355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Поляков » Посвящение в радиоэлектронику » Текст книги (страница 6)
Посвящение в радиоэлектронику
  • Текст добавлен: 10 октября 2016, 00:08

Текст книги "Посвящение в радиоэлектронику"


Автор книги: Владимир Поляков



сообщить о нарушении

Текущая страница: 6 (всего у книги 26 страниц)

Теперь все гораздо проще: гринвичское, да и любое другое время, можно узнать по радио. И не только по сигналам точного времени, передаваемым каждый час любой радиовещательной станцией. Есть и специальные станции, передающие эталонные частоты атомных стандартов. В европейской части СССР можно принять эталонную частоту 66,(6) кГц, передаваемую из Москвы, а в азиатской части 50 кГц, передаваемую из Иркутска. Передается ряд частот и из других мест, в том числе и в диапазоне коротких волн. С такой техникой долготу географических пунктов удается определять с точностью до малых долей угловой секунды. Этими же частотами синхронизируются вторичные эталоны Государственной службы времени и частоты.

Сказав о вторичных, надо рассказать и о первичном эталоне времени. Ведь эталоны нужны при любых измерениях. В СССР используется международная система единиц (СИ). Основными в этой системе являются: единица длины – метр, массы – килограмм и времени — секунда. Кроме того, к основным относятся: единица силы тока – ампер, температуры – кельвин и силы света – кандела. Все другие единицы – производные от основных.

Первичным эталоном килограмма является масса бруска из платиново-иридиевого сплава, мало подверженного коррозии и другим химическим воздействиям. Эталон с максимальными предосторожностями хранится в Международном бюро мер и весов в Севре, близ Парижа, и лишь изредка извлекается из хранилища для проверки (сличения) привозимых вторичных эталонов.

За эталон метра ранее считали 1/40 000 000 часть длины меридиана Земли, проходящего через Париж. Был и более реальный эталон – стержень метровой длины, изготовленный из инвара – сплава с малым температурным коэффициентом расширения. Точность этого эталона была невысока и определялась точностью и тщательностью геодезических измерений на поверхности Земли. Был выбран более точный, атомный стандарт. Метр определили как длину, равную 1 650 763, 73 длин волн в вакууме излучения, соответствующего одной из спектральных линий (оранжевой) атомов криптона-86. Длины волн спектральных линий атомного излучения очень стабильны и практически не зависят от внешних условий, поэтому у нового стандарта появилось важное достоинство – повторяемость и воспроизводимость в разных условиях.

Наконец, в самое последнее время предложен новый эталон. Длиной в один метр стали считать путь, проходимый световой волной в вакууме за 1/299792458 часть секунды. В основе нового эталона лежит фундаментальный факт постоянства скорости света в вакууме. Но теперь метр оказался связан с другой основной единицей СИ – секундой, и точное определение эталона времени приобрело особо важное значение. Здесь уместно отмстить, что измерение времени и частоты теперь научились выполнять намного точнее всех других физических измерений.

Основой любого эталона времени является элемент, который совершает (или в котором совершаются) колебания. В часах это маятник, в астрономическом эталоне – сама планета Земля, ведь ее вращение, как мы уже убедились, можно представить суммой двух колебаний с одинаковыми частотами, совершаемых в двух взаимно перпендикулярных направлениях. В электронных часах колебательным элементом служит кварцевый кристалл, а в атомном стандарте – электронные оболочки атомов рабочего вещества. Секунда сейчас определяется как время, за которое совершается 9192 631 770 периодов колебаний в излучении, соответствующем переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Вероятно, вы знаете, что атомы поглощают и излучают электромагнитную энергию порциями – квантами. В атоме любого вещества электроны располагаются не на каких попало, а на вполне определенных орбитах. Каждой орбите соответствует определенный уровень энергии атома. Если состояние электрона изменяется, то излучается или поглощается квант, энергия которого в точности равна разности энергий в новом и прежнем состоянии атома. Энергия кванта прямо пропорциональна его частоте, поэтому частоты переходов между энергетическими уровнями очень стабильны.

На частотах радиодиапазона энергия квантов очень мала, и для создания эталонов приходится подбирать атомы, имеющие сверхтонкую структуру энергетических уровней. Кроме цезия такую структуру уровней имеют и атомы водорода.

