Текст книги "Юный техник, 2010 № 06"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
НАУЧНЫЕ ЗАБАВЫ
Оптические иллюзии

ВОЛШЕБНЫЙ ЯЩИК
Приготовьте для опыта: толстый картон, бумагу, клей, стекло 7x12 см, две маленькие игрушки, ножницы.
Склейте из толстого картона ящик с крышкой 10 см шириной, 10 см высотой и 60 см длиной. Возле концов ящика, в двух противоположных сторонах, в одной справа, в другой слева, прорежьте по дверце размером 9x9 см. Дверцы подвесьте на «петлях» из материи, чтобы они могли открываться и закрываться.
Разрежьте теперь ящик (например, лобзиком) на две равные части наискось под углом в 45° (рис. 1).

В длинной боковой стенке одной из коробок прорежьте круглое окошечко; центр его должен находиться в 5 см от открытой части коробки и на середине ее высоты. Склейте теперь эти две коробки вместе, как показано на рисунке 2.
Для этого вам придется проклеить все швы полосками бумаги, только в верхней плоскости (той, в которой оказались обе дверцы) на стыке коробок оставьте щель длиной 7 см. Через эту щель вдвиньте стекло размером 7x12 см и укрепите его в вертикальном положении.
Теперь наша конструкция стала похожа на гигантский угольник.
Поставь две разные игрушки в два отделения, как раз под дверцами, как на рисунке 3 (на нем не показаны передние стенки, чтобы видно было внутреннее устройство ящика). Допустим, в одном отделении у нас стоит игрушечный ослик, в другом – игрушечный стул. Откройте дверцу над стулом, а дверцу над осликом закройте.
Если теперь заглянуть в круглое окошечко, то ослика не будет видно, поскольку он находится в полной темноте. Но если стул в это время освещен ярким светом солнца или лампы, он отразится в стекле, как в зеркале, и вы увидите его на том самом месте, где только что стоял ослик.
Откройте теперь дверцу над осликом и захлопните дверцу над стулом. Сквозь стекло вы увидите ослика, а стул исчезнет.
Когда будете показывать этот волшебный ящик товарищам, спрячьте его за картонной ширмой, в которой прорезано окошечко против окошка в ящике. И никто не догадается, каким образом один предмет быстро превращается в другой.
Можно поставить в отделения ящика два пузырька: один пустой, другой, например, с красной жидкостью. Сперва покажите зрителям полный пузырек и объявите, что в одно мгновение опорожните его, не дотрагиваясь до него. Потом захлопните одну дверцу, откройте другую – и пузырек покажется пустым. И, наоборот, точно так же можно наполнить пустой пузырек, не притрагиваясь к нему.
ЦВЕТНЫЕ ПОЛОСКИ
Приготовьте для опыта: две толстые книги, лист бумаги, кусок белого картона, карандаш или краски (оранжевую, черную, зеленую).
Поставьте книги на стол на расстоянии 25 см одну от другой. Обрезы книг находятся друг против друга и служат для того, чтобы поддерживать между страницами края вертикального листа бумаги с тремя раскрашенными полосками: оранжевой слева, черной посередине и зеленой справа. Этот лист бумаги будет служить неподвижной таблицей.
Возьмите кусок белого картона в 30 см шириной и покажите его зрителям. Он будет служить подвижным экраном. Вложите нижние углы картонки между страницами книги перед цветным листом, чтобы он мог скользить вертикально, покрывая лист бумаги.
Приподнимите на несколько минут экран и попросите зрителей внимательно смотреть на цветные полоски. Затем опустите экран, чтобы он покрыл цветную таблицу, но пусть зрители не спускают с нее глаз. Через несколько секунд они увидят на белом экране три полосы: голубую, белую и красную. Это дополнительные цвета оранжевого, черного и зеленого.
Кстати, дополнительными цветами называются пары цветов, которые при смешении дают белый цвет. Например, если вы наложите голубой светофильтр на оранжевый, то вместе они должны выглядеть бесцветными. На самом деле, такое бывает редко, поскольку очень трудно подобрать идеальные пары.

