355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Антонов » Эфир. Русская теория. » Текст книги (страница 5)
Эфир. Русская теория.
  • Текст добавлен: 11 сентября 2016, 16:48

Текст книги "Эфир. Русская теория."


Автор книги: Владимир Антонов



сообщить о нарушении

Текущая страница: 5 (всего у книги 12 страниц)

2.11. Эволюция метазавихрений на примере Солнечной системы

Самым главным параметром эволюции является, без сомнения, изменение эфирной плотности: сначала она резко возрастает (в момент столкновения эфирных облаков) и становится избыточной, а затем медленно снижается до потери в конце концов своей избыточности. В пределах Солнечной системы в настоящее время засечь факт роста плотности, разумеется, нельзя; поэтому проследим эволюцию (по отдельным её фрагментам) с момента начала снижения плотности эфира.

Наибольшая эфирная плотность метазавихрения Солнца находится, конечно, на самых крайних точках её гравитационного влияния; это – где-то в районе кометного облака Оорта; заглянуть туда у нас нет никакой возможности, и поэтому будем искать для рассмотрения места не столь отдалённые.

Одним из таких мест является граница гравитационного влияния двух основных метазавихрений Солнечной системы: самого Солнца и крупнейшей планеты Юпитера; находится эта зона между Марсом и Юпитером. Всё, что осталось от момента рождения атомарного вещества, здесь могло сохраниться почти в первозданном виде. Место это не так уж и удалено от нас, и поэтому астрономами хорошо изучено; они назвали эту область Поясом астероидов.

Астероиды – это, по мнению учёных, сохранившиеся до наших дней представители многочисленного класса небесных тел, столкновение и слипание которых в своё время порождало большие планеты. По основному составу химических элементов астероиды разделяются на кремневые, металлические и углеродные; кроме основных элементов они содержат практически всю таблицу Менделеева и, может быть, еще больше.

Самый большой астероид (Церера) имеет размер 974 километра; наименьшие измеряются сотнями метров. Формы астероидов – самые разнообразные: от почти сферических, как Церера, до сильно вытянутых, как Евномия; значит, астероиды – твёрдые тела. Пояс астероидов представляет собой как бы гребень эфирной плотности; часть астероидов не удержалась на этом гребне и свалилась в сторону Солнца, – в мета-завихрение Марса, – другие – в сторону Юпитера, превратившись в спутники; и по химическому составу, и по формам эти спутники не отличаются от астероидов; среди них – спутник Марса – Фобос, спутники Юпитера: Европа, Каллисто, Ганимед и другие. На некоторых из них в больших количествах присутствует вода в замёрзшем состоянии, а она, как известно, состоит из кислорода и водорода. Таким образом, в Солнечной системе есть места, где избыточная плотность эфира ещё настолько высока, что удерживает в устойчивом состоянии, по крайней мере, все нам известные химические элементы, а, возможно, и более того.

Планета Земля расположена ближе к Солнцу, то есть к центру солнечного метазавихрения, и поэтому окружена эфиром с меньшей плотностью. И если в земной коре, то есть на поверхности планеты, сохранились ещё все химические элементы таблицы Менделеева (правда, часть из них уже радиоактивна), то внутри планеты, где плотность ниже, многие из них уже распались, а другие интенсивно распадаются. Только этим можно объяснить обильное выделение тепла внутри планеты и жидкое состояние её сердцевины: по-настоящему твёрдой остаётся только оболочка планеты – корочка толщиной всего 20…40 километров. Количества химических веществ в земной коре распределены следующим образом: больше всего кислорода, далее идут с убыванием кремний, алюминий, железо, кальций, натрий, калий, магний и все прочие элементы, составляющие менее одного процента.

На нашей спутнице – Луне, состоящей из тех же веществ, но находящейся на склоне земного метазавихрения, то есть в зоне с большей эфирной плотностью, распад химических элементов не столь интенсивный, и толщина твёрдой коры у неё поэтому составляет 700 километров.