Атом водорода, наипростейший из всех известных, состоит из единственного протона, образующего ядро, и единственного электрона. Спектр излучения водорода содержит серии линий в областям ультрафиолетовых, видимых, и инфракрасных волн. Но есть одна особая линия. Электрон вращается вокруг ядра не только по своей орбите, но и вокруг собственной оси. Такое вращение назвали спином (от англ. spin – волчок, веретено). Спины электрона в ядре могут быть параллельны (вращение в одну сторону) и антипараллельны (вращение в разные стороны). Переход атома из одного состояния в другое соответствует сверхтонкой структуре энергетических уровней. При этом переходе излучается электромагнитная волна около 21 см, лежащая в радиодиапазоне.

Устройство атомного эталона рассмотрим на примере водородного стандарта частоты. В камере, из которой до глубокого вакуума откачан воздух, имеется «атомная пушка» – окно из губчатой платины, тоненькой струйкой пропускающее атомы водорода. Они подвергаются нагреву высокочастотным полем, которое возбуждает часть атомов, т. е. переводит их на уровень с большей энергией. Затем пучок атомов пропускают через фокусирующую систему – магнит с сильно неоднородным полем. Он «отсеивает» невозбужденные атомы, а возбужденные попадают в металлический цилиндр – объемный резонатор, где и отдают энергию в виде электромагнитных колебаний. Энергия отводится из резонатора коаксиальным кабелем. Метрологический водородный стандарт имеет очень хорошую долговременную стабильность и воспроизводимость частоты. Его частота равна 1420405751, 786 ± 0,001 Гц, а стабильность порядка 10-13. Выходной сигнал резонатора усиливают, многократно делят по частоте и получают стандартные интервалы времени 0,1; 1 с и т. д. Для повышения стабильности водородный стандарт тщательно термостатируют и экранируют даже от магнитного поля Земли.

Надо отметить, что колебания могут существовать не только в электрических цепях, но и в свободном пространстве. Этот особый вид колебаний называют электромагнитными волнами. О них мы поговорим в следующей главе.


Устройство водородного стандарта частоты.

4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Начав с самых обыденных предметов: кристаллов поваренной соли, котлов и зеркал, в этой главе мы расскажем о явлениях таинственных и необыкновенных: электромагнитной индукции, звездной аберрации, опытах по возбуждению и приему невидимых и неслышимых излучений. Расскажем об ионосфере Земли и трансокеанских связях, федингах, антиподах, свистящих атмосфериках и в заключение всего – о сигналах из далеких внеземных миров.


Поля и волны

Чего-то не хватает в этом заголовке? Может быть, лучше: «поля, леса и волны»? Тогда все было бы ясно, поговорили бы о просторных полях пшеницы, бескрайнем море лесов и белогривых пенящихся волнах в самом настоящем бескрайнем морском просторе! Но разговор предстоит о других полях и других волнах. Они невидимы, неслышимы и неосязаемы. Нет у человека органов чувств, способных улавливать электрические или магнитные поля, но, как мы видим, человека это не остановило. Он исследовал электромагнитные поля и волны, научился их создавать и улавливать, придумал для этого различные приборы. Приборы явились как бы дополнением к тем органам чувств, которые даны человеку природой, причем дополнением настолько совершенным, что мы теперь видим и слышим на расстояния в миллионы километров.

Мы много рассказали о передаче сигналов в эфир, по радио, но еще ничего не сказали о том, как это делается и какие физические процессы с этим связаны. Когда говорят о передаче в эфир, явно грешат против истины. Человеческий язык консервативен и долго хранит давно отживите слова. Говорим же мы до сих пор: «Слава богу», хотя прекрасно знаем, что никакого бога нет. Точно так же нет и никакого эфира. Бог нужен был для объяснения таинственных и непонятных явлений. Точно так же и эфир нужен был физикам для объяснения реально наблюдаемых явлений например, распространения света. Но развитие науки показывает, что существуют и другие объяснения. Оказалось, что свет есть электромагнитная волна, которая может распространяться и в вакууме.


Строение атома.

В нашей Вселенной есть две материальные субстанции: вещество и поле. Вещество все мы ясно себе представляем, а вот поле… В понимании физиков поле проявляется благодаря действию каких-либо сил. Силы могут иметь самую разную физическую природу и самое разное происхождение. Почему все тела притягиваются к Земле? Почему мы постоянно чувствуем собственный вес? И откуда он взялся, этот вес? Вес всех предметов обусловлен гравитационным полем Земли. Находясь в поле сил тяжести, все предметы испытывают силу притяжения она и есть вес.