ГЛАЗА НА СПИНЕ
Приготовьте для опыта: зеркальце и картонную коробочку, которую можете склеить сами.
Суть фокуса такова. Представьте: уличный торговец продает маленькие коробочки и кричит: «Последнее изобретение! Чудо оптики! Аппарат, который дает возможность видеть, что делается у вас за спиной! Глядя в этот чудесный ящичек, я сейчас скажу, что делается позади меня. Вот прошел человек с зонтиком. Вот проехала повозка. Вот идет женщина с черной сумочкой в руках. Покупайте, спешите убедиться!»
При этом он задирает голову вверх, смотрит в окошечко, прорезанное в ящике, и в самом деле уверенно говорит о том, что творится сзади него.
Если же вы откроете этот ящичек, то увидите, что, кроме двух окошечек – на торцевой стороне коробки и на боковой, – внутри по диагонали укреплено зеркальце. Оно расположено вертикально под углом в 45° к стенкам, в которых прорезаны отверстия. Вот и все несложное устройство этого «чуда оптики».

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Радиолюбительские измерения

Если вы уже пробовали собирать конструкции, опубликованные в «Юном технике», то, возможно, не раз задумывались, чем измерить напряжение или ток в цепях. Сегодня поговорим об этом.
Простейший и абсолютно необходимый радиолюбительский прибор – это авометр (ампервольтомметр), или, в просторечии, тестер (от английского test– испытывать, пробовать). Он позволяет измерять токи (амперы), напряжения (вольты) и сопротивления (омы). Сейчас его несложно купить, но возникает вопрос: а какой именно выбрать?
Стрелочный или цифровой?Допустим, настраиваете вы радиоприемник, подсоединив вольтметр к его выходу и имея задачу получить максимум напряжения сигнала. По стрелке ясно видно, растет напряжение или падает. А на цифровой шкале – сплошное мелькание многозначных чисел, и вы непрерывно решаете: последующее показание больше предыдущего или меньше? Получается не настройка, а мученье. Возразят: у цифрового прибора больше точность!
А нужна вам она? Допуск на номиналы радиодеталей (резисторов, конденсаторов) составляет 10…20 %, редко 5 %, а уж детали с допуском 1…2 % встречаются довольно редко и считаются прецизионными (особо точными). Такие же отклонения допустимы и в режимах транзисторов, и в питающих напряжениях, поэтому точности измерения в 5… 10 % вам более чем достаточно. В то же время цифровой тестер, показанный на фото, дает точность выше 0,1 % (ошибка на единицу в третьем-четвертом знаке). А для работы ему нужна батарейка, и прибор надо не забывать выключать, чтобы не разрядить ее. Вот и судите…
Заодно на снимке показаны и необходимые вам инструменты: кусачки-бокорезы, пассатижи-утконосы и миниатюрная отвертка. Но ближе к делу.
В основе измерений лежит закон Ома, который радиолюбителю надо знать, как «Отче наш». Вообще-то вы о нем можете прочитать в любом школьном учебнике физики. Для облегчения запоминания предлагаю такую форму:

Здесь U– напряжение в вольтах, I– ток в амперах и R– сопротивление в омах. Допустимо брать ток в миллиамперах, тогда сопротивление будет в килоомах. Закройте пальцем знак величины, которую надо найти, и прочитайте ответ. Например, U = I∙R. Или: I = U/R. Наверное, вы уже заподозрили, что, зная закон Ома, совсем не обязательно измерять все три величины – вполне достаточно двух, а третья вычисляется. Это действительно так, и чаще всего приходится пользоваться вольтметром. С него и начнем.
Вольтметры. Прикоснувшись выводами вольтметра к выводам какого-либо резистора, включенного в работающем устройстве, вы измеряете падение напряжения на нем – U. А сопротивление резистора Rобычно известно – написано на его корпусе. Теперь вы знаете все. Например, напряжение на резисторе 1 кОм составило 5 В, значит, ток через этот резистор равен 5 мА.
Вольтметр хорош тем, что он не требует изменений в работающем устройстве – ничего не надо отпаивать или отсоединять. Но он и не должен нарушать работы устройства, следовательно, ток через вольтметр должен быть пренебрежимо мал по сравнению с током в измеряемой цепи. Значит, вольтметр должен быть высокоомным устройством. Внутреннее сопротивление вольтметра не часто указывают в его инструкции, и для цифрового прибора (на фото), имеющегося у автора, пришлось определить его экспериментально. Оно оказалось равным 1 МОм на всех пределах измерения постоянного напряжения. Много это или мало? Смотря в каком случае – в приведенном примере при напряжении 5 В ток через вольтметр составит 5 мкА, что в тысячу раз меньше тока в цепи, и практически никакой погрешности прибор не внесет. А если вы измеряете падение напряжения на мегаомном резисторе, погрешность будет очень большая.

Сейчас в обиходе почти исключительно приборы (измерительные головки) магнитоэлектрической системы (рис. 1). В них имеется постоянный магнит 1с полюсными наконечниками 2и сердечником 3, между которыми создается однородное магнитное поле. В нем может поворачиваться рамка 4с обмоткой из многих витков тонкого провода, закрепленная на оси 5. Ток в рамку подается через спиральные пружинки 6, создающие момент, противодействующий повороту рамки. С осью соединена стрелка 7с противовесами 8, сбалансированными так, чтобы стрелка не отклонялась при поворотах и наклонах всего прибора.
В современных малогабаритных приборах подковообразные магниты уже не используют, а намагничивают неподвижную арматуру 2и 3.

Достоинство головок магнитоэлектрической системы в том, что вращающий момент, действующий на рамку, прямо пропорционален току через нее. Поэтому шкала прибора получается линейной. Головку можно характеризовать двумя параметрами: током полного отклонения I 0и сопротивлением обмотки рамки R 0.
По закону Ома можно сосчитать и напряжение, прикладываемое к головке для полного отклонения стрелки. Но пока это еще не вольтметр и не амперметр, чтобы их построить, нужны добавочные сопротивления и шунты. Да и головки бывают разные – у одних рамка намотана очень тонким проводом и содержит много витков, у других – более толстым, а витков в ней меньше. Для вольтметров лучше подходят первые, с минимальным током полного отклонения. Хорошие вольтметры получаются из головок с I 0= 50 мкА, а самая чувствительная головка, которую я держал в руках, имела ток полного отклонения 10 мкА! В любом случае ток, потребляемый вольтметром от измеряемой цепи, будет равен току, проходящему через головку.
Если мы хотим построить многопредельный вольтметр, нужно использовать несколько добавочных сопротивлений, по числу пределов. Их можно переключать обычным поворотным переключателем, как в тестерах. Но можно поступить и проще, сделав несколько гнезд, по числу пределов измерения, и переставляя щуп в нужное гнездо (рис. 2).

Нулевое гнездо Гн 0– общее, его обычно соединяют с отрицательным выводом головки и вставляют в него щуп с проводом черного цвета. В большинстве устройств «минус» питания соединен с общим проводом, и сюда же подключают этот щуп. Рядом с общим гнездом размещают самое высоковольтное гнездо Гн 4, а дальше всех – самое низковольтное Гн 1. Гнезд и соответственно добавочных резисторов может быть и гораздо больше.
В.ПОЛЯКОВ, профессор
(Окончание следует)
ЧИТАТЕЛЬСКИЙ КЛУБ