На более поздней ступени эволюции находятся такие метазавихрения, как у планет Юпитер и Сатурн: их центры находятся, можно считать, в предкризисном состоянии и готовы в относительно скором времени превратиться в звёзды; об этом говорят многие факторы, но прежде всего – химический состав планет: из всего набора, нам известного из химии, там остались в основном водород и гелий (на Сатурне их соотношение 93 и 7 процентов, на Юпитере – 90 и 10); приблизительно такой же состав и на Солнце; все прочие химические элементы на этих планетах уже распадись. Скорость вращения поверхностей планет, свидетельствующая о раскрученности их метазавихрений, значительно превышает нашу земную: сутки на Сатурне при его диаметре, превышающем диаметр Земли в 9,44 раза, составляет 10,233 часа, а на Юпитере с диаметром 11,27 земных – всего 9,841 часа. О напряжённом состоянии планет говорят также их тепловыделения: Юпитер излучает в 1,7 раза тепла больше, чем получает от Солнца, а Сатурн – даже в 2,8 раза.

И, наконец, – Солнце: оно демонстрирует завершающий этап эволюции метазавихрений. Его метазавихрение раскрутилось уже настолько, что избыточная плотность эфира, охватывающего светило, не может удержать от распада даже такие очень прочные атомы, как водород и гелий. Если ядерные процессы распада на Юпитере или Сатурне идут только внутри, то на Солнце они уже охватили всю его внешнюю оболочку. В результате ежесекундно только в виде солнечного ветра светило теряет ориентировочно один миллион тонн веществ; сколько его исчезает внутри – трудно сказать. Сгорает на Солнце и весь тот космический мусор, который стягивается к нему метазавихрением.

2.12. История Земли

Выше мы намекали на то, что наша родная планета Земля возникла как осколок в результате взрыва своей прапланеты. У нас нет убедительных доказательств этого, но очень и очень многие факты говорят об этом; прежде всего – то, что планеты внутренней части Солнечной системы: Меркурий, Венера, Земля, Луна и Марс, – представляют собой особую родственную группу, отличающуюся от прочих планет тем, что они компактно расположены и у них схож состав химических элементов. К такому же заключению подводят нас наши рассуждения об эволюциях метазавихрений. И всё же будем рассматривать историю Земли как наше смелое предположение, – не более того.

Проще всего сказать, что все перечисленные планеты земной группы оторвались от Солнца; но в принципе не исключается и такое, что они когда-то представляли собой другую единую планету, расположенную вблизи от Солнца и расколовшуюся впоследствии на отдельные куски. Оба эти предположения сходятся на том, что существовала огромная планета, собранная из первородной пыли в реликтовом метазавихрении, и она представляла собой идеальное космическое тело: идеальное по набору химических элементов, по их равновероятному процентному соотношению, по их расположению и слоёности, по многим другим признакам и, в частности, по своей округлости. В самом центре этой прапланеты были собраны наиболее тяжёлые атомы и молекулы, а на её поверхности – наиболее лёгкие, – и среди них те, что определяют жидкости и газы. Все прочие вещества в процессе формирования планеты и при её спокойном и продолжительном вращении выстраивались в соответствии с тем же принципом: чем тяжелее их атомы, тем они смещались ближе к центру. В результате такого центрифугирования все вещества находили свои места и в конце концов оказались уложенными в виде слоёв. Не трудно догадаться, что такая планета представляла собой многочисленные сферические монолитные оболочки, каждая из которых охватывала предыдущую внутреннюю. Те из них , что были собраны из прочных материалов, например из металлов, образовывали в полном смысле слова панцыри; благодаря им планета представляла собой очень крепкую шаровидную конструкцию, разорвать которую, казалось бы, просто невозможно, и тем не менее она была позднее разорвана.

Примеры подобных внутренних структур можно наблюдать в известных и достаточно хорошо изученных космических объектах, именуемых Галилеевыми спутниками Юпитера: некоторые из них, например Ганимед и Каллисто, представляют собой идеальные шары с толстыми водяными наружными оболочками. Остается предположить, что эти планеты также относятся к реликтовым и сохранились в первозданном виде только потому, что имели малые размеры и располагались в зоне относительно высокой эфирной плотности.

Радиоактивный распад на нашей прапланете коснулся в первую очередь самых тяжёлых трансурановых элементов, как раз тех, что были расположены в самом центре планеты; отсюда пошло образование её расплавленного ядра. Распад веществ вызывал раскручивание метаза-вихрения, а оно, в свою очередь, понижало эфирную плотность и способствовало ускорению того же распада. В состояние интенсивного распада поочерёдно включались слой за слоем, оболочка за оболочкой, и в какой-то момент оставшиеся наружные из них не выдержали внутреннего давления и дали трещины. Отметим то, что некоторые из оболочек, например базальтовые, имели очень малую теплопроводность и не пропускали внутреннее тепло планеты в наружные слои; это спасало воду и лёгкие фракции других жидкостей, располагавшихся на поверхности планеты, от испарения и улетучивания.