Кроме гравитационных существуют и другие поля, в частности электрические. Их роль в мире мы явно недооцениваем. Атом составляет единое целое только потому, что легкие отрицательно заряженные электроны находятся в электрическом поле положительно заряженного ядра. Противоположные заряда притягиваются, поэтому электрон не так-то легко «оторвать» от ядра. Процесс удаления электрона из «родного» атома называется ионизацией. Она возможна при сильном нагреве, облучении квантами энергии, «обстреле» вещества элементарными частицами высоких энергий. Во всяком случае сообщаемая атомам энергия должна быть больше энергии ионизации атома, которая равна работе, совершаемой против сил поля ядра при «отрывании» электрона.

Атомы объединяются в молекулы электрическими связями. Вот, например, как устроена молекула обычной поваренной соли NaCl. Натрий легко отдает один электрон, находящийся на самой дальней от ядра орбите. Хлор «с удовольствием» захватывает этот электрон. В результате атом натрия становится положительным ионом, а атом хлора отрицательным. Они притягиваются друг к другу как заряды с противоположными знаками. Так получается молекула. Крупинка поваренной соли представляет собой одну большую «молекулу» – ионный кристалл, состоящий из великого множества ионов Na+ и Cl-. Положительные и отрицательные ионы располагаются строго попеременно, вследствие электрических связей они объединяются в кристаллическую решетку, образуя твердое тело. Все окружающие нас предметы оказываются прочными и твердыми только благодаря межатомным электрическим полям.


Молекула поваренной соли.


Расположение ионов в кристалле поваренной соли.

Все мы знаем, что ядро атома очень мало по сравнению с самим атомом, но в то же время оно содержит почти всю массу атома, примерно 99,95 %. Если точка в конце этого предложения условно изображает ядро, то для того, чтобы нарисовать весь атом, понадобится трехметровый лист бумаги! Вот как мало ядро по сравнению с самим атомом. Что же находится в огромном пустом пространстве в атоме? Не воздух же, так как воздух и сам состоит из атомов, объединенных в еще более крупные молекулы. Электрическое поле! Вот насколько важны электрические поля в мироздании!

Электрические поля создаются зарядами. Но если заряд движется, он создает электрический ток. Обычный ток в проводнике, от которого светится, например, лампочка карманного фонаря, – это направленное движение множества электронов. Такое движение порождает поле иного вида – магнитное. Оно действует на другие движущиеся заряды, т. е. на другие токи. Ну а как же постоянный магнит, спросите вы? На первый взгляд в нем нет никаких токов, а магнитное поле он создает! На самом деле токи есть. Это электроны атомов, движущиеся по орбитам вокруг ядра и вращающиеся вокруг собственной оси. Каждый вращающийся электрон – это маленький кольцевой ток. Он и создает свое маленькое магнитное поле. Пока постоянный магнит не намагничен, все элементарные магнитные поля электронов направлены в разные стороны и их общее, усредненное магнитное поле равно нулю. Чтобы намагнитить кусок железа, надо поместить его в сильное внешнее магнитное поле. Тогда все электроны повернутся так, что их магнитные поля будут направлены в одну и ту же сторону, в сторону внешнего магнитного поля. Теперь уберем внешнее поле. Элементарные магнитные поля сохранят прежнее направление. Кусок железа стал постоянным магнитом.


Намагничивание вещества.

Не все вещества можно намагнитить, а только определенные. К ним относятся сплавы железа, никеля и др., а также искусственно созданные ферриты. Вое они называются ферромагнетиками.

Постоянные электрические и магнитные поля не могут существовать без своих источников, зарядов или токов. Но есть особый и, кстати, самый распространенный вид поля – электромагнитное. Оно может существовать и само по себе, в отрыве от источников. Но только электрическое и магнитное поля в нем должны быть переменными, быстро изменяющимися во времени. А само электромагнитное поле будет представлять собой волны, движущиеся (распространяющиеся) в пространстве.


Только волны

Итак, волны. Так емко, многообразно и содержательно это понятие, выражаемое простым словом, содержащим в лучших традициях телеграфистов, только пять букв (дело в том, что «усредненное» телеграфное слово содержит пять знаков). Волны расходятся и от брошенного в пруд камня, и от говорящего человека, и от звезды, затерявшейся в просторах Галактики, и от самой Галактики, представляющейся булавочной головкой в громадных, бездонных, непостижимых человеческому воображению глубинах открытого космоса. Посредством волн мы получаем практически всю (более 99 %) информацию об окружающем нам мире. Почему-то мы считаем реальными только твердые и осязаемые предметы, а волны представляются нам чем-то эфемерным, зыбким и неустойчивым. Однако волны не менее реальны, чем любые твердые и тяжелые предметы.