Вопрос – ответ
Говорят, что теперь к армии мальчиков начнут готовить с 10-летнего возраста. Не слишком ли рано?
А. К. Семенова, мама будущего призывника,
Москва
Недавно правительство России утвердило Концепцию федеральной системы подготовки граждан к военной службе до 2020 года. Документ предлагает создать банк данных на всех допризывников, завести на каждого электронный паспорт и заносить в него данные о всех болезнях, начиная с 10-летнего возраста.
Официальная цель: следить за здоровьем подрастающего поколения, чтобы к 2016 году 80 процентов мальчишек были годны к строевой службе, а к 2020-му – все 90 процентов!
Для справки: сейчас половина потенциальных защитников Родины не может служить в армии по состоянию здоровья.
После землетрясения на Гаити спасателям удалось найти живым мужчину, который провел под завалами 27 суток. Как ему удалось выжить?
Игорь Ипатов,
г. Ставрополь
По словам Дмитрия Колесникова, президента Школы выживания, мужчине повезло, поскольку рядом с ним под завалами оказалась полость, куда собиралась дождевая вода. Кроме того, на Гаити тропический климат, так что человеку не грозила опасность замерзнуть. И сам он тоже оказался на высоте положения. В таких случаях первое – не впадать в панику.
Попав в ловушку, ощупайте и осмотрите себя: нет ли где ранений, переломов и прочих повреждений. По возможности, остановите кровь с помощью повязки, сделанной из лоскутов одежды. При переломе попробуйте наложить самодельную шину. Далее осмотритесь вокруг. Продукты, фонарь, телефон, теплую одежду пододвиньте ближе. Капающую воду собирайте в любую емкость. Поменьше двигайтесь, чтобы не тратить силы и кислород, если вдруг оказались в герметически закрытом пространстве. Найдите какую-либо железку и периодически громко стучите ею по металлической балке, арматуре стеновых панелей, чтобы вас услышали спасатели.
Не впадайте в отчаяние, думайте о своих близких, которые очень надеются, что вы все-таки выживете, несмотря ни на что.
Говорят, согласно последним данным, расстояние между Землей и Солнцем увеличилось. Почему это произошло? Чем это нам грозит?
Наталья Комарова,
г. Тверь
Зафиксированное астрономами увеличение расстояния между Землей и Солнцем можно объяснить накоплением загадочного темного вещества, полагает профессор Лоренцо Йорио из итальянского Национального института ядерной физики. Он установил, что скорость изменения параметров орбиты Земли соответствует постепенному накоплению в Солнечной системе темного вещества. Эта загадочная субстанция проявляет свое присутствие во Вселенной только через гравитационное взаимодействие и никаким иным образом.
Проведенные в последние годы измерения указывают на то, что значение астрономической единицы (а. е.), равной среднему расстоянию между Землей и Солнцем, с каждым годом увеличивается. Профессор Йорио связал эти изменения массы с параметрами орбит планет Солнечной системы. По его расчетам, за последние 4,5 млрд. лет планеты приблизились к Солнцу на 0,01 – 0,10 а. е. Причем в случае Земли, которая движется по эллиптической орбите, это привело к весьма неожиданному эффекту: ежегодно большая полуось орбиты, равная примерно одной астрономической единице, увеличивается на… 2–5 см.
Если вычисления ученого верны, описанный эффект должен повлиять на эволюцию планеты. Но очевидны эти изменения станут лишь в весьма отдаленном будущем.
ДАВНЫМ-ДАВНО