Первым откололся от прапланеты Марс; за ним поспешили Земля и Луна; позднее отделилась Венера, и самым последним ушёл Меркурий. Если рассматривать вариант с Солнцем, то после отделения Меркурия оставшаяся часть превратилась в звезду.

Пара Земля-Луна образовалась из одного куска прапланеты: Земля – как наружная его часть с сохранившимися на ней поверхностными веществами, и в том числе с водой и атмосферой; а Луна – как внутренняя его часть в расплавленном жидком и полужидком состоянии. Отделившись от прапланеты Луна сразу же приобрела свою округлость (каплевидность) и начала, остывая, постепенно затвердевать. В целом она должна состоять из более тяжёлых атомов, так как на самой прапланете располагалась глубже Земли.

Венера отрывалась от прапланеты тогда, когда её поверхность была уже достаточно разогрета, а Меркурий – ещё позднее, когда она уже кипела; поэтому на Меркурии нет атмосферы, и его внешний вид напоминает Луну; значит, он затвердевал, уже будучи оторванным от прапланеты.

В пользу того, что прапланетой было Солнце, говорит, в частности, согласованное направление вращения всех оторвавшихся планет и их метазавихрений: все они, кроме Венеры, вращаются против часовой стрелки (если смотреть на них с севера), и в том же направлении вращается Солнце. Оторвавшиеся планеты в первый момент сохраняли прежнее своё направление вращения, то есть то, что они имели, находясь в лоне прапланеты; такое направление можно назвать зародышевым: оно наследуется и определяет вращение возникающих вокруг планет их собственных метазавихрений. Встречное направление вращения Венеры можно объяснить тем, что она оказалась зажатой между двух метазавихрений: Земли и Меркурия. Если даже её зародышевое направление вращения было иным, оно не могло сохраниться по указанной причине.

Зародышевое вращение наиболее выражено у Меркурия: он отделился самым последним и благодаря своей быстро оформившейся округлости мало раскрутился от собственного метазавихрения. Поэтому можно предположить, что он сейчас вращается вокруг своей оси приблизительно с той же частотой, с какой вращалось Солнце в момент его отрыва, то есть с сидерическим периодом в 58 земных суток; сейчас Солнце вращается, как известно, в два раза быстрее.

Земля вначале имела далеко некруглую, угловатую форму; к тому же она унаследовала от прапланеты ярко выраженную слоёность, но не сферическую, а почти плоскую, то есть на одной её стороне, что была поверхностью Солнца-планеты, были сосредоточены лёгкие вещества, на противоположной – тяжёлые, а между ними слоями – все прочие. Благодаря этому Земля очень скоро преодолела своё врожденное вращение и остановилась, повернувшись тяжёлой стороной к Солнцу. Подобное мы наблюдаем в ориентации Луны относительно Земли: она повёрнута к нашей планете всегда одной стороной; и в этом случае причина – та же: дисбаланс Луны.

Свою округлость Земля, как и другие планеты: Марс и Венера, – приобрела не сразу: удалившись от Солнца, она попала в более плотный эфир, и шедший до того у неё распад атомов притормозился. Только значительно позднее, когда давление эфира в окрестностях Земли снизилось, распад атомов снова усилился, и планета начала разогреваться и округляться: её сердцевина расплавилась, а твёрдая кора утоньшилась настолько, что не могла противостоять округляющим силам. В настоящее время Земля представляет собой круглое жидкое тело с очень тонкой твёрдой оболочкой. В образном представлении она схожа с сырым куриным яйцом, скорлупа которого сравнима с земной корой.

Сложная география Земного шара – свидетельство того, что планета была когда-то совсем некруглым телом: континенты и океаны – её родимые пятна; по их контурам, а также по расположению старых горных хребтов можно восстановить в общих чертах первоначальную форму Земли. Позднейшие смещения геологических плит и движения континентов нужно рассматривать как развитие всё тех же округляющих процессов.