Электромагнитные волны переносят энергию. Вся жизнь на Земле существует только благодаря энергии Солнца, переносимой к нам электромагнитными волнами инфракрасного, оптического и ультрафиолетового диапазонов. Каждый квадратный метр земной поверхности получает около 600 Вт солнечной энергии. Если бы мы научились всю ее использовать, то на каждом квадратном метре можно было бы включить по электроплитке! А ведь между Землей и Солнцем нет никаких проводов или других материальных «энергетических мостиков» – только космическое пространство!

Возможность направленной передачи энергии с помощью электромагнитных волн давно интересует специалистов. Главная проблема заключается в том, чтобы энергия не рассеивалась в пространстве бесполезно, а по возможности вся поступала к потребителю. Следовательно, энергию электромагнитных волн необходимо сконцентрировать в очень узкий луч. Сделать это можно только при использовании очень коротких волн длиной в несколько миллиметров или еще меньше. Дело в том, что хорошо концентрируют энергию только излучатели (антенны) достаточно больших по сравнению с длиной волны размеров. Один из проектов предусматривает строительство в космосе электростанции, превращающей с помощью полупроводниковых солнечных элементов световую энергию Солнца в электрический ток. Этим током должны питаться мощные генераторы сверхвысокочастотного (СВЧ) излучения, снабженные большими антеннами, направленными на Землю. На Земле размещается мозаика из огромного числа приемных антенн с полупроводниковыми СВЧ детекторами, преобразующими энергию сверхвысокочастотных колебаний в постоянный электрический ток. Необходимость в большом числе приемников обусловлена тем, что каждый полупроводниковый приемник может работать лишь при сравнительно небольшой мощности. Но это пока всего лишь проект.

Как преобразовать энергии электромагнитного излучения Солнца в электрическую здесь, на Земле? Проще всего подвесить черный котел с водой в фокусе большого параболического рефлектора-зеркала. Вода в котле нагревается до высокой температуры и превращается в пар, который может вращать небольшую паровую турбину, или использоваться для обогрева теплиц и помещений. Подобные солнечные энергетические установки уже изготавливаются и устанавливаются в южных районах страны, где много солнечных дней в году, но в то же время трудно пользоваться обычными источниками энергии ввиду удаленности от промышленных и энергетических центров. Недостаток подобного способа использования солнечной энергии, переносимой электромагнитными волнами, очевиден: коэффициент полезного действия (КПД) паровой машины, так же как и старого паровоза, не превосходит 10.. 20 %. Желательно было найти преобразователи энергии с более высоким КПД. И в этом вопросе бурно развивающаяся полупроводниковая электроника не могла не сказать своего веского слова. Были созданы солнечные элементы – устройства, непосредственно преобразующие энергию световых волы в электрический ток. Если р-n переход полупроводникового диода осветить, на выводах диода появится небольшая разность потенциалов. Она вызвана так называемым вентильным фотоэффектом. Энергия квантов света, сообщаемая электронам полупроводника, помогает им преодолеть потенциальный барьер, существующий в области р-n перехода, в результате чего и возникает разность потенциалов. Подробнее о р-n переходе будет сказано в следующей главе, а пока лишь отметим, что инженерам удалось решить главную задачу сделать р-n переход достаточно большой площади, чтобы можно было собирать больше световой энергии. Один солнечный элемент с размерами 1 х 3 см развивает ЭДС до 0,5 В. Элементы соединяют в батареи площадью до нескольких квадратных метров. Подобная батарея может генерировать уже несколько киловатт электроэнергии, ведь КПД солнечных элементов очень высок и достигает 70.. 90 %. Солнечные батареи пока еще очень дороги, и поэтому их широко используют лишь для питания электронной аппаратуры искусственных спутников Земли, тем более, что погода вне атмосферы Земли всегда солнечная.


Солнечные батареи на космическом корабле.

