355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Антонов » Эфир. Русская теория. » Текст книги (страница 7)
Эфир. Русская теория.
  • Текст добавлен: 11 сентября 2016, 16:48

Текст книги "Эфир. Русская теория."


Автор книги: Владимир Антонов



сообщить о нарушении

Текущая страница: 7 (всего у книги 12 страниц)

Электронный поток – электрический ток

То, что электрический ток представляет собой электронный поток и что им движет только активный перепад электронного давления, мы уже говорили; уточним некоторые моменты, связанные с ним, и будем их рассматривать по-прежнему с позиций эфирной теории.

Прежде всего – об электронном потоке: в электрофизике сложилось мнение, что кроме электронной проводимости существует еще ионная. В принципе так можно говорить, но мы должны четко представлять, что ионы, то есть атомы или молекулы с ненормальной плотностью электронов, являются всего лишь носителями или, просто, посредниками; сам же электронный поток нигде не прерывается. В этом смысле наряду с понятием электронной проводимости можно было бы употреблять выражение «металлическая проводимость».

Что касается активного перепада электронного давления, то он может возникать как от нагнетания электронов, так и при отсосе. Первый случай подобен нагнетанию воздуха с помощью компрессора, а второй – его откачке с помощью вакуум-насоса. При нагнетании электронов передняя волна давления будет выглядеть как местное уплотнение электронов, и это уплотнение будет быстро смещаться по проводнику в направлении от источника давления; это – наиболее распространенный случай. При отсосе электронов переднюю волну давления правильно было бы назвать волной разряжения, и она смещается с той же скоростью в направлении к источнику; это – так называемая дырочная проводимость.

В общем на электрическую цепь распространяется такое правило: сколько электронов ушло от источника, столько же к нему возвращается, – но могут быть отклонения и очень существенные: все зависит от емкости потребителей. В начале возникновения электронного потока от источника будет уходить больше электронов, чем возвращаться к нему; разность будет накапливаться в емкостях (в частности – в конденсаторах) потребителя. Потом процесс может стабилизироваться, но в сложных системах он полностью никогда не устанавливается.

В исключительных случаях электронные потоки могут быть только однонаправленными, например при подключении пробника с индикаторной лампочкой, и тогда используется только один проводник. Существуют и более сложные однопроводные электрические приборы; для них, естественно, более подходят однополярные источники питания – и такие в принципе могут быть: наше понимание электронных процессов допускает это.

Наиболее подходящим токопроводящим материалом являются металлы. Это объясняется тем, что атомы металлов имеют контурные присасывающие желоба; и как бы атомы не соединялись между собой (а соединяются они между собой с помощью тех же желобов), их желоба являются продолжением одних другими: скользя по желобам, электроны могут перемещаться из конца в конец проводника. В пределах атома электрон смещается без каких-либо потерь; некоторые усилия он совершает только при перепрыгивании с атома на атом, да и то только при условии, что атомы соединились между собой неудачно. Впрочем, зная условия стыковки атомов (а это – затвердевание металла и пластическая деформация волочения), мы не можем рассчитывать на то, что их присасывающие желоба соединились так, как хотели. Отсюда – электрическое сопротивление проводников.

Оно возрастает еще и от того, что у атомов есть тепловые движения, приводящие к постоянному вскрытию стыков; преодолевая их, атомы вынуждены совершать усилия. В среднем влияние температурных изменение электрического сопротивления у всех металлов приблизительно одинаковое, но есть и некоторые отклонения; так больше на температуру реагирует чистое железо и меньше – медь, а еще меньше – некоторые сплавы латуни и, конечно, ртуть, но ртуть – уже жидкий проводник. Снижение температуры благоприятно сказывается на электрическом сопротивлении; и если ее снижать до глубокого холода, то можно достичь сверхпроводимости, она возникает при температуре минус 266 градусов по Цельсию у свинца и при более низкой температуре у алюминия.

