355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Яков Цингер » Занимательная зоология » Текст книги (страница 8)
Занимательная зоология
  • Текст добавлен: 9 октября 2016, 14:03

Текст книги "Занимательная зоология"


Автор книги: Яков Цингер



сообщить о нарушении

Текущая страница: 8 (всего у книги 14 страниц)

Глава III
Очерки и рассказы о животных



Так ли просты простейшие животные?

«Амёбы представляют собой простые кусочки протоплазмы с ядром», – говорил нам учитель, рисуя мелом на доске бесформенные фигурки.

«Передвигаются амёбы при помощи псевдоподий, или ложноножек (при этом учитель подрисовывал к фигуркам рогульки), которыми они захватывают свою пищу – бактерий» (при этом ложноножки охватывали маленький комочек, долженствующий изображать собой бактерию). «Размножаются амёбы делением надвое», – монотонным голосом продолжал учитель, разделяя фигурку на две половинки. «Встречаются эти организмы в пресных водах; в протоплазме находится сократительная вакуоль» и т. д.

Всё, что рассказывал учитель об амёбах, казалось сухим и таким неинтересным, что мы, ученики, потихоньку зевали да посматривали в окна на более интересных и занимательных воробьёв, голубей и кошек.

Ни амёб, ни инфузорий нам не показывали, так как микроскопа в гимназии не было, поэтому рассказы учителя казались мало правдоподобными, а порой даже и не верилось, что на свете существуют эти самые амёбы, ядра, ложноножки и инфузории.

И только в Московском университете, когда каждый из нас, студентов, специализировавшихся по простейшим, получил для занятий новый блестящий микроскоп, перед нами открылся реальный и притом необыкновенно интересный и разнообразный мир мельчайших существ, не менее увлекательный и занимательный, чем мир «настоящих», видимых невооружённым глазом животных – львов и медведей, крокодилов и черепах, рыб и медуз.

Простейшие широко распространены по всему земному шару. Инфузории-туфельки встречаются не только во всех европейских странах; профессор В. Т. Шевяков, совершивший в конце XIX века кругосветное путешествие, находил этих инфузорий во всех обследованных им пресноводных водоёмах Азии, Африки, Америки и Австралии.

Космополитизм простейших подтверждают следующие факты. Профессор А. Л. Бродский в 1920 году в Средней Азии описал новый вид инфузории – туранию, а всего несколько месяцев спустя эта же инфузория была обнаружена в Праге. Другая инфузория – тектофрис – была впервые найдена во Франции; вскоре она была обнаружена и в США, а позднее в Южной Африке и Австралии и, наконец, её же в 1925 году нашла Т. А. Мудрецова в окрестностях Москвы.

Широкое распространение инфузорий объясняется их неприхотливостью, необычайной быстротой размножения (в среднем одно деление в сутки) и лёгкостью расселения их цист при помощи ветра, водоплавающих птиц, водных насекомых; случайным заносом их млекопитающими и человеком.

Даже при первоначальном знакомстве с миром простейших поражаешься удивительному разнообразию форм этих микроскопических существ и интенсивности их жизни.

Просматривая под микроскопом капельки воды из какого-нибудь невзрачного прудика с опавшей листвой (излюбленное место обитания простейших), мы можем шаг за шагом наблюдать отдельные моменты жизни этих микроскопических животных и изучать их повадки.

Из всех простейших, к которым относятся жгутиконосцы, корненожки, споровики и инфузории, наиболее известна туфелька – такая же обычная среди инфузорий, как, скажем, среди птиц обычен воробей.

Находящиеся в капле воды туфельки то оживлённо снуют и обгоняют друг друга, то толпятся у кучки еле видимых копошащихся бактерий – основной их пищи.


Животный мир в капле прудовой или болотной воды при малом и среднем увеличениях микроскопа:

А – инфузории: туфельки и спиростомумы; Б – хищные инфузории: бурсария и дилептус, нападающие на туфелек, слева голые и раковинные амёбы; В – инфузории стилонихия, локсодесы, колониальные сувойки; корненожка-солнечник, диффлюгия.