Немало технических новинок с солнечными батареями создано и для земных условий. Сделаны радиоприемники и портативные радиостанции с солнечным питанием. Если первые служат в основном для развлечения, то вторые могут оказаться незаменимыми для геологов, туристов и прочего таежно-бродячего люда. Выпускаются микрокалькуляторы с питанием от солнечных элементов, причем для работы их даже не обязательно выносить на солнце, вполне достаточно света настольной лампы.

Предпринимаются попытки создать и более мощные конструкции – электромобили, яхты с электропитанием от солнечных батарей, однако ясно, что для успешной работы таких систем нужна ясная солнечная погода.


Электромобиль с солнечными батареями.

Энергия, переносимая электромагнитными волнами, зависит от мощности источника и расстояния до него. Солнце – чрезвычайно мощный источник электромагнитной энергии. И хотя расстояние от Земли до Солнца очень велико – оно составляет 149 млн. км, солнечной энергии хватает и для обогрева Земли, и для поддержания на ней жизни. Иное положение на далеких планетах Солнечной системы – там поток энергии значительно меньше. Чтобы установить зависимость потока энергии, переносимой электромагнитными волнами, от расстояния, окружим Солнце воображаемой сферой радиуса R. Через поверхность этой сферы пройдет весь поток энергии, излучаемой Солнцем, а площадь поверхности сферы составит 4π·R2.

Увеличив радиус сферы вдвое, мы увеличим ее поверхность в четыре раза. Следовательно, поток энергии, проходящей через один квадратный метр нашей воображаемой поверхности, уменьшится также в четыре раза. Таким образом, поток энергии, переносимой электромагнитными волнами, обратно пропорционален квадрату расстояния от источника. Именно поэтому свет далеких звезд так слаб и его невозможно увидеть днем при ярком сиянии Солнца. И уж конечно, нельзя говорить об энергии света звезд в плане ее практического использования. Но звездный свет нам нужен, без него мы не представляем ясных летних ночей, без него мир был бы намного беднее. Информация, которую несет нам звездный свет, используют навигаторы, ученые, а уж о влюбленных и говорить нечего! Значит, и очень слабый поток электромагнитной энергии может быть чрезвычайно полезен – он может нести информацию!

Об информации, передаваемой световыми сигналами, мы уже говорили во второй главе, в частности о кострах на башнях. Для приема этой информации служил один из самых совершенных приемников электромагнитных волн, созданный природой, – человеческий глаз. Но распространение световых сигналов зависит от атмосферных условий в пасмурную, дождливую и туманную погоду электромагнитные волны светового диапазона сильно поглощаются. Этого недостатка нет у более длинных волн – радиоволн.

История их применения и использования очень коротка, она не насчитывает еще и века, но столь насыщена событиями, необычна и интересна, что о ней стоит поговорить подробнее.


Великие теоретики и великие практики

Путь к познанию и изучению электромагнитных волн был нелегок. Связь магнитного поля с порождающим его током установил X. Эрстед в 1820 году. Майкл Фарадей, замечательный английский физик-экспериментатор, задался противоположной целью – установить, а не может ли магнитное поле быть причиной возникновения электрического тока. Многочисленные опыты привели к успеху. Сейчас трудно даже представить, что пришлось преодолеть экспериментатору. Любому школьнику ясно, что катушку индуктивности надо наматывать изолированным проводом. Но в 20-х годах прошлого столетия это было совсем не очевидно! Где было взять изолированный провод, ведь промышленность его не выпускала? Да и электротехнической промышленности как таковой еще не было. Неизвестно, выпускалась ли вообще тонкая медная проволока. Поставим себя на место экспериментатора и даже облегчим задачу – допустим, что проволока у нас уже имеется. Для изготовления небольшой катушки ее требуется метров пятьдесят. Значит, нам предстоит обмотать эту проволоку бумагой или полосками ткани, да так, чтобы не осталось неизолированных мест. А теперь проволоку надо намотать на катушку, чтобы не повредить, и не сдвинуть нашу самодельную изоляцию. Не зря великий Т. Эдисон говорил, что научное творчество на 99 % состоит из вовсе не творческого, а рутинного труда.


Опыт по электромагнитной индукции.

Разумеется, опытами с электричеством занимался не один Фарадей. Рассказывают, например, такой курьезный случай. Один из физиков того времени был очень близок к открытию закона электромагнитной индукции. Он разместил рядом две катушки, к одной из которых был подключен гальванометр, а через другую пропускался электрический ток. Вся беда была в том, что, желая обеспечить чистоту эксперимента, источник тока с выключателем физик разместил в другой комнате. Ток выключен стрелка гальванометра на нуле, ток включен – стрелка опять на нуле. Она отклонялась в момент включения и в момент выключения тока, но на гальванометр в это время никто не смотрел физик уходил в другую комнату включать и выключать рубильник.

