Текст книги "Юный техник, 2002 № 08"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 4 (всего у книги 5 страниц)
ПАТЕНТНОЕ БЮРО
СПЕЦИАЛЬНЫЙ ВЫПУСК ПАТЕНТНОГО БЮРО
Экспертный совет ПБ отметил Почетным дипломом предложения Максима Шестаковаиз Воткинска, Евгения Тихонравоваиз Железногорска, Александра Горбатенкоиз Новочеркасска и Анны Михайловичиз подмосковного Королева.
В КОСМОС – ИЗ КОРОЛЕВА
Жителей этого небольшого подмосковного городка уже не удивляет, что раз в году, в дни школьных каникул, на центральной части огромной площади располагаются десятки ракет, сложнейшие на вид установки для запусков, а в ящиках и коробках, уложенных в сквере прямо на земле, можно узнать брикеты с ракетным топливом и ручными пиротехническими средствами. Ракеты, несмотря на свой внушительный вид, всего лишь копии настоящих, корпуса их сделаны из фольги, картона, пластика, а то и вовсе из бумаги. Однако выбор материала не сказывается на их полетных качествах. На сотни метров вверх ракеты поднимаются ввысь, а потом на тормозных лентах или парашютах медленно опускаются вниз.
Подобное зрелище в Королеве предшествует открытию Всероссийского конкурса «Космос». В этом году он проводится уже в 30-й раз. И юбилейным он оказался вдвойне, ведь в 2002 году наша страна отмечала еще и 40-летие первого полета человека в космическое пространство.
На финал конкурса были приглашены более 200 ребят из 45 городов России, Беларуси, Украины и Международной космической школы Байконура (Республика Казахстан). Для ребят были организованы незабываемые встречи с членами Первого отряда космонавтов России. Им показали Центр подготовки космонавтов и Музей ракетно-космического комплекса «Энергия». Был организован даже сеанс связи с экипажем Международной космической станции. Но главным событием, конечно же, стала защита авторских проектов по ракетно-космической технике, по космической биологии и медицине, астрономии, вычислительной технике, истории развития авиации и космонавтики. Некоторые из них, на взгляд экспертов Патентного бюро, достойны внимания читателей журнала.
ЭЛЕКТРО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
Предложенный еще К.Циолковским жидкостный реактивный двигатель в настоящее время достиг высокой степени совершенства. Ему принадлежат рекорды по развиваемой тяге, скорости истечения газов, температуре сгорания, тепловым нагрузкам… А какие двигатели ставить на модели ракет? Сегодня в ракетно-космическом и авиамодельном спорте нет простых, надежных и относительно дешевых реактивных двигателей. Все сложны и дороги, взрыво– и пожароопасны, экологически вредны. Поэтому в соревнованиях не участвуют копии реактивных самолетов. Или же на них устанавливают ДВС с воздушными винтами, которые портят внешний вид реактивных моделей.
На протяжении двух лет в кружке ракетомоделирования Городской станции юных техников Воткинска этой проблемой занимался Максим Шестаков. И вот результат: в качестве топлива он предлагает использовать… соленую воду. Все дело в том, что она, в отличие от воды дистиллированной, пропускает электрический ток.
Представьте себе камеру сгорания, где в центре встречаются струйки воды, к которым приложено высокое напряжение.
В точке соударения происходит микровзрыв. В камере резко возрастают давление и температура. Частицы воды и пара с высокой скоростью через сопло вылетают наружу. Надо отметить, что процесс идет непрерывно. Но, самое главное, при этом температура нагрева стенок не превышает 110 °C, ведь они постоянно охлаждаются новыми порциями воды.
Нетрудно понять, что интенсивность работы двигателя напрямую зависит от электропроводности воды, от величины приложенного напряжения и диаметра сопла.
Чтобы убедиться в своих выводах, Максим даже изготовил из стеклопластика камеру сгорания. Почему был выбран этот материал, понять несложно – он диэлектрик и не подвержен коррозии.
Двигатель Шестакова имел длину 90 мм, а диаметр – 33 мм. В камере под углом 90° по ее периметру было просверлено четыре отверстия для форсунок, через которые внутрь впрыскивались струйки воды.