Время от времени в поле зрения появляются другие инфузории. Медленно выплывают длинные спиростомумы, которые при столкновении с песчинкой, комочком или другой инфузорией резко сокращаются всем телом, затем снова вытягиваются.

Похожие на миниатюрных жучков стилонихии, перебирая как лапками щетинками-ресничками, суетливо ползают по частицам почвы. Не торопясь скользят по дну нежные, с крючковидным передним концом локсодесы.

Крупный, в один миллиметр длиной, красивый сине-голубой трубач является сидячей инфузорией. Нижним своим концом он прикрепляется к стеклу или какой-нибудь веточке; на верхнем же конце вытянутого в форме трубы тела находятся длинные реснички, биением которых создаётся постоянный ток воды, загоняющий в рот инфузории бактерий. Потревоженный трубач тотчас съёживается в овальный комочек, а по исчезновении опасности снова вытягивается в великолепную трубу. Съёжившийся трубач может прекрасно плавать, отыскивая себе новое место для стоянки. Поражает своей пёстрой окраской (смесь золотисто-жёлтого, зелёного и фиолетового) инфузория нассула, обитающая в комках тонких нитей зелёных водорослей (см. цв. таблицу).

Незабываемое впечатление оставляют сувойки, многочисленная колония которых напоминает густой миниатюрный кустик с прикреплёнными на концах стеблей тельцами инфузорий, похожих на цветки ландыша. Хотя вся колония в целом находится на одном месте, но отдельные её члены постоянно в движении: то отскакивают назад (при скручивании стебелька), то снова медленно выдвигаются вперед (при раскручивании стебелька). Заденет ли колонию проплывающая мимо дафния, червячок или просто дрогнет стекло на столике микроскопа, всякий раз повторяется эта «игра», напоминающая движение китайских мячиков на резинке.

В одну из капель попалась «огромная» (в 0,5 миллиметра длиной) инфузория бурсария с широким, напоминающим вершу ртом. То резкими размашистыми бросками гоняется она вплавь за своей добычей – туфельками, то, остановившись неподвижно на дне, загоняет их в рот биением длинных ротовых ресниц. Бурсария – разборчивый хищник, предпочитающий именно туфелек. Других, неугодных ей инфузорий она выталкивает обратно, но и туфельки достаются ей не без труда. Попав в пасть хищника, туфелька старается изо всех сил вырваться, что ей нередко и удаётся, но если бурсария протолкнула туфельку с током воды внутрь глотки (у инфузории есть «рот» и «глотка», даже «пищевод»); то дело кончено: добыча мгновенно под давлением протоплазмы сжимается, умерщвляется и, окружённая пузырьком с пищеварительными соками, переваривается.

Другая хищная инфузория, климакостомум, нападает даже на превосходящих её по длине тонких спиростомумов. Интересно наблюдать в микроскоп за борьбой, возникающей между двумя инфузориями, силы которых почти равны. Схваченный спиростомум, то сокращаясь, то вытягиваясь, волочит за собой хищника, который в свою очередь цепко удерживает ртом добычу, стараясь протолкнуть её дальше в глотку (см. цв. таблицу). Нередко сильным экземплярам спиростомумов удаётся вырваться из пасти хищника, даже если они заглочены наполовину. Бывает, что на одну и ту же инфузорию с противоположных концов набрасываются два хищника, оспаривая добычу друг у друга. В случае победы хищник заглатывает добычу целиком, причём длинный и узкий спиростомум скручивается в теле хищника тесным клубком. Следя за отдельными экземплярами климакостомумов, удаётся установить, что в теле этого своеобразного «удава» микроскопического мира добыча переваривается в течение 15–20 часов.