Кто знает, может быть, теснота лаборатории (не было другой комнаты) помогла Майклу Фарадею открыть и сформулировать закон электромагнитной индукции, носящий теперь его имя. Если магнитное поле, пронизывающее какой-либо контур (проволочный виток, рамку, катушку) изменяется, то в этом контуре возникает ЭДС, а следовательно, и электрический ток. Закон электромагнитной индукции позволил создать динамомашину – генератор электрического тока. Конструкция динамомашины мало изменилась до наших дней, увеличились лишь ее размеры и мощность. Огромные динамомашины – генераторы установлены и на тепловых, и на атомных, и на гидроэлектростанциях. Тем, что теперь в каждой квартире пользуются электроэнергией, что улицы больших и малых городов ярко залиты электрическим светом, ходят электропоезда, трамваи и троллейбусы, – почти всей современной энергетикой мы обязаны Фарадею и многочисленным физикам и электротехникам, работавшим посте него.

Что же главное в законе электромагнитной индукции? То, что ЭДС индукции пропорциональна не величине магнитного поля (постоянное поле ЭДС не создает), а скорости его изменения. Ну а что если проволочный виток – контур или катушку убрать, а переменное магнитное поле оставить? Тогда вокруг силовых линий магнитного поля Н тока не будет, но останется кольцевое электрическое поле Е. Оно как бы порождается изменениями магнитного поля.

Обратный эффект также существует. Если изменяется электрическое поле Е = Е(t), то вокруг его силовых линий возникает кольцевое магнитное поле Н. Эти явления были предсказаны великим физиком-теоретиком Джеймсом Кларком Максвеллом в середине прошлого столетия. Максвелл вывел стройную систему уравнений, описывающих взаимосвязь переменных электрического и магнитного полей. Уравнения Максвелла и сейчас используются в электродинамике при расчетах антенн, волноводов, условий распространения радиоволн над земной поверхностью и решении многих других прикладных задач. Из этих уравнений Максвелла следует, в частности, существование электромагнитных волн, свободно распространяющихся в пространстве. Уравнения дают и скорость распространения этих волн, которая, как оказалось, совпадает со скоростью света.

Здесь просто необходимо сделать небольшое отступление. Скорость света к описываемому времени была известна уже достаточно точно. Впервые ее измерил датский астроном О. Ремер еще в 1675 году. Предвижу недоуменный вопрос читателей: а как ему это удалось в столь древние времена? Ремер наблюдал за затмениями спутников Юпитера. Еще непонятнее? Причем тут спутники Юпитера?

Мне хочется описать эти наблюдения подробнее, чтобы читатель мог оценить остроту мысли и тонкость эксперимента ученых. Допустим, в какой-то момент Земля и Юпитер находятся по одну сторону от Солнца, т. е. максимально близко друг от друга. Астроном определяет момент, когда спутник Юпитера скрывается за планетой, а затем и период обращения спутника вокруг Юпитера.

Небесные «часы» очень точны, а законы механики неизменны. Теперь можно рассчитать моменты заходов спутника за планету на много месяцев вперед. Сделаем эти расчеты и подождем. Через несколько месяцев Земля окажется в другом положении относительно Солнца, а Юпитер, обращающийся вокруг Солнца значительно медленнее, сдвинется от прежнего положения незначительно. Опять наблюдаем спутник и убеждаемся, что он «заходит» позже, чем было рассчитано! Чем это объяснить? Только тем, что Земля теперь дальше от Юпитера и свету требуется некоторое время, чтобы преодолеть это дополнительное расстояние. Измерив запаздывание заходов спутника и оценив, насколько увеличилось расстояние, мы можем вычислить скорость света! Ремер получил значение 215000 км/с.

Полвека спустя английский астроном Брэдли заметил, что видимое положение звезд на небесной сфере подвержено сезонным изменениям. Изменение невелико и может достигать 41 угловой секунды за полгода. Еще через полгода звезды возвращаются на прежнее место. Это явление называется звездной аберрацией. Разумно предположить, что звезды здесь ни при чем, а эффект имеет причиной вращение Земли вокруг Солнца.