Многолетние усилия ученых создать сверхпроводящие материалы при нормальных условиях пока никаких результатов не дали, хотя, согласно эфирной теории, такое может быть. Что для этого нужно? Нужно выполнить два условия: первое – правильное соединение присасывающих желобов атомов, и второе – предотвращение вскрытия стыков при тепловых движениях. Правильного соединения атомов можно достичь при очень медленном затвердевании некоторых металлов в условиях невесомости. Известно, что очень тщательная термообработка проводников даже в земных условиях повышает температуру перехода проводников к сверхпроводимости; при этом, надо полагать, атомы имеют возможность перестроится и улучшить свои взаиморасположения. А для того, чтобы атомы не раскрывали свои стыки при тепловых движениях, нужно подбирать металлы с высокой упругостью, например вводить в сплавы бериллий. Возможны и другие варианты, но, как нам кажется, без глубокого понимания токопроводящих процессов с точки зрения эфирной теории проблему сверхпроводимости не решить. По крайней мере, нужно усвоить хотя бы то, что открытыми для перемещения электронов могут быть только присасывающие желоба атомов на поверхности проводников, а все или почти все внутренние заняты межатомными связями.

Согласно эфирной теории наименьшее сопротивление перемещению электронов оказывает вакуум; если бы он был абсолютным, то есть чистым эфиром, то сопротивления не возникало бы никакого. Но положение усугубляют два обстоятельства: во-первых, абсолютного вакуума достичь невозможно, а во-вторых, перемещаясь внутри любого канала, электроны будут цеплять за стенки и испытывать от этого сопротивление своему движению. Отсюда – вывод: легкого решения проблемы сверхпроводимости не существует.

Изучение движений электронов в вакууме интересно само по себе; оно позволяет нам хорошо понять процессы, происходящие в электровакуумных лампах. Наиболее интересными вопросами являются: отрыв электронов от электрода, управление величиной электронного потока, сжатие потока в тонкую струю и отклонение струи; последние два вопроса касаются в основном электронно-лучевых трубок. Об отрыве электронов от присасывающих желобов атомов электрода уже говорилось; остальные три явления требуют пояснения.

Утверждая, что электрическое поле не может существовать без электронов и что электроны в нем непосредственно контактируют, не имея никакого дальнодействия, мы вынуждены теперь представлять процессы, происходящие в электровакуумных лампах, как взаимовлияние нескольких электронных потоков со своими перепадами давлений; и только так. Сетка лампы, регулирующая величину проходящего через нее потока, может отсасывать часть электронов и тем самым его ускорять или, напротив, может его тормозить, создавая встречный поток. Сжатие электронного потока в тонкую струю можно осуществить простым способом, пропуская его через малое отверстие, или другим способом – созданием дополнительного бокового кругового потока. Этим же боковым круговым потоком можно отклонять электронную струю в нужном направлении; для этого достаточно дифференцировать силы потоков с разных сторон. Именно таким способом управляется электронный луч в кинескопе. Для сравнения можно сказать, что также происходит управление воздушными потоками в приборах струйной пневмоавтоматики (пневмоники).

Особый характер имеют электронные потоки в полупроводниках; к ним относятся самые разные материалы с самыми различными свойствами. К чести специалистов, занимавшихся полупроводниками, – они никогда не руководствовались планетарной моделью атомов; она их не устраивала. Их воззрения всегда базировались на признании того, что атомы представляют собой решетчатые конструкции, а электроны – как мелкие частицы среди этих решеток. Такое понимание ни в чем не расходится с эфирной теорией. Это непроизвольное сближение произошло, скорее всего, потому, что электронщики всегда отталкивались от факта, от опыта, от практики; и результаты у них впечатляющие. Можно не сомневаться, что эфирная теория будет воспринята ими как сама собой разумеющаяся. А что касается самих полупроводников, то эфирная теория, пожалуй, мало что изменит в понимании процессов, происходящих в них.

Представляя почти наглядно электрический ток в виде электронов, скользящих по бугристым поверхностям проводников, можно высказать сомнение, что скорость распространения волны их давления близка к скорости света, то есть к тремстам тысячам километров в секунду; скорее – значительно меньше. В то же время можно принять за действительную подвижность самих электронов в проводниках, указанную в справочниках; так в серебре, если верить этим данным скорость электронов равна 56 сантиметрам в секунду при разности напряжений в один Вольт на одном сантиметре; наименьшая скорость – в цинке, где она составляет всего 5,8. А вот в справочные данные по подвижности ионов в водных растворах и в газах верится с трудом, так как в нашем представлении она не постоянна и может колебаться от высоких значений вплоть до нуля.

3.2. Магнетизм

Элементарным магнитом является электрон; если говорить более точно, то – не сам электрон, а его вращение – вращение того самого колесика, в виде которого мы представляем себе электрон. Если в электричестве он выполняет функции носителя энергии, как атомы и молекулы воздуха в пневматике, то в магнетизме его роль иная: он является элементом, упорядочивающим взаимное расположение и вращение. Для уяснения сказанного позволим себе еще одно образное сравнение: если в электричестве электрон – как солдат в бою, то в магнетизме – как солдат в строю.

