать защитный ров, отделяющий горящий лес от еще не загоревшегося, на мобильном роботе появился… огнемет. Зачем?
– Вы слышали о тушении пожара методом встречной волны, или встречного пала? – заметив мое недоумение – зачем на пожаре еще и огнемет? – прояснил ситуацию Максим Корнеев.
– Это когда навстречу основному пожару пускают встречный вал огня, чтобы лишить основной пожар топлива и кислорода? – вспомнил я.
– Верно. Создать такой огненный вал, точно уловив момент, когда со стороны основного пожара создается сильная тяга, помогает огнемет. Потому и баки для топлива у нас такие большие, чтобы сразу на все хватило… Ведь в тайге нет заправочных станций…
– Но ведь немало топлива понадобится и для того, чтобы подогнать робот к месту пожара, – спохватился я. – Кроме того, у шнекоходов не такая уж большая скорость…
– Пусть вас это не беспокоит, – пояснили ребята. – Непосредственно к месту пожара робот может быть доставлен на самолете или вертолете и десантирован, скажем, с помощью парашюта. Ну а там уж в дело пойдут шнеки, фрезы и прочее оборудование…
Управлять же действиями робота оператор может по радио прямо с борта вертолета. Ведь сверху хорошо видно, куда направляется огонь и где лучше всего преградить ему путь…
К сказанному остается добавить, что, к сожалению, существует мобильный роботизированный комплекс МРК пока что лишь в виде действующей модели. На изготовление настоящего прототипа этой, безусловно, необходимой в народном хозяйства машины у ребят нет ни средств, ни соответствующего оборудования, ни материалов. Но это уже зависит не от ребят, а от взрослых. Координаты разработчиков – в редакции.
ИНФОРМАЦИЯ
ЧТОБ КОЛЕСА НЕ СТУЧАЛИ…Помните известный анекдот? Петька спрашивает Василия Ивановича, почему круглые колеса на прямой железной дороге все-таки стучат.
«А ты формулу колеса знаешь?»
«Да, πR 2».
«Ну вот, πR катится, а квадраты-то и стучат…»
Сказка – ложь, но ведь колеса стучат! И это не только мешает пассажирам, но и ведет к износу ходовой части вагонов. Виноваты в стуке, конечно, не квадраты, а зазоры между рельсами. Обойтись без них, где обязательно должны быть, нельзя: они компенсируют температурные изменения размеров рельсов и изолируют один рельс от другого, чтобы нормально работала система светофоров… Да вообще рельс не может быть бесконечно длинным.
Поэтому конструкторы предприятия «Прикладные перспективные технологии АПОТЕХ» решили заполнять зазор между рельсами накладками из стеклопластика особого состава. Имея массу в 5 раз меньше, чем металлические – 6 кг вместо обычных 30, – они показали себя весьма надежными. В настоящее время на железных дорогах страны работает уже свыше полумиллиона таких накладок.
Кроме того, эта разработка может быть использована в метро. Причем разработкой отечественных инженеров заинтересовались и метростроевцы Парижа. В общем, не случайно перспективная разработка была удостоена первой премии на одном из недавних международных конкурсов.
ПРОЕКТ «ВОЛГА» ПОЗВОЛИТ ЛЕТАТЬ ДОЛГО. Россия и Европа подписали меморандум о сотрудничестве в рамках создания нового ракетного двигателя, так называемого проекта «Волга». В подписании документа приняли участие с российской стороны представители НПО «Энергомаш» и Государственного центра имени Келдыша. По оценкам экспертов, через 10–15 лет новый ракетный двигатель как минимум в 10 раз удешевит запуски спутников на космические орбиты с помощью европейского ракетоносителя «Ариан-5».