Эксперименты показали, что порог концентрации в 100 мг на литр – оптимальный для тяги. В значительно большей степени она зависит от приложенного напряжения: чем оно выше, тем было выше давление внутри камеры. Поскольку в качестве рабочего вещества используется всего лишь подсоленная вода, продуктами выброса являются пар и частицы соли. При этом не приходится опасаться пожаров или взрывов.
Конечно, от лабораторного двигателя мощностью в несколько десятков ватт до мощнейших комплексов в миллионы киловатт путь не близкий. Но кто-то его должен преодолеть?
ДИСКОЛЕТ ТИХОНРАВОВА
Если в работе Максима Шестакова из Воткинска членам жюри было все ясно, то доклад Евгения Тихонравова из Железногорска прозвучал как маленькая сенсация. Кто знает, возможно, именно такой принцип используют космические аппараты внеземных цивилизаций? Но не будем забегать вперед, а познакомимся с работой юного исследователя из Красноярского края.
Как сегодня земляне могут попасть в космос? На этот вопрос несложно ответить – с помощью реактивных ракет типа «Протон» или «Сатурн». Сам по себе реактивный двигатель представляет дорогостоящее сооружение, да и работает на топливе чрезвычайно агрессивном и дорогом. Но не это главное. Как правило, все космические аппараты, запускаемые с Земли, – одноразового пользования. Вот почему стоимость доставки только на околоземную орбиту одного килограмма груза превышает 20 000 долларов США. А доставить на Луну, Марс или Венеру дороже в десятки раз. Потому и возникает вопрос: а есть ли иной двигатель, причем многоразового действия?
Чтобы понять суть работы Евгения, придется коснуться азов квантовой физики. Согласно квантовой теории магнитное поле – форма пространственно-энергетического состояния физического вакуума. Материальными носителями силового взаимодействия в нем выступают виртуальные фотоны – короткоживущие кванты энергии Систему, в которой взаимодействуют магнитные силы, физики не считают замкнутой.
Она постоянно взаимодействует с физическим вакуумом, ограничить который нельзя никакими барьерами. Вот почему электромагнитные силы Ампера и Лоренца не бывают только внутренними, они постоянно взаимодействуют с внешним энергетическим полем, которое есть всюду – на Земле, Луне, на Марсе, в безбрежных просторах Вселенной. Вот только как это почувствовать?
И Евгений Тихонравов предлагает рассмотреть принцип действия необычного двигателя космического аппарата будущего. Посмотрите на его принципиальную схему. Представим себе, что по периметру космического аппарата дискообразной формы размещен кольцевой проводник. С помощью множества соленоидов в нем создается радиальное магнитное поле.
Если внутрь всех соленоидов одновременно ввести железные сердечники, начнет действовать сила Лоренца, направленная перпендикулярно его плоскости. Взаимодействуя с внешним полем она создаст тягу, способную перемещать космический аппарат.
Встает вопрос: а сколь велика эта сила? Из курса физики известно, что ее величина зависит от длины проводника и силы тока. Для модели диаметром всего в 1 метр, силой тока 2 А, модулем вектора 4 Тесла, зарядом в 5 кулон и скоростью упорядоченного движения частиц в проводнике 50 оборотов в секунду, сила Лоренца может достигать 1000 Н.
Это уже кое-что! А можно ли на нее как-то влиять, управлять ею?
Можно, считает Евгений, если проводник сделать сверхпроводником. Тогда, не опасаясь его перегрева, силу тока можно увеличить в миллионы раз. При таких параметрах аппарат сможет легко преодолеть притяжение планет-гигантов. Но самое главное то, что тягой двигателя можно легко управлять и по направлению, и по величине – нужно только менять величину силы Лоренца на отдельных участках проводника и величину силы тока.
Какими же преимуществами будет обладать необычный космический аппарат Тихонравова? Отвечая на вопрос, Евгений загибает пальцы руки: первое – большая сила тяги, второе – многоразовое применение. Третье – отказ от гигантских космодромов, четвертое – невысокие материальные затраты и пятое – высокая маневренность и регулируемая сила тяги в любой точке космического пространства.
«ДОН» ОСВАИВАЕТ МАРС
В этом столетии наверняка начнется более активное освоение Луны, Марса, Венеры. И без участия вездеходов-планетоходов тут не обойтись. Какой же видит эту машину Александр Горбатенко, член кружка космического моделирования Клуба юных техников Новочеркасского завода синтетических продуктов?