Обычные простейшие пресных вод (при малом и среднем увеличении микроскопа):

1 – колониальная сувойка; 2 – парамеция сумковидная; 3 – трубач голубой; 4 – локсодес; 5 – корненожка-арцелла; 6 – амёба-протей; 7 – одиночные сувойки; 8 – климакостома, 8 а – климакостома заглатывает спиростомума; 9 – офриоглена жёлтая; 10 – нассула золотистая; 11 – стилонихия.

Совсем иначе охотится другая хищная инфузория – дилептус. У неё орудием нападения является длинный хобот, снабжённый мельчайшими стрекательными тельцами – трихоцистами. Медленно плавая в капле воды и размахивая во все стороны хоботом, дилептус наносит им удары своим жертвам – туфелькам и другим инфузориям. Парализованная выпущенными трихоцистами и умерщвлённая, добыча втягивается затем в широко раскрывающийся рот.

А вот появилась и «гиена» микроскопического мира – инфузория офриоглена, специализирующаяся на поедании трупов мелких рачков дафний. Эта проворная инфузория, отыскав труп дафнии, тотчас же внедряется в него и начинает выедать его внутренности. Наевшись, инфузория обычно округляется и под прикрытием тонкой оболочки, выделенной наружным слоем протоплазмы, приступает к размножению.

В противоположность указанным инфузориям, охотящимся за животной пищей, многие инфузории растительноядны. Туфелька, стилонихия, красивый сине-голубой трубач и другие поглощают наимельчайшие организмы – бактерий, другие же, как например крупные нассула и фронтония, заглатывают длинные и тонкие нити водоросли спирогиры, иногда в несколько раз превосходящей по длине тело инфузории. В таких случаях нить водоросли внутри инфузории скручивается в клубок, который постепенно переваривается.

Когда в рассматриваемых каплях воды инфузорий оказывается мало или их совсем нет, легче заметить «простые комочки протоплазмы» – амёб, которых, вообще говоря, неопытным глазом, благодаря их прозрачности и малоподвижности, заметить среди песчинок, соринок и других частиц значительно труднее, чем подвижных и тёмно окрашенных инфузорий.

Амёбы очень разнообразны как по форме тела, так и по размерам, начиная от еле заметных даже под микроскопом мелких лучистых амёбок с длинными, тонкими ложноножками и кончая такими «гигантами», как амёба протей, размером до 0,5 миллиметра.

Однако разнообразие форм тела этих так называемых «голых» амёб невелико по сравнению с амёбами, тело которых заключено в раковинки. В пресных водоёмах очень обыкновенны арцеллы с их округлыми раковинками и различные виды диффлюгий с грушевидными раковинками, составленными из мельчайших песчинок, комочков, крохотных кусочков растений. Однако значительно превосходят их по сложности строения раковинки морских корненожек фораминифер. Они имеют форму то удлинённых цилиндриков, то шаровидных бус, то спирально завитых улиток. Но и фораминиферы в свою очередь уступают морским радиоляриям, крошечные скелеты которых превосходят всё, что только может представить себе самая взыскательная фантазия художника и скульптора. Некоторое представление об изумительном разнообразии скелета радиолярий может дать знакомое нам с детства разнообразие форм снежинок, так удивляющее нас в морозный зимний день. Не правда ли, странным представляется нам термин «простейшие» в применении к этим причудливым существам микроскопического мира?


Раковинки фораминифер.


Снежинки – (1–3) и радиолярии (4–11) под микроскопом.

И всё же радиолярии с научной точки зрения имеют сравнительно простое строение, так как «чудеса их архитектуры» сосредоточены только в скелете. Что же касается внутренней организации, то здесь первое место принадлежит инфузориям – наиболее высоко организованным и сложно устроенным простейшим.

Современная микроскопическая техника: микроскопы с увеличением в 2 тысячи раз; микротомы, микроманипуляторы и микрометры, позволяющие разрезать, оперировать и измерять инфузорий; методы окрашивания, выявляющие структуры, не видимые в обычных условиях; микрофотография и микрокинематография раскрывают тончайшие детали в строении не различимых простым глазом организмов. В последнее время на помощь обычному световому микроскопу пришло такое мощное орудие исследования как электронный микроскоп, дающий увеличение в 20 тысяч и более раз.

