355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Поляков » Посвящение в радиоэлектронику » Текст книги (страница 23)
Посвящение в радиоэлектронику
  • Текст добавлен: 10 октября 2016, 00:08

Текст книги "Посвящение в радиоэлектронику"


Автор книги: Владимир Поляков



сообщить о нарушении

Текущая страница: 23 (всего у книги 26 страниц)

Наибольшее распространение в светодиодах получили такие полупроводники, как арсенид галлия (GaAs) и фосфид галлия (GaP). Используются и тройные соединения, например GaAlAs, GaAlP и др. В зависимости от материала и технологии изготовления получают красный, оранжевый, зеленый и даже синий цвета свечения. Выпускаются и ИК излучающие диоды. Светодиоды могут иметь размеры от нескольких миллиметров до долей миллиметра. Потребляемый ими ток составляет десятки миллиампер при напряжении 2… 3 В. Коэффициент полезного действия светодиодов невелик, и мощность оптического или ИК излучения не превосходит нескольких милливатт.


Светодиоды.

Полупроводниковый лазер имеет такой же излучающий p-n переход, как и светодиод, но структура его существенно отличается. Кристалл полупроводника полируют с торцов, чтобы получить зеркальные стенки, между которыми образуется оптический резонатор. Плотность тока через p-n переход лазера должна быть выше, чтобы интенсивнее переводились атомы на метастабильный уровень Далее, как и в любом лазере, благодаря оптическому резонатору происходит индуцированное излучение на одной определенной длине волны.

Полупроводниковые лазеры имеют заметно худшую когерентность излучения по сравнению с газовыми и даже твердотельными. Угол расходимости светового пучка у них тоже больше. Но зато полупроводниковые лазеры имеют и неоспоримые достоинства: миниатюрность, экономичность и надежность в работе, низковольтное питание. В ряде случаев эти преимущества оказываются решающими.

Итак, мы знаем, как генерируется оптическое излучение, проще говоря – свет. Теперь надо его принять, зарегистрировать. Для этой цели служат фотоприемники.


Полупроводниковый лазер.


Фотодиоды и фототранзисторы

Собственно, с фотоприемниками мы уже знакомы по главе, посвященной телевидению. Вакуумные фотоэлементы и фотоумножители продержались значительно дольше радиоламп, но теперь и они уступают место миниатюрным и чувствительным кремниевым или арсенидгаллиевым фотодиодам. В полупроводниковых фотоприемниках наблюдается внутренний фотоэффект, кванты света «выбивают» электроны в атомах толщи полупроводника. Ставшие свободными электроны создают ток через p-n переход, который регистрируется.

Различают два режима работы фотодиодов: собственно фотодиодный и фотовольтаический. В фотодиодном режиме на p-n переход подастся запирающее напряжение. В темноте ток через закрытый переход оказывается весьма малым. Но стоит осветить переход как ток резко возрастет. Разумеется, за счет «выбитых» квантами света электронов и образовавшихся на их месте «дырок».

В фотовольтаическом режиме на p-n переход не подают напряжения – оно само возникает под действием света. Происходит это оттого, что кванты света сообщают носителям – заряда дополнительную энергию, помогающую им преодолевать потенциальный барьер p-n перехода. «Информационные» фотоприемники, служащие для регистрации оптических сигналов, чаще всего работают в фотодиодном режиме, а солнечные батареи в фотовольтаическом режиме, развивая напряжение в несколько десятых долей вольта на каждый элемент.

Технология изготовления фотодиодов почти не отличается от технологии изготовления обычных полупроводниковых приборов. На кристалле полупроводника методом эпитаксиального выращивания или ионною легирования создают слои с p и n проводимостями. Один вывод образует контакт с подложкой, а другой – тонкий, прозрачный для света слой металла. Параметры фотодиодов совершенствуются в двух главных направлениях:– повышение чувствительности и уменьшение инерционности. С этой целью предложен ряд новых структур: четырехслойные с гетеропереходом, фотодиоды с барьером Шотки (контакт металл-полупроводник), отличающиеся особенно высоким быстродействием, кремниевые p-i-n диоды, которые все более вытесняют прибор с p-n переходом. Структура p-i-n содержит слои полупроводника с p и n проводимостями, разделенные очень тонким i-слоем окиси кремния – изолятором. Обратный ток перехода в p-i-n структуре чрезвычайно мал, что увеличивает чувствительность к слабым световым потокам. Энергия носителей заряда, возбужденных квантами падающего света, оказывается вполне достаточной, чтобы преодолеть тонкий слой изолятора и создать фототок.