Его аппарат предназначен не только для продвижения по исследуемой планете. Он способен доставлять грузы, самостоятельно производить погрузочно-разгрузочные работы и буровые операции.
Для вездехода Александр выбрал традиционный для земли гусеничный движитель. Его выбор обусловлен прежде всего тем, что на фотографиях, полученных с космических станций «Венера-9, 10, 13 и 14», совершивших посадку в экваториальных областях Венеры, просматриваются каменистые пустыни. Это свидетельствует о том, что на поверхности планеты происходят процессы формирования верхних слоев грунта за счет химического выветривания и дробления частиц грунта.
Предполагается, что на Марсе заметную часть могут составлять глинистые частицы, которые приводят к цементации верхнего слоя грунта. А сильные ветры способствуют развитию дюнно-барханных образований. Все перечисленные формы рельефа могут быть представлены в виде чередующихся спусков и подъемов, перемежающихся относительно ровными участками. Основной характеристикой этих форм может служить величина преодолеваемого уклона. Для преодоления каменистых осыпей и завалов в конструкции машины предусмотрено изменение клиренса. Для его увеличения использованы четыре гидравлические опоры-подъемника. В обычных режимах передвижения они служат дополнительными амортизаторами. Для увеличения устойчивости при сильных ветрах у планетохода расширена база.
Понятно, что работать в автономном режиме длительное время вездеход сможет только обладая ядерной энергетической установкой (ЯЭУ). С принципиальной схемой ее вы можете познакомиться на рисунке. Выделяемая ЯЭУ тепловая энергия преобразуется в электрическую по так называемому циклу Брайтона. Схема такой ЯЭУ может быть трехконтурной, с выносом тепла из реактора жидкометаллическим теплоносителем, и двухконтурной, с выносом тепла из реактора рабочим газом. Данный тип ЯЭУ с газодинамическим преобразователем был выбран неслучайно, ведь отношение массы установки к массе радиационной защиты у него самые низкие.
Расчеты показали, что для планетохода массой 25 тонн мощность ЯЭУ не будет превышать 250 кВт. Корпус планетохода предполагается изготовить из магниевого сплава – он обеспечивает достаточную прочность и легкость. А его плоское днище послужит как радиатор-охладитель в системе терморегулирования.
В корпусе планетохода размещены системы обеспечения жизни экипажа из двух человек. Это резервные хранилища для кислорода, воды и пищи, системы терморегулирования, регенерации и кондиционирования воздуха с поглотителями углекислого газа, санитарное устройство. Предусмотрены на борту приемо-передающие радио– и телеустановки, панорамные телефотокамеры, приборы для определения механических свойств грунта и химического состава окружающей среды.
Управление планетоходом осуществляется из кабины. На пульте управления размещены спидометр, индикатор дифференциала и крена, индикатор курса, панель аварийной сигнализации разгерметизации кабины, рукоятки управления ходом. Управление краном и буром осуществляется дистанционно, из кабины планетохода.
ЯЭУ планетохода « ДОН».
Цифрами обозначены:
1– реактор; 2– контур с жидкометаллическим теплоносителем; 3– теплообменник для подвода тепла к газу; 4– турбина; 5– генератор; 6– компрессор; 7– теплообменник для отвода тепла; 8– холодильник излучателя; 9– контур отвода тепла; 10– насос для протяжки теплоносителя; 11– теплообменик-регенератор; 12– контур с газотурбинным преобразователем.
ПО ПАТЕНТУ ПРИРОДЫ
А вот Анна Михайлович из подмосковного Королева, член кружка ракетно-космической техники, считает, что осваивать соседние планеты придется вездеходам, перемещающимся как живые гусеницы. Это создание способно преодолевать любые препятствия, было бы за что зацепиться крючкам ее многочисленных члеников.
Каким же видит вездеход-планетоход Анна? Упрощенно корпус аппарата можно представить как длинный ряд рам, составленных из четырех звеников (см. рис.), каждый из которых имеет по два подвижных элемента. При изменении их длины корпус в вертикальной и горизонтальной плоскостях может изгибаться под любым углом. А многочисленные присоски, зацепы или лапы, сцепляющиеся с грунтом особым клеем, обеспечат ему безопасное передвижение даже по вертикальным стенкам.