В настоящее время прекрасно изучено строение органов движения инфузорий – ресничек, в количестве нескольких тысяч покрывающих тело животного. Выяснена структура крошечных стрекательных телец – трихоцист, выбрасывающих при раздражении острые, длинные нити и создающих защитную зону вокруг растительноядных инфузорий; у хищных они служат орудием нападения. Теперь можно проследить подробности процесса захватывания, поглощения и переваривания пищи, который в своей основе протекает так же, как у высших животных.


Инфузория-туфелька при разных увеличениях микроскопа:

А – в пробирке при рассмотрении невооружённым глазом; Б – под лупой (увеличение × 10); В – при малом увеличении микроскопа (× 80); Г – при большом увеличении микроскопа (× 750); Д – часть окрашенного среза при сильном увеличении; в центре видно ядро, снаружи – реснички; под ними в протоплазме – ряд тёмно окрашенных трихоцист; справа – две отдельные трихоцисты, одна из них нормальная, другая – с выброшенной стрекательной нитью; Е – инфузория, окружённая пучком «выстреленных» трихоцист (среднее увеличение); Ж – концевой участок трихоцисты под электронным микроскопом; З – ресничка в поле зрения электронного микроскопа.

У большинства инфузорий обнаружены скелетные нити, обусловливающие сохранение определённой формы тела. При помощи тончайших мускульных волоконец – мионем – инфузории изменяют форму тела: съёживаются, изгибаются и вытягиваются. Описаны нейрофаны – своего рода нервные нити, координирующие работу ресничек и других частей тела. Подробно исследована работа сократительных вакуолей – постоянно и ритмично сокращающихся и расширяющихся «насосов», удаляющих из организма излишки воды и вредные продукты обмена. Выяснено значение и роль большого и малого ядер в жизнедеятельности и размножении инфузорий.

Внешнее строение различных видов инфузорий очень разнообразно и порой весьма сложно. Особенно хорошо это видно на инфузориях, в миллионных количествах населяющих в качестве безвредных сожителей желудок быка, лошади, зебры, антилопы, овцы и других копытных животных. Прилагаемые рисунки некоторых из этих инфузорий, которыми много занимался ленинградский зоолог проф. В. А. Догель, показывают, что совсем непросто устроены эти простейшие организмы.


Инфузории офриосколециды, населяющие желудок копытных.

Интересно отметить, что красота и разнообразие форм простейших была использована как материал для декорации сцены «Сад Черномора» при первой постановке оперы М. И. Глинки «Руслан и Людмила» в 1842 году. Рисунки были заимствованы из красочного атласа инфузорий Эренберга, изданного в Германии в тридцатых годах прошлого столетия.


* * *

Заканчивая очерк о простейших, необходимо сказать, что наука о простейших – протозоология – имеет большое практическое значение, выявляя отрицательную и положительную роль этих крошечных животных.

Отрицательная роль простейших заключается прежде всего в том, что среди них имеются возбудители многих опасных заболеваний человека и животных. Достаточно указать на малярию и амёбную дизентерию, пендинскую язву и сонную болезнь человека, болезни крови (пироплазмоз) домашних и диких копытных, нозематоз пчёл, пебрину шелковичных червей и многие другие. Все эти опасные болезни в конечном итоге наносят значительно больше ущерба людям и животным, нежели ядовитые змеи, скорпионы, хищные звери, вместе взятые. Однако не менее велико и положительное значение простейших, заключающееся главным образом в том, что при свойственной им интенсивности размножения и многочисленности они служат источником питания для большинства водных животных: мальков рыб, рачков, червей, насекомых. В качестве примеров остановимся на значении простейших в распространении малярии и для питания рыб.