По замыслу конструкторов, создание нового ракетного двигателя на принципиально новом топливе «кислород-метан» займет три этапа. На первом будет разработана общая характеристика и эскизный проект ракетного двигателя, который можно будет использовать до 50 раз. Два последующих этапа предполагается провести на базе НПО «Энергомаш», где будут созданы экспериментальные образцы ракетных двигателей. В целом, по оценкам экспертов, создание действующего образца ракетного двигателя, который может быть установлен на ракете-носителе «Ариан-5», оценивается в 1 млрд. евро.
Представители Европейского Космического Агентства выразили уверенность, что разработка нового ракетного двигателя – первый шаг по пути совместного создания с Россией нового ракетоносителя, который сможет конкурировать на мировом рынке космических пусковых услуг.
ПО СЛЕДАМ СЕНСАЦИЙ
Нужны ли будут в путешествиях часы?
«Лучани меня, Скотти», – просят время от времени своего коллегу герои телесериала «Звездные походы», и через мгновенье ока оказываются в другом уголке галактики. Фильм этот фантастический. И его создатели, конечно, не думали, что осуществление их мечты так близко.
Мы уже рассказывали о том ажиотаже, который возник в 1998 году в научном мире из-за работ Антона Цайлингера из австрийского Инсбрука, Франческо Мартини из Рима и Джеффа Кимбла из Калифорнии, занимавшихся изучением так называемого парадокса Эйнштейна – Подольского – Розена.
Еще в начале прошлого столетия исследователи заметили странный феномен. При некоторых условиях кванты света – фотоны – и некоторые другие частицы оказываются как бы связанными попарно, независимо от расстояния. Так что, исследовав свойства одного фотона, мы можем точно указать характеристики второго. И если одна частица вдруг меняет свои свойства, то мгновенно изменяет их и другая.
На основании этого парадокса исследователям удалось воссоздать частицы с предсказанными свойствами в заранее определенной точке пространства. Правда, технически эта процедура оказалась достаточно сложной. Длительность каждого светового импульса в экспериментах равнялась 10 -15с!
Разумом представить себе этот отрезок времени невозможно. Тем не менее исследователи смогли не только получить такие световые импульсы, но и выяснили, что как минимум в каждом четвертом случае свойства фотонов от источника Асовпадали со свойствами фотонов от источника В. Это и есть телепортация, которая осуществлялась с вероятностью 25 %, как и было заранее предсказано теорией.
«Пока наша установка выглядит не очень впечатляюще, – говорит доктор Пинг Кой Лам(на снимке он справа), – но лиха беда – начало.
Далее было предпринято несколько более-менее удачных попыток переправить из одной точки пространства в другую уже целый луч, то есть множество фотонов сразу. И вот в июне 2002 года группа физиков Австралийского национального университета объявила об успешном завершении эксперимента – лазерный луч был прерван у (дематериализован) в одной точке и восстановлен в другой, отстоящей от первой на метр.
Подробности эксперимента пока не сообщаются. Но справедливости ради следует отметить, что проведенный в Австралии эксперимент может быть, по всей вероятности, назван телепортацией лишь с некоторой натяжкой.
Дело в том, что мгновенного преодоления пространства одним-единственным физическим телом в данном случае не происходит. Вместо этого перемещается его информационная копия, точный «слепок» с предмета. В дальнейшем в соответствии с этим слепком производится как бы повторная сборка «развоплощенного» ранее предмета.
Тем не менее ученые считают, что вскоре можно будет попытаться переместить в пространстве не только фотоны, но и такие элементарные частицы, как электроны. О перемещении же более крупных физических объектов, в том числе одушевленных, речь пока не идет. Ведь чтобы воссоздать, например, человека, который состоит примерно из 10 27элементарных частиц, даже современным суперкомпьютерам потребуется не одна сотня лет, и никто к тому же не поручится, что перенос пройдет без ошибок.
Быть может, именно потому первые экспериментальные результаты по телепортации они намерены использовать прежде всего для создания нового поколения сверхскоростных компьютеров, действие которых основано именно на квантовых взаимодействиях.