Кремниевый p-i-n фотодиод.

Фототранзистор в отличие от фотодиода обладает внутренним усилением и благодаря этому – повышенной чувствительностью. Фототранзисторы с p-n переходами изготавливаются по стандартной планарной технологии кремниевых интегральных схем. От обычного n-p-n транзистора фототранзистор отличается только тем, что у него в области эмиттерного перехода имеется прозрачное окно, пройдя которое свет попадает в базу. Образовавшиеся благодаря действию квантов света носители заряда создают ток базы. Ток коллектора в соответствии с принципом работы транзистора получается в h21Э раз больше. Типичное значение коэффициента передачи тока кремниевого транзистора составляет 50…200.

Из других типов фотоприемников следует упомянуть фоторезисторы. Как правило, они также изготавливаются из полупроводника, но p-n переходов не имеют, т. е. ведут себя как обычные омические сопротивления. Темновое сопротивление фоторезистора обычно велико и может достигать нескольких мегаом. Под действием света в толще полупроводника появляются свободные носители заряда, резко снижающие сопротивление фоторезистора. Если в вашем подъезде установлен автомат включения лестничного освещения с наступлением темного времени суток, то можете быть уверены, что датчиком служит фоторезистор, обычно типа ФСК-1 или ФСК-2.


Фототранзистор.

Большие трудности возникают при создании фотоприемников для ИК области спектра. Дело в том, что для «вырывания» электрона из атома полупроводника при фотоэффекте квант света должен совершить определенную работу, называемую работой выхода. Следовательно, энергия кванта должна быть больше работы выхода для данного вещества. Но энергия квантов уменьшается с увеличением длины волны. Кремниевые фотоприемники эффективно работают только в видимой части спектра до длин волн 0,8…0,9 мкм. Германий, а также тройные соединения, такие как InGaAs, GaAsSb, позволяют продвинуться в длинноволновую область до 2… 3 мкм. А для приема в дальней ИК области (10…12 мкм) необходимо использовать уже другие физические принципы. Обнадеживающие результаты дают пироэлектрические приемники. В них используются вещества, создающие электрический заряд при воздействии тепла. Пироприемник обычно содержит и усилитель на полевом транзисторе с изолированным затвором, имеющий очень высокое входное сопротивление (гигаомы), согласующееся с высоким сопротивлением пироэлемента.

Рассмотрев способы генерации и приема оптического излучения, перейдем к устройствам, в которых используются описанные приборы.


Лидары, светодальномеры, оптроны…

Ассортимент подобных устройств огромен. Не будем заниматься их перечислением, а рассмотрим некоторые из них.

Лидар, или оптический локатор с лазером в качестве передатчика, внешне напоминает обыкновенный спаренный телескоп. Принцип действия его точно такой же, как и у известного нам радиолокатора. Импульсы мощного лазера, дополнительно сфокусированные оптической системой одного из телескопов, посылаются в направлении исследуемого объекта. Отраженный или рассеянный сигнал достигает приемной трубы-телескопа и воздействует на фотоприемник. По задержке отраженного импульса определяют расстояние до объекта, а по положению телескопов – его угловые координаты. Точность их измерения лидером намного превосходит точность любого радиолокатора. Так, например, угловые координаты можно определить с точностью до угловой секунды, а дальность – до нескольких десятков сантиметров. Что это значит? Можно, например, на расстоянии 200 км следить за стыковкой двух космических аппаратов, сблизившихся до расстояния в несколько метров.


Оптические системы – антенны.