Возбудитель малярии – малярийный плазмодий – является простейшим животным. Переносчиком этого паразита от человека к человеку, а следовательно, распространителем инфекции, является малярийный комар-анофелес.

До второй половины XIX столетия, т. е. до того, как был найден возбудитель малярии, эта болезнь держала в своей власти не только полосу тропиков и субтропиков, но и отдельные районы Средней Европы, средней и южной России. Из-за малярии пустели целые области.

В настоящее время благодаря точному знанию цикла жизни как паразита, так и переносчика, благодаря выработанным на научной основе лечебным и профилактическим, т. е. предупредительным, мерам губительное влияние малярии значительно уменьшено, а часто и совсем устранено.

В СССР основные очаги малярии в Средней Азии и на Кавказе либо уже ликвидированы, либо ликвидируются. Помимо лечения маляриков и борьбы с комарами проводятся и более радикальные мероприятия как по осушению болот, так и по созданию такой системы обработки рисовых полей, которая исключала бы возможность размножения малярийных комаров. Основной центр руководства борьбой с малярией – Институт малярии и медицинской паразитологии Министерства здравоохранения – проводит большую работу по ликвидации малярийных очагов в нашей стране. Особенно ощутимы результаты этой работы в отдельных, прежде малярийных районах Узбекистана и Кавказа.

Относительно питания рыб твёрдо установлено, что мальки сразу по выходе из икринок и на самых ранних стадиях своего развития питаются почти исключительно простейшими животными и растениями – так называемым протопланктоном. По мере роста мальки переходят на питание рачками, червями, личинками насекомых и т. д., которые в свою очередь живут за счет того же протопланктона. Таким образом, последний создаёт огромные и крайне необходимые ресурсы для питания рыб. Изучение этих «пищевых цепей» позволило советским учёным предложить очень простой и удобный способ выкармливания мальков в рыбоводных хозяйствах. По краю пруда в воду опускаются ветви берёзы и кустарников, а также пучки сена. Это создаёт благоприятные условия для размножения бактерий – основной пищи простейших. Непосредственно к этой бактериальной зоне примыкает зона инфузорий, питающихся бактериями и при благоприятных условиях интенсивно размножающихся; ещё дальше – зона рачков дафний и циклопов, которые питаются инфузориями. С берега можно наблюдать, как из центра пруда к этим зонам устремляются мальки, находящие себе здесь обильную пищу. Не менее эффективно массовое разведение простейших, а также дафний и циклопов, в специально вырытых вдоль пруда ямах, куда добавляют конский навоз и сенную труху. Замечено, что указанные несложные мероприятия по обогащению прудов протопланктоном повышают выход рыбной продукции в рыбоводных хозяйствах в три – пять раз.

Рассказы о насекомых

Как летают насекомые

Большинство населяющих Землю насекомых имеет крылья. Правда, крыльями обладают только насекомые на взрослых стадиях развития. Как известно, ни личинки, ни нимфы, ни куколки не летают. У одних насекомых, как например у стрекоз, бабочек, перепончатокрылых, жуков – четыре крыла, у других: мух, комаров, некоторых подёнок – два крыла. Каждое насекомое имеет свои особенности полёта, каждое летает по-своему, но у многих из них есть общее в полёте. Прежде всего в основе их полёта лежит взмах крыльями – полёт машущий.

Наиболее простым взмахом крыльев обладают подёнки – они взмахивают каждым крылом сверху вниз и лишь немного ставят его под углом к набегающему навстречу потоку воздуха. Наиболее сложным взмахом крыльев обладают двукрылые (комары и мухи), а также перепончатокрылые (пчёлы, осы, крылатые особи муравьёв). Крылья их взмахивают так, что конец каждого крыла, если насекомое неподвижно, описывает в воздухе восьмёркообразную кривую. Взмахивая вниз, крыло в начале взмаха расположено почти горизонтально. Опускаясь вниз, оно одновременно заносится вперёд, а внизу переворачивается так, что, поднимаясь вверх, уже своим передним краем идёт вверх и назад. Такие взмахи повторяются с большой частотой. Каждое крыло работает, как пропеллер.