И все же от идеи телепортации в полном смысле слова ученые не отказываются. «Теоретически, – заметил руководитель проекта доктор Пинг Кой Лам, – препятствий для реализации и такого перемещения не существует. Не за горами то время, когда такое «мгновенное перемещение» будет осуществлено на практике…»
По его прогнозам, уже в ближайшие годы физикам удастся добиться мгновенной переброски одного атома, ну а затем процесс пойдет по нарастающей… Ведь проблемами телепортации занимаются ныне ученые-физики более чем в 40 самых известных лабораториях мира. И совместными усилиями они наверняка добьются желаемого еще в этом веке.
Станислав СЛАВИН
Художник Ю. САРАФАНОВ
ПО СЛЕДАМ СОБЫТИЯ
Предпоследний рекорд установлен
58-летний американский воздухоплаватель Стив Фоссетдобился своего. С шестой попытки он облетел в одиночку земной шар и благополучно посадил в Австралии свой воздушный шар «Дух Свободы».
Позади остались две недели труднейшего путешествия и предыдущие многочисленные неудачи. Так, например, летом 1998 года его шар сначала горел на высоте 7000 м, а затем тонул в водах Тихого океана, в 500 милях от побережья Австралии. Тогда отважный воздухоплаватель остался жив лишь чудом.
Как и предыдущий его шар «Одинокий Дух», нынешний аэростат Фоссета – уникальное техническое сооружение стоимостью около миллиона долларов. 700-килограммовая гондола буквально нашпигована новейшим навигационным оборудованием. Именно оно и позволило Фоссету осуществить свой полет в одиночку. Тем не менее воздухоплаватель не скрывает, что иной раз ему не удавалось поспать более 2–3 часов в сутки.
Единственное кругосветное путешествие на воздушном шаре, окончившееся до сих пор удачно, – это полет француза Бертрана Пикара и британца Брайона Джеймса в марте 1999 года. Однако для того, чтобы покорить вершину, достаточно подняться на нее всего один раз. И после того как Пикар и Джеймс облетели земной шар, их австралийский коллега, воздухоплаватель Билли Олингтон заявил: «Одиночный кругосветный полет – это последний вызов, который природа еще оставила человечеству».
Неугомонный Фоссет осуществил свою мечту, однако не собирается успокоиться на достигнутом. Едва отдышавшись после своего полета, он заявил прессе, что намерен в скором будущем осуществить новое путешествие. Теперь он собирается побить рекорд высоты, поднявшись на воздушном шаре выше 40 км. Так высоко не поднимался еще ни один летательный аппарат с человеком на борту.
Космические корабли не в счет – они летают за пределами атмосферы.
С.НИКОЛАЕВ
ЧУВСТВО РАВНОВЕСИЯ
Закройте глаза, и вы перестанете видеть. Заткните уши, и мир вокруг затихнет. Зажмите нос, и ни единый аромат уже не коснется ваших ноздрей. А вот чувство равновесия, в отличие от зрения, слуха и обоняния, не отключить никогда. Хорошо ли это?
Тренированные гимнасты редко приземляются неудачно благодаря отменному вестибулярному аппарату.
Хоть бинтуй, хоть не бинтуй
Честно сказать, я пожалел, ощутив на себе все «прелести» морской болезни во время плавания по Тихому океану. Другие вовсю наслаждались морским путешествием, отплясывали на дискотеках, с аппетитом завтракали, обедали и ужинали, а я лежал пластом на своей койке, мечтал поскорее ощутить под ногами твердую землю, и одно лишь упоминание о еде вызывало чувство ужасной тошноты.
Единственным спасением, точнее передышкой, была возможность подняться на верхнюю палубу. Свежий ветер прояснял голову, а вид горизонта восстанавливал равновесие и прекращал тошноту. Но стоило зайти в помещение, и все начиналось снова… Я, конечно, не был первым.