Следующий прибор произвел подлинную революцию в геодезии и картографии. Назначение его ясно из названия – светодальномер. Прежде чем составить подробную и точную карту местности, необходимо найти и обозначить пункты, координаты которых были бы хорошо известны. Относительно их можно определять координаты и других пунктов: улиц, домов, холмов, оврагов, рек и озер. Вы неоднократно видели на возвышенных местах ажурные деревянные или металлические башни – геодезические сигналы. Они cтроятся над опорными пунктами геодезической сети. С одного сигнала обязательно видно два-три других. Ранее сигналы называли триангуляционными вышками, поскольку вся сеть строилась с помощью метода триангуляции[4]4
  Триангуляция – метод определения положения геодезических пунктов путем построения на местности систем смежно расположенных треугольников (вершинами их являются определяемые точки), в которых измеряют углы и длину сторон.


[Закрыть]
. Между двумя анналами как можно точнее измерялось расстояние, например, мерной лептой или проволокой. Это расстояние называется базисом. Затем с концов базиса определяли направление на третий пункт. Рассчитав все стороны получившегося треугольника по известной одной стороне и двум углам (классическая задача!), определяли положение третьего пункта, затем четвертого и т. д. Триангуляционная сеть уходила за горизонт, но точность угловых измерений теодолитами весьма высока, и координаты пунктов определялись довольно точно. Тем не менее ошибка накапливалась и накапливалась по мере удаления от базиса. А насколько трудоемкой была эта работа для геодезистов, вы сами теперь можете представить! Долгие месяцы вручную обрабатывались колонки многозначных цифр, измеренных в полевых экспедициях. Радиоэлектроника упростила геодезические работы. Я уж не буду говорить, что многозначные числа обрабатывает теперь ЭВМ – это очевидно. Но и углы в триангуляционной сети теперь никто не измеряет. Измеряют длину сторон с помощью портативных и очень полезных приборов – радио– и светодальномеров. Светодальномер обеспечивает большую точность. Он позволяет измерять расстояние в 10 км с ошибкой в один сантиметр! Зато радиодальномер действует в любую погоду: туман, плохая видимость ему не помеха.

Принцип работы свстодальномера несложен. Прибор содержит лазер излучатель света, модулятор и передающую оптику. В модуляторе установлен электрооптический кристалл, изменяющий свои параметры под действием электрического сигнала. Обычно используют синусоидальный сигнал с частотой 10…150 МГц (измерительная частота). Промодулированный кристаллом лазерный луч проходит к отражателю, установленному на другом конце измеряемой трассы. Отражателями служат трипель-призмы – стеклянные призмы с тремя взаимно перпендикулярными гранями. Они обладают важным свойством зеркально отражать луч именно в том направлении из которого этот луч пришел. Поэтому никакого наведения отражателя не требуется, надо лишь поставить его примерно перпендикулярно приходящему лучу. Трипель-призма является оптическим аналогом радиолокационного уголкового отражателя.

Отраженный свет попадает в приемную оптику и на фотоприемник. На выходе приемника выделяется модулирующий сигнал, но фаза его запаздывает относительно фазы сигнала в модуляторе оптического передатчика. Измерив разность фаз, можно затем рассчитать и расстояние до отражателя. В современных дальномерах это делает встроенный микропроцессор, и результат – дистанция в миллиметрах выдается на многоразрядный цифровой дисплей.

Наконец, третий пример, оптрон. Это уже не прибор, перекрывающий большие расстояния, а элемент электронных схем. Оптрон представляет собой пару: светодиод – фотодиод, объединенные в одном непрозрачном корпусе. Выводы светодиода и фотодиода электрически не соединены друг с другом, поэтому оптрон может служить прекрасным элементом связи или развязки между электрическими или электронными устройствами. В качестве примера можно привести случай, когда нужно вывести информацию из установки, находящейся под высоким напряжением, а соединительные провода использовать нельзя из-за ограниченной электрической прочности изоляции или по условиям техники безопасности.