Полёт подёнок.


Схема взмахов крыла насекомого в полёте.

Стрелки указывают направление движения: А – опускание крыла (V положение изображено пунктиром); Б – поднимание крыла (положение I изображено пунктиром).


Схема восьми положений левого крыла на описываемой концом крыла восьмёрке у закреплённой на одном месте мухи-журчалки.

Внизу – те же положения крыла на синусоиде. Точка – передний край крыла, черта – пластинка крыла.

Такую восьмёрку можно наблюдать только у неподвижно закреплённого насекомого, когда оно взмахивает крыльями. При полёте же, когда насекомое движется вперёд, эта восьмёрка растягивается и конец крыла описывает волнообразную кривую (синусоиду).

У перепончатокрылых – четыре крыла, но переднее и заднее крылья каждой стороны тела соединены в полёте особой зацепкой из крючков, так что правая и левая пары крыльев действуют вместе как одно крыло.

Управление в полёте у насекомых достигается почти исключительно крыльями. Изменение направления плоскости взмахов крыльями сказывается на изменении направления полёта. Этим достигается изменение полёта на поступательное движение вперёд, назад, полёт на одном месте или висение в воздухе («стоячий» полёт), подъём вверх, повороты вправо и влево. Мухи – одни из самых поворотливых в полёте насекомых. Они часто делают резкие прыжки вбок. Достигается это внезапным выключением крыльев одной стороны тела – движение их на мгновение приостанавливается, тогда как крылья другой стороны тела продолжают колебаться, чем и вызывается прыжок в сторону от первоначального направления полёта.


Пчёлы в полёте.

Такие насекомые, как подёнки, могут также изменять направление полёта и слегка рулить, меняя положение брюшка и расположенных на его конце хвостовых нитей.

Насекомые, летая, очень часто машут крыльями, так часто, что отдельные взмахи крыльев человеческим глазом рассмотреть не удаётся. Мы часто можем слышать, как жужжат в полёте пчела или жук. Что значит это жужжание?

Звук – это колебания воздуха, которые мы улавливаем ухом. Чем чаще колебания воздуха, тем выше по тону звук. Навозный жук делает до 87 взмахов крыльями в секунду, звук, возникающий при этом, – жужжание сравнительно низкого тона. Комар, летая, производит крыльями до 594 взмахов в секунду, поэтому звук, возникающий в результате его полёта, такой высокий и напоминает писк.

Частоту взмахов крыльями можно определить по высоте производимого ими звука. Надо только учесть, что наиболее высокая нота соответствует удвоенному числу колебаний в секунду, так как каждый взмах крыла даёт две волны колебаний воздуха.

Так, например, у медоносной пчелы высокая нота соответствует 440 двойным колебаниям в секунду, т. е. 220 взмахам в секунду. И действительно, как показывают наблюдения, пчела производит в среднем около 260 взмахов в секунду.

Разные насекомые, летая, машут крыльями с различной частотой, причём у двукрылых и бабочек число взмахов увеличивается при повышении температуры воздуха, а у перепончатокрылых и жуков частота взмахов крыльев не зависит от температуры. Реже всего машут крыльями дневные бабочки. Махаон делает 5 взмахов в секунду, брюквенница – 6, а траурница – 10 взмахов в секунду. На расстоянии полуметра полёт бабочек кажется совсем беззвучным, однако если дневная бабочка пролетит у самого уха, то можно услышать звук очень низкого тона, производимый её крыльями. Ночные бабочки обычно машут крыльями чаще. Совки (рода агротис) делают 37–48 взмахов в секунду, а глазчатый бражник – 37–41 взмах.

Бражники, особенно небольшие языканы, производят низкое гуденье, слегка напоминающее жужжание шмеля.


Глазчатый бражник.


Бражники-языканы.