Еще в 1881 году морской болезнью заинтересовался английский врач Дж. У. Ирвин. Он рекомендовал пассажирам во время качки «крепко бинтовать голову, чтобы головной мозг не так стремительно двигался».
На практике этот способ мало кому помог. И врач начал догадываться, что дело вовсе не в болтанке мозга. В немалой степени догадке помог и факт, обнаруженный тем же Ирвином: оказывается, от морской болезни не страдают глухонемые. А дальнейшая проверка показала, что дело не в отсутствии голоса. Важно, что нет слуха. Значит, источник морской болезни кроется где-то в ушном аппарате. Где?
Вестибюль в голове?
В полукружных каналах и мешочках внутреннего уха у всех позвоночных имеется особый рецепторный аппарат, который воспринимает изменения головы и тела в пространстве.
Не вдаваясь в особенности биологического строения внутреннего уха, попробуем прояснить суть действия вестибулярного аппарата с помощью упрощенной наглядной модели.
Представьте себе небольшую шаровидную камеру, наполненную особой жидкостью (эндолимфой). Удельный вес ее подобран таким образом, что помещенный в камеру шарик в спокойном состоянии помещается на дне, оказывая на него лишь легкое давление. А поскольку внутренняя поверхность этого шара устлана датчиками давления, то он, опустившись на дно под действием силы тяжести, показывает, где низ. Он своей массой как бы замыкает контакт, и в центр управления (в нашем случае – в мозг) идет сигнал.
Стоит поменять положение камеры, и шарик внутри начнет перекатываться, замыкая совсем другие контакты в других местах и отслеживая таким образом изменения положения. Кроме того, шарик, вследствие своей инерционности, будет также реагировать на ускоренное и замедленное движения, воспринимать сильные вибрации.
Наш вестибулярный аппарат, устроенный еще хитроумнее и рациональнее, чем упрощенная модель, позволяет человеку уверенно контролировать положение своего тела, твердо держаться на ногах в самое скользкое время года, и все происходит без участия сознания. Мы не руководим чувством равновесия, а оно руководит нами. Мы замечаем, что наделены этим чувством, лишь когда оно подводит: например, сбившись с такта во время танца, испытывая необычные ощущения в самолете или во время поездки на скоростном лифте.
Чувство равновесия, как выяснили ученые, зарождается у ребенка еще в чреве матери. Уже на шестой-восьмой неделе в ушах малыша формируется соответствующий орган – своего рода преддверие всех остальных чувств (от латинского vestibulum– «преддверие»).
Тренируйся, как юла…
Когда функции вестибулярного аппарата нарушены, утверждает немецкий невролог Карл Кнайснер, человек не в состоянии нормально слышать и видеть, у него появляются проблемы с речью, дети отстают в умственном развитии.
Природа позаботилась о том, чтобы нам приятно было развивать вестибулярный аппарат. Не случайно малышам так нравится, когда их раскачивают на качелях, подбрасывают в воздух. Однако вместо того, чтобы больше двигаться, укрепляя все свое тело – от сердца до вестибулярного аппарата, человек придумал машины, которые его возят, а сам потихонечку слабеет.
Вдобавок все эти машины перегружают наш вестибулярный аппарат; нас укачивает в самолетах и на кораблях, мы устаем в авто и тупеем в метро. Можно много рассуждать о психологической подоплеке этих чувств; мы же назовем анатомическую: поскольку вестибулярный аппарат нельзя выключить, его легко перегрузить.
Волны в мозгу
Особенно тяжело приходится человеку в мире невесомости. На это обратили внимание еще первые космонавты. А Валентина Терешкова страдала от «космической болезни» столь сильно, что после ее полета специалисты долгое время не решались пускать женщин на орбиту, полагая, что женский организм чувствительнее, нежели мужской.