В подтверждение своих выводов Анна изготовила модель, которая прямо в руках легко изгибалась, словно это была огромная живая гусеница. А чтобы наглядно продемонстрировать оригинальный способ передвижения, она выполнила программу и в анимационной форме продемонстрировала на экране компьютера способы преодоления препятствий на горках, каменистых впадинах и завалах.
* * *
Из собрания груков Пита ХЕЙНА
Перевел груки Генрих ВАРДЕНГА
КАК НАВОДИТЬ МОСТЫ
Сучок ты увидел в глазу у соседа?
Забудь о нем сам и друзей образумь!
Мосты понимания можно построить только из бревен в своем глазу.
РУКА В РУКУ
Грук о добрососедстве
На благо общее всем надо вклад внести, напрячься хоть немного, по-простецки; вот каждый и берется сор смести со своего порога на соседский.
ЧЕЛОВЕК УЛЬТРАСОВРЕМЕННЫЙ
Наше время нам мнится эпохой, которая человека с прогрессом сроднила. Но какая страница на свитке истории прошлым так себя перегрузила?
КОЛЛЕКЦИЯ «ЮТ»
Первый полет этого самолета состоялся 25 мая 1970 г. После двухлетней эксплуатации на родине стало ясно, что конструкция весьма удачна. И с 1972 года самолет экспортируется в десятки стран мира на разные континенты. Основные профессии самолета – гражданские, но он нашел применение и в армии. В основном же использовался как поисковый, разведывательный, учебный, транспортный, тренировочный. Высокая надежность и простота конструкции обеспечивали самолету высокий спрос.
Техническая характеристика:
Экипаж… 1 чел.
Количество пассажиров… 5 чел.
Двигатель… 2xKTW4BL
Суммарная стартовая мощность… 147 кВт
Стартовый вес… 1860 кг
Максимальная скорость… 325 км/ч
Длина взлетной полосы… 262 м
Дальность полета… 1670 км
Новое поколение автобусов Липецкого завода призвано было заменить машины серии «ЛиАЗ-677». При этом их компановка изменилась радикально. Двигатель расположили сзади, комфортабельнее стало рабочее место водителя, пассажирский салон отделали легко моющимися материалами. Предусмотрено автоматическое пожаротушение, для чего на потолке расположены три датчика задымления. Более совершенной стала и система отопления-вентиляции. Двигатель позаимствован у «КамАЗа» и имеет достаточную мощность для высоких динамических нагрузок.
Техническая характеристика:
Длина… 11 400 мм
Ширина… 2500 мм
Высота… 2935 мм
Количество мест для сидения… 28
Максимальное количество пассажиров… 114
Полный вес автобуса…17 500 кг
Максимальная скорость… 70 км/ч
Двигатель… КамАЗ-7408, дизель, 8 цилиндров
Мощность двигателя… 195 л.с.
ЗИГЗАГ УДАЧИ
Славные дела Огнеслава Костовича
Имя Костовича трудно поставить в один ряд с именами Монгольфье, братьев Райт или Жуковского. Но – и это мало кто знает, – если бы не его изобретение, развитие авиации задержалось бы на десятки лет. Капитан Огнеслав Стефанович Костовичбыл родом из Далмации (Венгрия), но, поступив на российскую морскую службу в 27 лет, навеки связал свою судьбу с нашей страной.
В 1879 году Костович выдвинул проект дирижабля полужесткого типа с двигателем внутреннего сгорания. Это был воздушный корабль с прочным каркасом, крыльями, капитанским мостиком, кабиной-гондолой и винтом, расположенным в хвосте аэростата.
Такая схема имеет минимальное аэродинамическое сопротивление, но реализовать ее никто, кроме Костовича, даже не пытался. Дело в том, что двигатель – самую тяжелую часть дирижабля – можно расположить только в середине дирижабля, иначе он не будет устойчив. При этом для соединения его с винтом необходим вал длиною несколько десятков метров. Если изготовить его из стали, он получится столь тяжел, что дирижабль не взлетит. А если не из стали – то из чего?
Легких сплавов в то время не существовало, алюминиевая промышленность была в зачаточном состоянии, и алюминий стоил дороже серебра. А о пластмассах имели самые смутные представления. И Огнеслав Костович решает усовершенствовать… древесину.