Конструкции оптронов могут быть самыми разными. Если высоковольтной изоляции не требуется, то весь оптрон, включая светодиод и фотодиод, выполняется в виде единой конструкции. Такие оптроны часто используют как элементы электронных схем, например в качестве элемента связи в триггерах, мультивибраторах или операционных усилителях. Интересна конструкция оптрона с открытым воздушным оптическим каналом. Он допускает механическую модуляцию светового потока. Предположим, что требуется с высокой точностью знать частоту вращения вала. На вал насаживают обтюратор – диск с чередующимися прозрачными и непрозрачными секторами. Секторы прерывают поток света в оптическом канале оптрона, и на выходе фотодиода появляются импульсы, следующие с частотой, кратной частоте вращения. Другое применение – счет деталей на конвейере и тому подобное.


Оптрон.


Применение оптрона.


От оптрона к оптической линии связи

Однажды нашей лаборатории понадобилось изготовить только что описанный датчик скорости вращения вала. Включили светодиод, но подвели к нему питание не от источника постоянного тока, а от звукового генератора, чтобы на выходе фотодиода получить переменный звуковой сигнал, который легко усилить и измерить. Стали добиваться предельной чувствительности системы, подбирая режим элементов, схему усилителя.

А как проверить чувствительность? Очень просто: отодвигать фотодиод от светодиода. По мере совершенствования устройства добились расстояния между излучателем и приемником более метра. И тут возникла мысль: а не снабдить ли светодиод и фотодиод собирающими линзами? Нашли линзу, попробовали поставить ее на пути, да так, чтобы фотодиод оказался в фокусе. Сигнал возрос, но отодвигать фотодиод дальше не позволяли размеры лаборатории. Не беда. Посчитали теоретически. Получилось, что даже с двумя относительно небольшими линзами диаметром около 40 мм дальность действия нашего оптрона достигает километра! И вторая мысль – вместо монотонного писка звукового генератора передавать обычный человеческий голос. Разумеется, мы уподобились современным изобретателям велосипедов – светотелефон давно известен, – но зато как интересно своими руками сделать подобную конструкцию. Светотелефон был изготовлен. Каждый аппарат действовал всего от двух элементов с напряжением 1,5 В, которых хватило на целый сезон. Дальность действия не превысила, правда, полутора километров, но ведь использовались слабенький светодиод с некогерентным излучением и случайно оказавшиеся под рукой линзы.

Линии оптической связи с лазерами в качестве источников света могут обеспечивать дальность в десятки и сотни километров; практически она ограничена только поглощением света в атмосфере. Значит, в космосе..? В космосе лазерная линия связи может перекрыть миллионы километров благодаря очень малой расходимости в пространстве лазерного луча.

У оптической линии связи есть еще одно громадное достоинство. Любой канал связи обычно бывает узкополосным. Во всяком случае полоса передаваемых частот оказывается не более нескольких процентов частоты несущей. На частоте 10 ГГц (длина волны 3 см) в СВЧ диапазоне можно передать полосу частот 100 МГц, что примерно соответствует скорости передачи двоичной информации 100 Мбит/с. А в КВ диапазоне на частоте 10 МГц (длина волны 30 м) она не может превзойти 100 кбит/с. да и передавать полосу частот 100 кГц на КВ не позволит ни одна инспекция электросвязи.

Иное дело в оптическом диапазоне. При длине волны 1 мкм частота несущей составляет 3·108 МГц, а полоса передаваемых частот может достигать 3·106 МГц, или 3000 ГГц. Скорость передачи информации 3000 Гбит/с! Пока это фантастика, но теоретически возможная. В настоящее время скорость передачи информации в оптическом диапазоне ограничена только инерционностью фотоприемников, и пределы ее повышения практически неисчерпаемы. Это позволяет передавать огромные объемы информации. В Москве давно уже функционирует линия оптической связи между двумя высотными зданиями. Она используется как часть городской телефонной сети. Тоненький красный луч лазера переносит многие тысячи телефонных разговоров. Представляете, сколько меди, свинца и пластика оказалось возможным не укладывать под землю.

Теперь мы вплотную приблизились к очень интересной теме.


Волоконная оптика

Трудно предположить, что Москву часто будет окутывать непроницаемо густой туман и лазерная линия связи перестанет функционировать. И все-таки, а вдруг? Хотелось бы иметь линию связи, совершенно не зависящую от погодных условий. Такие линии есть – это кабели. Но они дороги, на их изготовление идет масса дорогих цветных металлов, а пропускная способность все время остается недостаточной. Возникла идея пустить световой сигнал по стеклянному волокну.