Шелк изобретали, по крайней мере, дважды. Первый раз это сделала природа, создав в незапамятные времена червячков-шелкопрядов, которые, перед тем как превратиться в бабочек, заворачиваются в коконы из тончайшей шелковой нити. Однако получение натурального шелка – долгая и хлопотная операция, требующая ручного труда. Поэтому многие изобретатели и ученые несколько раз пытались получить шелковую нить искусственным путем. В 1667 году о такой возможности высказался англичанин Роберт Гук, но затем идея была на 100 с лишним лет забыта. Лишь в 1855 году швейцарец Жорж Аудемарс получил патент на изготовление искусственного шелка.
Зная, что в состав натурального шелка входят азот, углерод, водород и кислород, он в своих опытах воспользовался молодыми побегами тутового дерева, растительные клетки которого содержат целлюлозу. Обрабатывая их азотной кислотой, химик превратил побеги в нитроцеллюлозу, которую растворил в смеси спирта и эфира, прибавляя каучук. Дальше Аудемарс окунал заостренную палочку в полученный раствор и вытягивал на ее конце шелковую нить. Такой способ, согласитесь, был мало пригоден для промышленного производства.
В 1884 году иное решение проблемы нашел граф де Шардонне. Однажды во время одного из опытов граф опрокинул на столик в своей лаборатории бутылку с коллодием. Вскоре раствор превратился в клейкую массу. Когда граф случайно задел ее одеждой, за ним потянулись вязкие нити.
Шесть лет потратил граф на изыскания. Применив в своих опытах тот же раствор, что и Аудемарс (3 г нитроцеллюлозы на 100 г смеси разных частей эфира и алкоголя), он заменил вытягивание нити на конце палочки продавливанием раствора в слегка подкисленную воду через отверстие диаметром в 0,1 мм. При этом спирт и эфир растворялись в воде, а нитроцеллюлоза затвердевала в виде непрерывной нити.
ПРИЗ НОМЕРА!

Наши традиционные три вопроса:
1. Почему «резаный» мяч летит по дуге, отклоняясь вправо или влево в зависимости от закрутки?
2. Почему трамваю достаточно одного контактного провода, а троллейбусу нужны два?
3. Почему зимой на окнах с одним стеклом образуются морозные узоры, а при двойном остеклении, как правило, нет?
ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ
«ЮТ» № 1 – 2010 г.
1. Согласно формулам А. Эйнштейна, при достижении материальным объектом скорости света время для него останавливается, а масса становится равна бесконечности. И чтобы он превысил скорость света, нужна бесконечно большая энергия.
2. Для снайперской стрельбы на дальние расстояния лучше использовать оружие большего калибра (например, 12,7 мм), так как чем больше масса пули, тем меньше на ее полет влияет ветер.
3. Тряпка впитывает воду из-за эффекта капиллярности, который возникает вследствие разности давлений; атмосферное давление больше давления в тонких капиллярах.
* * *
В этот раз жюри отдало предпочтение 11-летнему Сергею ПУХНАЧЁВУиз с. Волчно-Бурлинское Алтайского края, приложившего к своим ответам еще целый трактат, посвященный проблемам скорости света.
Близки к победе были М. Бахтиниз с. Елховка, А. Никитинскаяиз г. Прохладный, А. Сайтовиз г. Баймак, Р. Сорокиниз с. Убеево, Д. Дрюков из г. Томска и А. Луцийиз г. Тверь.
* * *
А почему?Как в Древнем Египте построили первую в мире ирригационную систему? Бывают ли почтовые марки в форме сердца? Почему город Ярославль так называется? На эти и многие другие вопросы ответит очередной выпуск «А почему?».
Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем в Голландию, в уникальный музей под открытым небом, рассказывающий о прошлом этой страны.
Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.
ЛЕВШАЛюбители строить модели старинных парусных судов познакомятся с традициями арабских корабелов VIII столетия и по предлагаемым разверткам смогут выклеить бумажную модель арабского торгового парусника тех времен.
Любителям электроники журнал расскажет о необычном применении оптической компьютерной мыши и опубликует схему бесконтактного управления бытовыми электроприборами и системой освещения.
Юные механики узнают о еще одном нетрадиционном способе, при помощи которого могут передвигаться механизмы, и смогут построить оригинальную бесколесную модель. А известный изобретатель Владимир Красноухов порадует вас своей новой головоломкой. И как всегда, «Левша» даст несколько полезных советов.