Со временем, впрочем, выяснилось, что это не так. И женщины ныне тоже успешно летают в космос, пройдя курс тренировки вестибулярного аппарата. А исследователи тем временем выяснили, что нервные ткани – а значит, и головной мозг человека, – куда чувствительнее к гравитации, чем принято было считать ранее. Впрочем, биологи давно уже удивляются тому, что даже одноклеточные организмы без труда определяют, где верх, а где низ.
У них ведь нет вестибулярного аппарата. Что же заставляет клетки делать выбор?
При ближайшем рассмотрении выяснилось, что даже кусочек клеточной мембраны реагирует на любые изменения гравитации изменением электрического поля. Очевидно, сама мембрана является сенсором, реагирующим на силу тяжести.
В последнее время сотрудники Хохенхаймского университета исследовали поведение сетчатки куриного глаза при резком изменении гравитации. Этот слой ткани, выстилающий заднюю стенку глазного яблока, состоит из нервных клеток. Проводить опыты с ней все равно, что экспериментировать со срезом ткани головного мозга.
Свои эксперименты исследователи проводили в самолетелаборатории. Он поднимался, летел по параболической траектории – при этом возникала невесомость, – и вновь опускался. После каждой стадии полета ученые с помощью видеокамеры следили за тем, как по сетчатке глаза цыпленка расплывается светлое пятно – Spreading Depression Waves, «распространяющиеся тормозные волны».
Обычно подобные волны движутся со скоростью три миллиметра в минуту, распространяясь то по кругу, то по спирали. Вдоль их фронта стихает всякая нервная активность. Ткань становится «электрически мертвой». Лишь через несколько минут она оживает вновь. Этот феномен был известен уже несколько десятилетий.
Однако во время полета наблюдали нечто необычное. Нервная ткань реагировала на невесомость. Всякий раз, когда самолет набирал высоту и возникала гравитационная перегрузка, волна торможения в сетчатке глаза распространялась быстрее. Когда же наступала невесомость, скорость волны падала ниже 3 мм/мин. Наконец, когда самолет пикировал и перегрузки снова росли, броское светлое пятно снова расползалось быстрее.
Ионные каналы в море хаоса
Чтобы объяснить происходившее, придется прибегнуть к одной из математических теорий – «теории хаоса», считает немецкий физиолог Вольфганг Ханке. Любые соединенные между собой в сеть нервные клетки – будь то клетки головного мозга или сетчатки глаза цыпленка, – представляют собой нелинейную систему. Малейшее воздействие на такую систему может привести к непредсказуемым последствиям.
Итак, мозг – это «хаотический орган», реагирующий на любые сигналы извне. Эта догадка пришлась по душе медикам. Они давно подозревают, что приступы мигрени, преследующие иных людей, возникают вследствие волн, распространяющихся в коре головного мозга. Эти волны возникают по малейшему поводу, что характерно для хаотических систем. Внезапный порыв ветра, падение давления, минимальная флуктуация магнитного поля – все это может вызывать появление волн депрессии в головном мозге человека, предрасположенного к ним.
В чем же причина такой чувствительности? Почему даже фрагменты клеточной мембраны реагируют на гравитацию?
Потому, что в них есть ионные каналы.
Эти каналы представляют собой поры в клеточной мембране. Они обладают ограниченной пропускной способностью. Сквозь них могут проникать отдельные ионы – электрически заряженные частицы, например, К(+) или Са(+). При прохождении ионов заряд мембраны меняется.
Впрочем, остается загадкой, почему даже одного ионного канала достаточно, чтобы мембрана реагировала на гравитацию, признает Ханке.
Тем не менее, когда костная ткань человека страдает от невесомости, очевидно, именно ионные каналы в мембранах ее клеток «чувствуют», что действие силы тяжести прекратилось. Очевидно, и наш головной мозг так же реагирует на внешнее возбуждение, как мембрана или сетчатка глаза. И нам надо привыкнуть к тому, что мозг – тончайший прибор и его может «сбить с настройки» любой посторонний сигнал.