У электрона есть все атрибуты магнита: активные полюса и активная боковая сторона; благодаря им он выстраивается соответствующим образом по отношению к другим электронам. Полюса магнита (в данном случае – торцы электрона) получили географические названия: северный и южный. Произошло это не случайно, наблюдая за поведением магнитных стрелок, люди отмечали их ориентацию на Северный и Южный полюса Земли. Понимая, что Земля сама – магнит, и глядя мысленно из космоса на ее Северный полюс, мы отметим вращение против часовой стрелки (Солнце восходит на Востоке, а садится на Западе); отсюда – и северный полюс магнита. При взгляде на Южный полюс мы обнаружим направление вращения Земли, естественно, по часовой стрелке; по аналогии соответствующий торец магнита назван южным полюсом. К счастью, эти согласованные с названиями полюсов их направления вращения оказались такими, какими они должны быть в электромагнитных явлениях, и ниже мы это покажем.

А пока перед нашим взором – электрон; и он расположен так, что его ось вращения – вертикальна, а направление вращения, если посмотреть на него сверху – против часовой стрелки; следовательно, его северный полюс будет сверху, а южный – снизу, – привычное географическое расположение. Ближайшая к нам боковая сторона электрона смещается вправо. Договоримся и впредь именно так представлять себе расположение электрона и любого магнита в пространстве.

Если рядом окажутся несколько электронов и если ничто не будет мешать, то они, как мы уже говорили, выстроятся соосно с одним направлением вращения, образуя вращающийся вокруг своей оси шнур; это – тоже магнит, только в нем магнитные полюса будут проявляться, разумеется, только на крайних электронах, и эти проявления сохранятся неизменными: каким бы длинным не был шнур, его полюса всегда будут воздействовать на окружение неизменно. Теперь мы можем сказать так, что известная из электрофизики магнитная силовая линия есть соосно расположенные и вращающиеся в одном направлении электроны; синонимами магнитной силовой линии являются магнитный шнур и электронный шнур.

Тело атома, представляющее собой вращающуюся торовую оболочку, является по определению также магнитным шнуром, только этот шнур замкнут и поэтому не имеет полюсов. Впрочем, разорванный атом становится обычным магнитным шнуром; обычным – в магнитных проявлениях, но необычным в силе этих проявлений: тело атома более плотно и более прочно.

Рядом (параллельно) расположенные магнитные шнуры образуют пучок. Если им ничто не мешает, то их направления вращения будут паразитными, то есть встречными. Такой пучок, как единое целое, магнитные свойства теряет: у него нет своих полюсов и нет однонаправленных боковых сторон. Магнитные свойства пучок будет иметь только в том случае, если вращение всех его шнуров будет однонаправленным; при этом у него появляются полюса и действующие в одном направлении боковые стороны; такой пучок мы вправе назвать магнитным и вправе считать, что он определяет так называемое магнитное поле; точнее: магнитное поле есть пространство, заполненное пуком вращающихся в одном направлении магнитных шнуров.

Однонаправленность вращения шнуров в магнитном пучке – противоестественна и может удерживаться только при определенном внешнем воздействии; такое воздействие могут оказывать атомы и эфирный ветер.

Атомы некоторых химических веществ, например железа, никеля и кобальта, устроены таким образом, что выстраивают прилипшие к ним электроны в магнитные шнуры. Если в момент затвердевания этих веществ их атомы расположены так, что все их магнитные шнуры образуют один магнитный пучок, то полученное твердое тело окажется магнитом. В дальнейшем атомы такого естественного магнита будут удерживать образовавшийся магнитный пучок и противодействовать стремлению отдельных его магнитных шнуров сменить свое направление вращения на обратное. Действие магнитного пучка распространяется и на прилегающие к магниту пространства, то есть за его пределами: находящиеся там свободные электроны будут выстраиваться естественным образом в линии, как бы наращивая магнитные шнуры твердого тела; правда, располагаться плотно друг к другу шнуры в свободном пространстве уже не могут – будут мешать сталкивающиеся оболочки, – и выходящий из твердого тела магнитный пучок будет расходиться веером.