Устройство стекловолоконного «кабеля» непростое. Сердцевина его имеет больший показатель преломления, чем периферийная часть. А свет может преломляться в неоднородной среде в сторону среды с большим показателем преломления. В этом случае пологие световые лучи будут всегда отклоняться к центру волокна и никогда не выйдут наружу. В зависимости от технологии изготовления волокна показатель преломления может изменяться либо плавно, либо скачкообразно, если в процессе изготовления «сердцевину» волокна покрыть еще одним слоем «легкого» стекла. В этом случае свет будет испытывать полное внутреннее отражение на границе раздела слоев и опять же не сможет покинуть «сердцевину» стекловолокна.


Стекловолоконный кабель.

Стекловолокно можно сделать очень тонким, теоретически до половины длины волны, т. е. 0,25 мкм. Промышленно выпускаемые волокна значительно толще, диаметр их составляет доли миллиметра. Тем не менее стеклянное волокно такого диаметра оказывается гибким и легко наматывается на катушку. Снаружи волокно покрывают слоем полиэтилена для защиты от механических повреждений. Торцы стекловолокна шлифуют. И к ним присоединяют светодиод или полупроводниковый лазер с одной стороны и фотодиод – с другой. Волоконная оптическая линия связи (ВОЛС) – готова! Ее можно, как и кабель, уложить под землей, можно подвесить на столбах, протащить в слуховое окно – словом, обращаться так же, как мы обращаемся с электрическими проводами. Причем ВОЛС имеет явные преимущества. Она не боится сырости (никаких коротких замыканий или утечек тока не будет), не требует изоляции, не коррозирует и не окисляется. А на ее изготовление идет самый недефицитный материал – ведь стекло получают переплавкой обычного песка!

Разумеется, есть и проблемы. О ВОЛС долго спорили. Скорость передачи информации высокая, это хорошо, но вот дальность…

Стекло хотя и слабо, но поглощает свет. Первые ВОЛС имели длину десятки метров. Наконец разработали особо прозрачные стекла и подобрали оптимальную длину волны, на которой потери минимальны. Она оказалась в ближней ИК области около 1…1,5 мкм. И вот первый большой успех в Великобритании – сдана в эксплуатацию ВОЛС длиной около 64 км без единого промежуточною усилителя.

Первая в нашей стране подземная телевизионная линия оптического кабеля была подведена в июне 1984 года в Москве к дому 19 (корп. 1) по Алтайской улице. Этот дом находится в так называемой теневой зоне, где телевизионный сигнал сильно ослабляется и искажается из-за интерференции волн, отраженных от окружающих зданий. Приемная антенна была установлена на крыше соседнего 16-этажного здания, откуда видна телебашня в Останкине. Принятым телевизионным сигналом модулировалось световое излучение, направлявшееся в оптический кабель длиной 2,5 км. На другом конце кабеля был установлен фотодетектор, с выхода которого телевизионный сигнал поступал к усилителю и далее в коаксиальную кабельную сеть дома. Что ж, поживем – увидим, что будет дальше, а пока настала пора рассказать о последнем достижении оптоэлектроники – интегральной оптике.


Интегральная оптика

Почему интегральная и что это значит? Ведь оптика как отрасль науки и техники занимается линзами, зеркалами, призмами и тому подобными хорошо знакомыми нам предметами. Путь к интегральной оптике был недолгим и вполне логичным. Как только научились изготавливать миниатюрные источники некогерентного и когерентного света (светодиоды и полупроводниковые лазеры), как только научились делать крохотные полупроводниковые фотоприемники, явилась мысль объединить их с другими, оптическими деталями – модуляторами, световодами (оптическими волноводами), линзами и тому подобными устройствами, с одной стороны, и электронными схемами – с другой. Объединение – значит интеграция, отсюда и произошло название. Возможно и другое толкование. Интегральная микросхема отличается тем, что все се элементы изготавливаются на одном кристалле в едином технологическом процессе. То же самое относится и к элементам интегральных оптических и оптоэлектронных систем.