Вверху – заметная волна, пробегающая по крыльям (по киносъёмке). Внизу – «стоячий» полёт бражника, сосущего нектар.

Шмель делает от 123 до 233 взмахов в секунду, а обыкновенная оса – 165–247. Комнатная муха делает 147–220 взмахов в секунду. Однако чаще всех машут крыльями комары-дергуны, которые иногда роями толкутся в воздухе. Их личинками часто кормят аквариумных рыб – это так называемый мотыль, ярко-красные подвижные червячки. Их рыболовы насаживают на рыболовный крючок, используя как наживку для ужения рыбы.


Комар-дергун.

Дергун мохнатоусый делает от 196 до 494 взмахов в секунду, а другие представители этого большого семейства дергунов производят даже до тысячи взмахов в секунду.

Сколько энергии нужно затрачивать насекомым на полёт при взмахивании крыльями с такой частотой! Как часто сокращаются их мышцы! Однако опыты показали, что пчела, летая за взятком на расстояние 3 километра, расходует всего 0,00035 грамма сахара. Зобик пчелы содержит обычно 0,02 грамма нектара. При концентрации сахара в нём в 20 процентов это количество равно 0,004 грамма чистого сахара. Следовательно, даже при расстоянии в 3 километра полёт пчелы вполне рентабелен, так как расход сгорающего питания в виде сахара не превышает 9 процентов груза.

Если мы возьмём пчёл или шмелей и посадим их в инсектарий или большую стеклянную банку, затянутую сверху марлей, то часа через 2–2,5 они погибнут от голода, так как, летая, израсходуют все свои силы и весь запас питания. Если же мы посадим их в тесную коробку с дырочками, где они не смогут летать, насекомые проживут гораздо дольше и сохранят способность к полёту.

Если же при первом опыте мы будем их подкармливать, то они долгое время не погибнут. Полёт требует от насекомого большого расхода энергии.

Есть киноаппарат («лупа времени»), при помощи которого можно делать моментальные снимки с очень большой скоростью. Если снять летающих насекомых со скоростью 2000 или 3500 кадров в секунду, а затем просматривать на экране снятый фильм со скоростью 16 кадров в секунду, т. е. соответственно в 125 и 219 раз медленнее, то можно увидеть все движения крыльев насекомых и рассмотреть, как они летают.

Оказывается, полёт бабочек, особенно дневных, сильно отличается от полёта других насекомых. Правая и левая пары их крыльев при взмахах приближаются друг к другу над туловищем и под ним. Над спиной крылья даже часто полностью встречаются и иногда ударяются друг о друга, издавая звук. Крылья правой и левой стороны взмахивают одновременно, так как переднее и заднее соединены друг с другом и обычно для этой цели обладают специальной зацепкой. При сближении крылья сначала соприкасаются передними краями, а затем всей плоскостью. Благодаря этому крылья как бы выдавливают оказавшийся между ними воздух. То же происходит при встрече крыльев под телом при взмахе вниз. Кроме того, при таком замедленном просмотре скоростного фильма видно, как крылья бабочек плавно изгибаются, по их крыльям пробегает волна от переднего края к заднему, и они как бы плавают, медленно шевеля крыльями.


Полёт дневных бабочек:

А – адмирал; Б – крапивница.

Стрекоза пользуется самыми различными приёмами в полёте; то она взмахивает попеременно передними и задними крыльями, то вдруг переходит на планирующий полёт на распростёртых неподвижных крыльях, то опять взмахивает крыльями, но на этот раз сразу вместе и передними и задними. Наблюдались случаи, когда стрекоза делала взмахи одной передней парой крыльев, держа спокойно распростёртой заднюю пару. Часто можно видеть, как стрекоза висит неподвижно в воздухе, как бы «стоит», взмахивая крыльями на одном месте. Стрекоза может также в полёте двигаться не только вперёд, но и назад, а, преследуя ускользающую добычу (мелких насекомых), может взмывать на короткое расстояние вверх почти вертикально.