Другим фактором, удерживающим магнитный пучок, является разная скорость эфирного ветра; это явление имеет большое значение в электромагнетизме, и поэтому рассмотрим его более подробно. Представим себе определенный магнитный шнур, расположенный поперек эфирного потока. Если скорость эфира в сечении потока одинакова, то такой ветер может только прогибать или отклонять шнур, но повлиять на направление его вращения не сможет. Другое дело, если скорость эфира в сечении потока окажется разной: с одной стороны шнура больше, а с другой – меньше; такая разность скоростей обдувающего эфира будет либо содействовать вращению магнитного шнура, либо препятствовать ему. При содействии шнур будет чувствовать себя в безопасности, а при сопротивлении – рано или поздно вынужден будет поменять направление своего вращения.

Точно такое же воздействие оказывает эфирный ветер с разными скоростями на магнитный пучек. Если эфирный поток, пронизывающий его, имеет большую скорость с одной стороны, и она убывает по мере смещения к другой, то все магнитные шнуры пучка вынуждены будут вращаться в одном направлении, несмотря на их нежелание это делать. Более того, эфирный ветер с разными скоростями не только ориентирует магнитные шнуры, но и содействует их формированию: электроны, оказавшиеся в поле действия эфирного потока с такими скоростями, будут выстраиваться в соосность с одним направлением вращения, то есть будут объединяться в шнуры.

Проявления магнетизма

Переменная скорость эфира, плавно изменяющаяся в одном направлении, может возникать в макрозавихрениях, например создаваемых электромагнитными катушками. Скорость закрученного ею эфира будет убывать по мере удаления от витков как к центру катушки, так и на периферию; поэтому с одной стороны от витков будет одно магнитное направление, а с другой стороны – обратное, или, другими словами, внутри катушки сформируется пук магнитных шнуров одного направления вращения, а снаружи, охватывая внутренний кольцом, расположится другой пук с противоположным направлением.

Процесс формирования магнитных пучков микрозавихрением эфира – обратим, то есть постоянный магнит закручивает вокруг себя эфир по отмеченному выше закону: окружная скорость эфира постепенно увеличивается при смещении от центра пучка к его краю (там она – наибольшая), и постепенно уменьшается за пределами пучка при удалении от него. Такое проявление магнетизма, а именно: формирование микрозавихрением эфира магнитного пучка и обратный процесс – закручивание магнитом эфира вокруг себя, – является одним из основных; оно лежит в основе многих электромагнитных процессов.

Другим не менее важным проявлением магнетизма можно считать упругую реакцию магнитного шнура на давление сбоку. Мы знаем, что шнур не прочен, но в пределах до своего разрушения он упруго сопротивляется всякой попытке сместить или прогнуть его. При этом возникает отклоняющее воздействие, вызванное тем, что шнур вращается вокруг своей оси. Если взять проводник и упереться им в магнитный шнур, то, во-первых, потребуется усилие для его прогиба, а во-вторых, электроны проводника , обкатываясь по шнуру, сместятся в сторону его вращения, то есть совершат маленький шажок по проводнику. При его дальнейшем смещении в действие вступит следующий магнитный шнур, и снова все повторится, и электроны проводника снова совершат еще один шажок в прежнем направлении, и так далее. Таким образом в проводнике, пересекающем магнитный пучек, возникает движение электронов, то есть электрический ток. И это проявление магнетизма, а точнее говоря – электромагнетизма, трудно переоценить, ведь именно на этом принципе основана работа всех механических генераторов электрического тока.

Но в глаза обычно бросается иное проявление магнетизма: магнитные притяжения и отталкивания. Если сдвигать соосно два магнитных пучка, да так, чтобы совпадали направления вращения их шнуров, то они устремятся навстречу друг другу и потянут за собой магниты. Это кажется настолько понятным, что не требует особых разъяснений. Совпадающее направление вращение торцевых электронов сближающихся шнуров создает между ними эфирное разряжение, и они будут стремится друг к другу до упора. В свою очередь электроны «привязаны» к атомам и молекулам магнита и тянут их за собой; вот и все. При стыковке магнитов их магнитные шнуры замыкаются, и из двух образуется единый магнит.

Соосное сближение двух магнитных пучков со встречным направлением движения их шнуров порождает совсем иную картину: испытывая лобовые сопротивления, эфирные завихрения торцевых электронов будут уклоняться от взаимного сближения и противодействовать друг другу. В результате магнитные шнуры каждого пучка разойдутся крутым веером, и веера обоих пучков, как веера упругих проволок, будут препятствовать взаимному сближению. Также будут отталкиваться «привязанные» к электронам шнуров атомы и молекулы магнитов.