Раскрутка Земли может быть разбита на несколько этапов, первым из которых было, как уже отмечалось, притормаживание исходного вращения до полной остановки; при этом Земля оказалась повёрнутой к Солнцу своей тяжёлой стороной; лёгкие фракции веществ, в частности вода и воздух, располагались на ночной стороне.

На втором этапе происходил медленный полуповорот планеты на угол до девяноста градусов. Причиной такого углового отклонения был момент от действия ветров и океанских течений, явившихся, в свою очередь, следствием раскрутки эфирного метазавихрения. Если принять, что в те времена метазавихрение Земли было слабее теперешнего не более, чем в два-три раза, то создаваемые им ветры, дующие с запада на восток, имели скорость в десятки и даже более сотни метров в секунду. Такие ветры подымали тучи песка и пыли и гнали их вокруг планеты, сметая всё на своём пути; они как мощный абразив истирали самые крепкие породы выступающих гор. Создаваемые этим ветром яростные океанские волны буквально смывали западный берег континента. И вся эта мощь пыталась повернуть Землю.

Этот этап знаменателен тем, что ему сопутствовал бурный процесс развития микроорганизмов и роста растительности. Осаждающаяся пыль представляла собой прекрасную питательную среду: в котловинах континента она питала леса (благо, что пыль эта была насыщена влагой), а в океане и морях кормила морские микроорганизмы. Наиболее благоприятными местами для таких процессов были средняя и восточная часть континента и прилегающая к ней водная часть.

После преодоления момента дисбаланса, то есть после поворота на угол более девяноста градусов, начался третий этап во вращении Земли – раскрутка, которая продолжается и в наши дни, о чем свидетельствует преобладание западных ветров и океанских течений.

3. Электричество и магнетизм

Эфирная теория позволяет объяснить природу таких интересных физических явлений, как электричество и магнетизм; не просто принять их к сведению как факт и как факт воспринимать их законы, а именно объяснить: что это такое, как они возникают, как действуют и как взаимодействуют.

Предваряя предстоящие рассуждения, сразу заявим, что самым главным положением, определяющим и электричество и магнетизм, является их связь с электронами: не может быть без электронов ни электричества, ни магнетизма, ни электрических и магнитных полей. Исключение составляют только так называемые электромагнитные волны, которые распространяются в эфире и в присутствии электронов не нуждаются; и объясняется исключение тем, что эти волны названы электромагнитными по недоразумению: их распространение не имеет ни какого отношения ни к электричеству ни к магнетизму.

Напомним что представляет из себя электрон: это – бегающие по кругу друг за другом три эфирных шарика – вроде вращающегося колесика; есть у этого колесика и ось: два осевых эфирных шарика, примыкающих к электрону с разных сторон и упирающихся друг в друга. Особенностью электрона является его «пушистость» – способность отталкиваться от других частиц с помощью своего стоячего теплового поля; другими словами: электрон постоянно шевелится и приводит прилегающий к нему эфир в некоторое упорядоченное возбужденное состояние – оно-то и делает его пушистым.

3.1. Электричество

Будем рассматривать электричество как совокупность физических явлений, главным участником которых является электрон; это: и такое выразительное природное явление, как молния, и электризация сухих волос при расчесывании их пластмассовой расческой, и свет электрической лампочки, и работа радио-телевизионной аппаратуры, и многое-многое другое, с чем мы постоянно сталкиваемся в своей жизни.

Начнем с того, что еще раз заявим; никаких загадочных электрических зарядов в природе нет; электрон как частица есть, а отрицательного электрического заряда у него никакого нет; зарядов вообще нет никаких, ни положительных, ни отрицательных. Печально, конечно, это осознавать, имея в виду, что более двухсот лет люди верили в существование зарядов, но лучше поздно, чем никогда.