Полёт стрекозы-либеллюли.


«Стоячий» полёт стрекозы-коромысло.


Погоня за добычей стрекозы-коромысло.

Аэродинамикам известно явление, называемое фляттер. Это вредные колебания крыла в полёте, которые у скоростных самолётов могут достигать опасных размеров, так что крылья даже ломаются. Техники долгое время искали способы погашения этих вредных колебаний. Гибли модели новых испытываемых самолётов, погибали и лётчики-испытатели, но конструкторы долго не могли найти правильного решения задачи. Наконец, задача была решена: противофляттерное устройство было найдено. У передней кромки на конце каждого крыла делалось утяжеление (в простейшем случае запаивалась свинцовая гиря) – оно гасило вредные колебания.


Вверху – схема крыла стрекозы с глазком (птеростигмой) у вершины; внизу – схема самолёта с обозначением месторасположения противофляттерных утяжелений.

Машущий полёт насекомых, и в частности полёт стрекоз, также обладает вредными колебаниями. Природа в течение веков вырабатывала приспособления для борьбы с фляттером. Это приспособление отчётливо выражено у большинства стрекоз. На каждом крыле в вершинной его части у переднего края имеется тёмное хитиновое утолщение – птеростигма, или крыловый глазок. Удаление этого глазка, не лишая стрекозу возможности летать, нарушает правильность колебаний крыла, стрекоза начинает как бы порхать. Опыты показали механическое значение этих образований, регулирующих колебания крыла. Глазок оказался приспособлением, избавляющим машущее крыло от вредных колебаний типа фляттер. Если бы это значение крылового глазка у стрекоз было бы известно раньше, чем техники изобрели противофляттерное устройство у самолётов, то, заимствовав его у насекомых, можно было бы избежать долгих поисков.

У жуков, когда они не летают, передние жёсткие крылья, или надкрылья, накрывают и защищают сложенные задние перепончатые крылья. Надкрыльями жуки почти не пользуются в полёте; надкрылья только слегка качаются в такт взмахам задних крыльев. В полёте надкрылья жуки держат под некоторым углом друг к другу – в виде латинской буквы V. Это обеспечивает поперечную устойчивость жуков в полёте, так же как V-образно приподнятые крылья у самолёта обеспечивают его устойчивость при поворотах. Когда самолёт поворачивает, он накреняется и ложится на одно крыло, другое при этом поднимается кверху. Набегающий на крыло воздух давит на его поверхность и возвращает к прежнему положению, выправляя самолёт.


А – схема действия на надкрылья воздушных (аэродинамических) сил, обеспечивающих поперечную устойчивость жука; Б – V-образное расположение крыльев у самолёта. Вверху – нормальное положение крыльев при прямолинейном полёте. Внизу – самолёт, накренившийся на левое крыло, скользит влево, но возвращается в нормальное положение благодаря набегающей массе воздуха (показано стрелками).

Жуки из семейства бронзовок летают со сложенными надкрыльями, выставляя из-под них перепончатые крылья. Полёт бронзовок обладает большой маневренностью.


Вверху – полот жука-приона; внизу – полёт бронзовки со сложенными на спине надкрыльями.

Самой большой скоростью полёта обладают бабочки-бражники и слепни: они развивают скорость от 14 до 15 метров в секунду. Стрекозы летают со скоростью 10 метров в секунду, жуки-навозники – до 7 метров в секунду, майские жуки – до 3 метров в секунду, пчёлы – до 6,7 метра в секунду.

Однажды наблюдали, как крупная стрекоза не отставала от самолёта, летевшего со скоростью 144 километра в час, и временами даже обгоняла его.

Скорость полёта насекомых в сравнении с птицами мала. Если шмель делает 18 километров в час, то ворона – 50 километров, скворец – 70, а стриж – 100 километров. Рекордная скорость винтомоторного самолёта – 900 километров в час.


    Ваша оценка произведения:

Популярные книги за неделю