Кроме отмеченных проявлений магнетизма есть и другие, но они, как правило, являются производными от указанных базовых. Их много, но к ним, как мы уже говорили, не имеют никакого отношения электромагнитные волны, распространяющиеся по эфиру.

Магнитные поля в различных средах

Идеальной средой для магнитных шнуров является вакуум, то есть чистый эфир. Если он спокоен, то все находящиеся в нем электроны очень быстро выстроятся в магнитные шнуры; только направление вращения соседних шнуров всегда будет паразитным (антипараллельным). Одно направление вращения соседних магнитных шнуров может возникать, как было сказано выше, в эфирном завихрении, и тогда образуется магнитный пучок.

Примером почти чистой эфирной среды для магнитных проявлений может служить безвоздушный космос. На дальних подступах к Земле электроны, летящие от Солнца, имеют возможность выстроится в магнитные шнуры, и подлетая к нашей планете, они уже представляют собой поток параллельно летящих нитей. Назвать такой пучок магнитным нельзя, так как в нем будет неупорядоченное направление вращения всех магнитных шнуров. Вокруг Земли, как мы знаем, действует метазавихрение; оно уже вынуждает соседние магнитные шнуры вращаться в одном направлении, и оно превращает нашу планету в магнит. Опускающиеся к ее полюсам мириады магнитных шнуров, образующие сложные поверхности и отражающие косой свет, выглядят как северное сияние и как красочное природное явление. Возникает оно в тихие дни, когда нет ветра и, стало быть, нет порождающего его эфирного ветра; а когда он есть, то своей турбулентностью он легко разрушает и магнитные потоки, и магнитные шнуры.

Та зона на границе магнитного поля Земли, где происходит переориентация магнитных нитей солнечного ветра в упорядоченные направления вращения, называется магнитопаузой.

Благоприятной средой для магнитных шнуров и пучков являются ферромагнитные материалы, а из них лучшими – магнитно-мягкие, такие как электротехническая малоуглеродистая сталь с присадкой кремния, чистое электротехническое железо, пермаллой и другие. Они хороши по двум соображениям: их атомы, молекулы и кристаллы очень плотно насыщены электронами, и эти электроны почти беспрепятственно могут собираться в магнитные шнуры и также легко распадаться. Препятствия возникают в тех случаях, когда ориентация магнитных шнуров не соответствует ориентации атомов, молекул и кристаллов; такие свойства материалов называются магнитно-анизотропными.

Магнитно-твердые ферромагнетики, а к ним относятся хромовольфрамовые и хромомолибденовые стали, насыщены электронами не меньше, но отличаются от мягких тем, что с трудом перемагничиваются; а это значит, что электроны в них склонны удерживать свое положение и, направление вращения. На примере твердых ферромагнетиков хорошо видна инерционность электронных шнуров, усугубляющаяся нежеланием атомов изменять свои положения.

В сотни и тысячи раз слабее магнитные поля в парамагнитных материалах; к ним относятся воздух, алюминий и другие среды. Нетрудно сообразить, что ориентировать пушистые электроны среди пушистых атомов воздуха не составляет особого труда; слабость магнитных полей объясняется только редким расположением электронов в этих средах. Попутно выясняется, что плотность электронов в воздухе в сотни и тысячи раз меньше, чем в металлах, за исключением алюминия (правда, Дмитрий Иванович Менделеев его к чистым металлам не относил), но про него можно сказать так: внутри атомов алюминия электронов практически нет; мало их и в пространствах между его атомами, но поверхностные присасывающие желоба у него почти ничем не отличаются от желобов других металлов и поэтому хорошо проводят электроны; поэтому-то алюминиевые провода почти не уступают медным.

Хуже всего действуют на магнитные поля диамагнитные материалы, к которым относятся вода, кварц, серебро, медь и другие; они не усиливают внешнее магнитное поле как ферромагнетики и не равнодушны к нему как парамагнетики, а даже ослабляют его. Чем это можно объяснить? Едва ли это вызвано отсутствием электронов; можно даже утверждать, что их там очень много. Причина, вероятнее всего, кроется в том, что атомы диамагнетиков не позволяют своим электронам ни смещаться до соосности, ни поворачивать свои оси вращения.


    Ваша оценка произведения:

Популярные книги за неделю