Результат был получен не сразу. Костович долго пытался создать нечто вроде современной ДСП – массу из измельченной древесины, соединенной клеем. Ничего хорошего из этого не вышло. Но в ходе этих работ он пришел к важнейшему выводу, что можно «не раздробляя волокон древесины, соединить их более выгодным способом, нежели это имеется в природном построении дерева».
Склеивая между собою особым водостойким клеем собственного изобретения, проникавшим во все поры дерева, три и более слоев шпона, он и получил свой уникальный материал, который, как вы догадались, сегодня называют фанерой.
Тут стоит сделать оговорку. Слово «фанера» в те времена было известно. Так называли тонкие 1–3 мм толщиной листы дерева, которые мы именуем шпоном. Поэтому своему материалу Костович дал название «арборит». Оно удержалось до начала 1910-х годов.
Шпон тогда производили в небольших количествах из ценных пород дерева лишь для оклейки мебели. Для производства нового материала его требовалось очень много, и Костович создал для этого специальную шелушильную машину.
Дело с арборитом пошло на лад. Изобретатель построил небольшую фабрику под Петербургом. Она выпускала очень многое: от бочек и чемоданов до легких сборных домиков. Вероятно, сосредоточив свои силы на этом успешном деле, Костович мог бы невероятно разбогатеть. Тем более что материал получился уникальный: он не терял прочности даже после многочасового кипячения. Но фанера была для изобретателя лишь материалом для постройки дирижабля.
Из арборита были сделаны многие детали будущего аппарата. Особым достижением следует считать изготовление из фанеры передаточного вала. Это была труба диаметром 0,2 и длиною в 30 метров! Но работа над дирижаблем стоила немалых денег, а военное ведомство помочь не желало.
Будь Костович практичнее, запатентуй вовремя свой арборит, денег у него хватило бы на сотню дирижаблей. Но он не сделал этого, и в Европе один за другим начали расти заводы по производству арборита, использовавшие технологию Костовича. (Кстати, состав клея никто так и не разгадал до наших дней, и столь прочную фанеру не умеют делать даже сегодня!)
Ничего не оставалось, как объявить сбор денег при поддержке русского Общества воздухоплавателей, знаменитого химика Д.И Менделеева, адмирала Н.М. Соковнина и других общественных деятелей.
Собрали немало, около двухсот тысяч рублей, работа закипела. Дирижабль был построен. И сгорел, не успев взлететь. Остался лишь двигатель, он заслуживает того, чтобы сказать о нем особо. Поскольку достаточно легких двигателей еще не было, именно с него и началась работа. Двигатель был построен в 1884 году и долгое время считался самым легким в мире. При мощности в 80 л.с. он весил всего 240 кг. (Для сравнения: появившийся двадцать лет спустя двигатель самолета братьев Райт был вдвое тяжелее.)
Легкость двигателя Костовича достигалась тем, что в каждом его цилиндре два поршня двигались навстречу друг другу. Это позволяло снизить почти до нуля вибрацию и резко повысить скорость работы. Отсутствие у цилиндров крышек значительно уменьшало потери тепла.
После гибели дирижабля Костович занялся гидросамолетами, а также универсальными летательными аппаратами. В 1916 году начали строить его двухместный моноплан-амфибию с широким корпусом из арборита и реданом для скольжения по воде. У бортов аппарата располагалось два гребных колеса.
Могла получиться неплохая боевая машина, сочетавшая в себе свойства корабля и самолета. Достроить ее изобретатель не успел, он умер 31 декабря 1916 года.
Увы, ни один из дирижаблей или самолетов Костовича так и не поднялся в воздух. Однако еще при его жизни фирма «Шютте-Ланц» освоила производство прекрасных дирижаблей с каркасом из фанеры и выпустила их почти шестьдесят штук. Миллионы самолетов, построенных из созданного Костовичем материала – фанеры, – летали и продолжают летать в наши дни. А двигателями по его схеме и сегодня оснащают танки и тепловозы.
Дирижабль Костовичав небе Петербурга. Фантастический рисунок 80-е гг. XIX в.
О.С.Костовичза испытанием двигателя. Уникальная фотография, найденная в 1949 году.
Первый дирижабль фирмы «Шютте-Ланц» с деревянным каркасом.
А. ИЛЬИН