Все это заставило исследователей на новом уровне вернуться к проблеме «космической болезни». Так, многомесячные экспедиции советских и американских космонавтов показали, что под действием микрогравитации костная ткань начинает разрушаться. Что же в таком случае будет с головным мозгом? Ведь он в течение многих месяцев, а то и лет будет находиться под действием микрогравитации. Не нарушится ли его работа?..
Александр ВОЛКОВ
Кстати…
ТАНЦЫ В НЕВЕСОМОСТИ
Хотите испытать свой вестибулярный аппарат? Вот несколько простых тестов.
Вытяните руку с повернутой к лицу ладонью на расстояние примерно 30 см. Зафиксировав взгляд на ладони, в течение полуминуты делайте боковые качания головой дважды в секунду. При нормальном функционировании вестибулярного аппарата вы будете четко различать кожные складки на ладони. Это свидетельствует о том, что вестибулярный аппарат посылает приказ глазным мышцам совершить поворот глаз в направлении, противоположном повороту головы.
Теперь держите голову неподвижно, а ладонь перемещайте в одной плоскости примерно с той же скоростью. Складки на ладони не будут такими четкими. Вот вы и убедились на собственном примере, что контроль за положением глаз осуществляется гораздо лучше, когда организм одновременно получает информацию от вестибулярных и зрительных рецепторов, чем только при наличии зрительной информации.
Попробуйте провести еще один опыт – быстро покружитесь на месте, как можно дольше. Помимо головокружения вы испытаете еще одно непонятное состояние, которое с известной степенью достоверности можно назвать удовольствием.
И, наконец, решающее испытание – попробуйте как-нибудь выйти в море на прогулочном корабле. Если уже в начале путешествия вам перестанет казаться мил белый свет, если без особого сожаления вы вдруг захотите отдать свой обед рыбкам за бортом, – значит, с вашим вестибулярным аппаратом не все в порядке, вы подвержены приступам морской болезни.
Тренировать свой вестибулярный аппарат можно с помощью упражнений на качелях или батуте, предлагает доктор медицинских наук, заместитель директора по научной работе Санкт-Петербургского НИИ уха, горла, носа и речи С.В.Рязанцев. А еще… танцами.
Не удивляйтесь, именно с помощью танцев известный французский хореограф Китсу Дюбуа предлагает тренировать свой вестибулярный аппарат даже астронавтам.
«Когда танцор кружится или прыгает, его органы равновесия посылают противоречивые сигналы в мозг, что может привести к головокружению и даже тошноте, – говорит Дюбуа. – Танцоры учатся справляться с неприятными ощущениями, фокусируясь на определенной точке или созданием некого абстрактного «центра гравитации». Эта техника может быть вполне применима и в случае подготовки астронавтов».
Перейдя от слов к делу, хореограф разработала специализированный комплекс упражнений для астронавтов, который они должны выполнять 30–40 минут каждые два дня и добавлять сеанс импровизированных свободных движений каждые несколько недель.
Чтобы подтвердить свою правоту, еще в 1994 году Дюбуа взяла с собой двоих добровольцев в полет на переоборудованном самолете, летающем по длинным параболическим кривым. На нем существовала «микрогравитация» – не совсем невесомость, но что-то близкое к ней. Спутники Дюбуа не были танцорами, но одного из них она обучала танцу в течение 136 часов, обращая внимание на две задачи: способы находить центр тяжести и движения для ориентации тела. Другой был просто контрольной фигурой.
Во время свободного падения она снимала на пленку попытки подопытных выполнить несколько простых заданий, например, обращаться с мячом. После анализа видеозаписи полета выяснилось, что доброволец с хореографической подготовкой справился с заданиями лучше.
В настоящее время Китсу Дюбуа ведет переговоры с Европейским космическим агентством с целью обучения настоящих астронавтов и надеется, что вскоре станет первым в мире космическим хореографом.
С.НИКОЛАЕВ