Согласно эфирной теории электроны – это газ, и на них распространяются обычные законы пневматики. Как и в пневматике, поведение электронов характеризуется давлением (электрическим напряжением), расходом (током), сопротивлением и емкостью; как и в пневматике, в электронной среде есть понятие «атмосферного» давления: это тот потенциал, который характерен для данной точки пространства; давление электронов может повышаться выше «атмосферного» и снижаться ниже его, причем повышение не ограничено, а снижение имеет предел – нулевое давление; все как в пневматике. Размеры электронов в тысячи раз меньше размеров атомов газов, – и поэтому они могут течь по таким узким каналам, которые невозможно рассмотреть даже в микроскоп. Можно сказать даже так, что для электронов нет непреодолимых преград: он может проникать практически всюду, но где-то легко, а где-то с сопротивлением, большим или меньшим. (Приблизительно также ведет себя и газ: известно, что накаченное воздухом автомобильное колесо со временем спускает, а это значит, что воздух может проникать сквозь резину.) Легче всего электроны перемещаются вдоль присасывающих желобов атомов металлов: в этом случае они не приближаются к атомам и не удаляются от них, то есть не освобождают энергию и не требуют ее.

Трудности возникают тогда, когда необходимо оторвать электрон от атомов. В химии есть даже такое понятие, как ионизационный потенциал, характеризующий силу сцепления электронов с атомами: он определяет то напряжение в вольтах, которое необходимо для отрыва электрона от атома. Наибольшие значения ионизационного потенциала имеют атомы инертных газов, наименьшие – атомы щелочных металлов, но нет ни одного химического элемента, атомы которого отдавали бы электроны свободно. Во всем «виновата» присасывающая способность атомов, точнее – наличие у атомов присасывающих воронок и желобов.

Ионизационные потенциалы атомов определены чисто экспериментальным путем (поэтому их отрицать никак нельзя) и только в отношении так называемых нейтральных атомов, то есть таких, у которых давление электронов равно «атмосферному». Если же давление – пониженное, то ионизационный потенциал возрастает, а если – повышенное, то – снижается. Снижение наблюдается и при содействии некоторых физических факторов, таких как тепловые движения (чем выше температура, тем легче отрываются электроны), жесткое излучение, вакуумирование и др.

Поле электронного давления – электрическое поле

Еще раз заявим, что нет никаких материалов, которые не пропускали бы в той или иной степени электроны; следовательно, они – электроны – есть везде. Натуральное давление электронов друг на друга образует так называемый электрический потенциал точки; изменение давления характеризует электрическое поле. Другими словами, под электрическим полем будем понимать распределение электронного давления в среде. Отсюда следует важный вывод о том, что электрическое поле без электронов не бывает: есть электроны – есть поле, нет электронов – нет поля. Никакого дальнодействия на электроны и электронов друг на друга, кроме непосредственного давления, не существует. Не может быть и отрицательного давления электронов: оно немыслимо.

Некоторого уточнения требует соотношение между плотностью электронов и их давлением. Если в идеальной эфирной среде избыточная плотность приравнивается к давлению (и то и другое определяется степенью деформаций элементарных шариков), то в атомарно-молекулярной среде давление и плотность электронов сильно расходятся.

Возьмем, например, воздух: атомы газов в нем, как мы уже говорили, обладают пушистыми свойствами. В сплошной своей массе воздух напоминает ворох пушистых тел (игрушек). Электроны тоже пушисты, поэтому они с трудом могут проникать между атомами, занимая пустоты. Этих пустот в воздухе немного, и, следовательно, электронов в нем также немного, то есть плотность их совсем небольшая; но при всем при том давление электронов друг на друга может быть очень и очень большим. Всякое пополнение газовой среды даже считанным количеством электронов будет существенно увеличивать их взаимное давление. Таково соотношение плотности и давления электронов в воздухе.

В «непушистых» средах, то есть в жидкостях и в твердых телах, плотность электронов может быть значительно выше: они могут занимать пустоты не только между атомами, но и внутри них, то есть атомы могут абсорбировать электроны. Абсорбирующая способность (электроноемкость) различных атомов – различная: у одних она – ниже, у других – выше, – но в любом случае «непушистые» атомы и молекулы поглощают (абсорбируют) не единицы и даже не сотни электронов, а тысячи.

Поэтому незначительное пополнение «непушистой» среды электронами практически не скажется на росте их взаимного давления. Соотношение плотности и давления электронов в жидких и твердых средах, как мы видим, совсем иное, чем в газах.

Электрическое поле может быть охарактеризовано в полной мере в том случае, если распределение электронного давления в нем буде представлено в виде градиентов, определяющих не само давление, а его изменение в пространстве и направление такого изменения (градиент – вектор).


    Ваша оценка произведения:

Популярные книги за неделю