Вам случалось ехать в трамвае или автобусе в дождь? Замечали, что капли дождя оставляют на стекле не вертикальные, а наклонные дорожки? Простая векторная диаграмма объясняет почему так происходит. Чтобы найти угол наклона траектории капли на стекле, надо знать лишь скорость падения капли и скорость трамвая.


Абберация дождевых капель.

То же и со светом. Падающая на Землю со скоростью с световая волна будет восприниматься с иного направления, если Земля движется со скоростью v. Знак отклонения изменяется на обратный через полгода, когда направление скорости Земли изменится на обратное. Скорость Земли на орбите хорошо известна из других астрономических наблюдений. Она составляет около 30 км/с. После продолжительных и тщательных наблюдений (обратите внимание, что работа должна была продолжаться несколько лет) Брэдли нашел скорость света, весьма близкую к истинной, – 303 000 км/с.

Как видим, все ранние попытки определения скорости света связаны с астрономическими наблюдениями. И эту информацию нам принес очень слабый, мерцающий и таинственный звездный свет! Но было интересно измерить скорость света и в наших, земных условиях. Впервые это сделал французский физик Л. Физо в 1849 году. Его экспериментальную установку можно было бы назвать, пользуясь современной терминологией, светодальномером с механической модуляцией светового потока. Вкратце суть опыта состояла в следующем. Свет лампы проходил сквозь зубья быстро вращающегося колеса и направлялся на удаленное зеркало. Расстояние до зеркала достигало 8,6 км! Отраженный от зеркала свет проходил сквозь те же зубья и наблюдался с помощью зрительной трубы. Мы не зря употребили термин «модуляция светового потока». Ведь зубчатое колесо превращало излучаемый световой поток в последовательность коротких световых импульсов. Если отраженный импульс приходил в тот момент, когда перед глазом наблюдателя располагался «зуб» вращающегося колеса, света не было видно. Стоило изменить скорость вращения колеса, и отраженные световые импульсы, проходя в промежутки между зубьями колеса, становились видимыми. Несложный расчет позволяет связать скорость света с числом зубьев колеса, скоростью его вращения и расстоянием до зеркала-отражателя. Физо получил значение скорости света 313000 км/с.

Преемником Физо стал замечательный американский экспериментатор А. Майкельсон. Собственно, почти всю свою научную и практическую деятельность он посвятил одной цели – точному определению скорости света в различных условиях.

Майкельсон существенно усовершенствовал установку Физо и предложил много новых оригинальных приборов. С помощью оптического прибора – интерферометра, носящего теперь его имя, он сумел на коротких дистанциях измерить линейные перемещения с точностью до десятых долей микрометра. Опыты Майкельсона помогли решить многие фундаментальные вопросы физики. Было показано, например, что скорость света не зависит от скоростей источника или наблюдателя. Она всегда постоянна. Этот экспериментальный факт лег в основу теории относительности, разработанной Альбертом Эйнштейном.


Опыт Майкельсона.

Эксперименты А. Майкельсона в 1881–1887 годах произвели подлинную революцию в мышлении физиков. До того времени многие верили в существование некоего «эфира», колебания которого и являются световыми волнами. Ведь морские волны распространяются по поверхности воды, звуковые – в воздухе, жидких и твердых средах. Казалось бы, и свет должен распространяться в какой-то среде. Но если это так, то Земля, вращаясь вокруг Солнца, должна двигаться сквозь эфир, на Земле должен дуть «эфирный ветер». Идея опыта Майкельсона была проста. Если одно плечо интерферометра расположить вдоль направления движения Земли, а другое поперек, то скорость света в плечах окажется разной. Повернув интерферометр на 90°, т. е. поменяв плечи местами по отношению к движению Земли, мы должны увидеть смещение интерференционных полос. Для повышения точности эксперимента была построена уникальная установка. На кирпичном фундаменте расположили кольцевой чугунный желоб, наполненный ртутью. В ртуть погружался кольцевой поплавок, повторяющий форму желоба, но не соприкасающийся с его стенками. На поплавок положили массивную каменную плиту, а на ней установили зеркала интерферометра. В каждом плече свет переотражался несколькими зеркалами, чтобы увеличить действующую длину плеч (примерно до 11 м). Установка позволяла очень плавно, без толчков и вибраций поворачивать интерферометр. Чувствительность прибора в 40 раз превосходила требуемую для обнаружения «эфирного ветра». И что же?


    Ваша оценка произведения:

Популярные книги за неделю