Простейший представитель интегральной оптоэлектроники – оптрон выполнен на одной пластинке кремния. В середине ее проходит световод тонкий канал с отражающими свет стенками. А по краям канала расположены светодиод и фотодиод. Ширина световода может быть малой: до половины длины световой волны. Его свойства во многом подобны свойствам волновода, используемого в технике СВЧ.

Мы привыкли к тому, что свет распространяется прямолинейно. Но это совершенно не относится к световоду. Его можно изгибать, разветвлять, отбирать из него часть энергии. С помощью световодов можно смешивать два оптических сигнала. В принципе весь арсенал средств и изделий СВЧ волноводной техники можно перенести в оптический диапазон. Можно сделать, например, оптический приемник гетеродинного типа миниатюрных размеров.

Обычные фотоприемники: фотоэлементы, фотоумножители, фотодиоды и фототранзисторы – реагируют на очень широкий диапазон частот оптического излучения. Это хорошо, если необходимо регистрировать дневной свет или свет, излучаемый лампой накаливания – светодиодом. Но когда нужно принять сигнал лазера – передатчика с высокой монохроматичностью излучения, широкий диапазон фотоприемника совсем не нужен и даже вреден: будет мешать посторонняя засветка фотоприемника, скажем дневным светом. В светодальномере, например, для ослабления помех от дневного света перед фотоприемником устанавливают узкополосные интерференционные светофильтры – оптические стекла с нанесенными на них тонкими пленками. Фильтр пропускает преимущественно свет с длиной волны используемого лазера и задерживает свет с другими длинами волн. Фотоприемник тем не менее остается обычным «детекторным» приемником и реагирует на все сигналы, пропущенные к нему фильтром.


Интегральная схема оптического диапазона.

Оптический гетеродинный приемник отличается принципиально. В нем на нелинейный элемент – фотоприемник, фотодиод – подаются два сигнала: принимаемый и сигнал лазерного гетеродина. Частота гетеродина выбирается несколько отличной от частоты принимаемого сигнала, и в фотодиоде выделяется сигнал биений, который и поступает в усилитель. Полоса частот сигналов, на которые реагирует оптический гетеродинный приемник, намного уже полосы частот обычного приемника с любыми оптическими фильтрами на входе. Это дает определенные преимущества. Приемник практически полностью перестает реагировать на посторонние сигналы. Дневной свет теперь ему не мешает. Лазерный локатор, например, будет реагировать только на отражение «своего» сигнала, не страшась никаких помех.

Оптический гетеродинный приемник делали и не используя интегральную оптику. Можно на фотокатод диода или фотоумножителя сфокусировать два сигнала: принимаемый и местного лазера – гетеродина. Но юстировка такой системы очень сложна, ведь фазы оптических сигналов должны быть одинаковыми на всей поверхности фотокатода. В интегральном исполнении подобные приемники получаются и проще и гораздо миниатюрнее. Да и возможностей больше – в световоде можно выгравировать и фильтры, и другие необходимые детали.

Интегральная оптика прекрасно сочетается с микроэлектроникой, и это открывает новые широчайшие возможности. Мы уже говорили о телевизионном экране, составленном из тысяч светодиодов. Управлять светодиодами должна электроника. Давно уже поговаривают об использовании оптическою диапазона в вычислительной технике. Ведь объемы перерабатываемой информации и быстродействие непрерывно растут, а по обоим этим параметрам интегральные оптические системы стоят на одном из первых мест. Вот пример. Чтобы выполнить преобразование Фурье обычным способом, надо взять многие тысячи отсчетов сигнала и произвести миллионы операций умножения, сложения и усреднения. Оптический процессор позволяет выполнять преобразование Фурье практически мгновенно. Информация записывается на оптическом носителе (пленке, жидком кристалле или жгуте оптических волокон) в виде светового изображения, перед которым помещена линза. Фокусируя изображение, линза осуществляет двумерное Фурье-преобразование информации.

Новое чаще всего появляется на стыке наук и технологий, поэтому синтез оптики и электроники в интегральной оптоэлектронике сулит еще немало нового и интересного.


    Ваша оценка произведения:

Популярные книги за неделю