355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Немцов » Незримые пути » Текст книги (страница 13)
Незримые пути
  • Текст добавлен: 4 октября 2016, 02:07

Текст книги "Незримые пути"


Автор книги: Владимир Немцов



сообщить о нарушении

Текущая страница: 13 (всего у книги 17 страниц)

Глава третья
ВСЮДУ СВЯЗИСТЫ

Не за горами то время, когда тебе придется выбирать профессию.

Окончена школа, идут выпускные экзамены. Для десятиклассников устраиваются дни «открытых дверей». По аудиториям институтов и университетов ходят молодые граждане с аттестатами зрелости, ищут тропинку в новую трудовую жизнь.

А тропинок этих много. Как бы не ошибиться!

Бывают случаи, когда "мятущиеся души" в поисках именно "своей профессии" перекочевывают с факультета на факультет, из института в институт.

Или, что совсем плохо, подавляя смутные желания и стремления, покорно примиряются с неизбежным, кончают институт, идут на работу и трудятся равнодушно, без творческой мысли, без новых идей.

Значит, не в дни "открытых дверей" надо искать свою дорогу, а гораздо раньше. И не обязательно идти в институт.

Даже в такой кажущейся обыкновенной области техники, как связь, еще непочатый край работы, причем не менее интересной, чем определение расстояния от Земли до Луны или Марса при помощи радиолокации.

К связистам мы привыкли. Привычны нам и письмоносцы и телеграфисты. К сожалению, знаем мы о них очень мало. Многие из нас не представляют себе романтики этой профессии.

Новые телеграфисты

Возможно, ты не знаешь, что и телеграф сейчас не тот и телефон совсем не похож на старый. В учебниках физики описываются только основные принципы техники связи и совсем не говорится о применении радио в этих устройствах.

Без радиоусилителей, как правило, нельзя пользоваться междугородным телефоном.

Получая телеграмму, многие и не предполагают, что часто она передается по радио.

Не знают, что, разговаривая по телефону из своей квартиры с далеким городом, они говорят по радио.

Слышал ли ты о многократном телефонировании, когда по одному проводу одновременно передаются десятки переговоров и телеграмм?

Это сложнейшая техника.

По проводу бегут радиоволны, причем не от одного передатчика, как на радиовещательной станции, а от многих. Сколько передается разговоров, столько нужно и генераторов.

Как ты сам понимаешь, надо сделать так, чтобы эти генераторы не мешали друг другу, иначе получится такая путаница, что подобным телефоном просто нельзя будет пользоваться: абоненты станут перебивать своего соседа по волне, кричать, переспрашивать…

Значит, надо каждый разговор направить по своему каналу, поставить заградительные фильтры, чтобы не пустить капризную радиоволну в соседний канал.

Если бы ты посмотрел на аппараты, которыми пользуются связисты, чтобы обеспечить дальний разговор, то сразу проникся бы глубочайшим уважением к столь высокой и сложной технике.

Современная техника связи особенно многообразна. Радио, электроника, тончайшая механика, фототехника, акустика, химия… Трудно даже перечислить все то, с чем приходится сталкиваться советскому связисту.

Люди, управляющие этой техникой, должны обладать высокой культурой и глубокими знаниями.

Однако не только техника определяет характер той или иной профессии.

Огромный мир, биение пульса страны чувствует связист. Он дежурит на радиостанции, через которую ежедневно передаются сводки с крупнейших наших строек. Он – на зимовке в Арктике, он – на корабле в Тихом океане, на пограничной заставе, на железной дороге, он – бортрадист в самолете… Он принимает сигналы спутников.

Необозримое поле деятельности откроется перед тобой, читатель, если ты решишь заняться техникой связи.

Простой пример. По одной радиолинии бегут друг за другом телеграммы. Хороший оператор может передать тысячу слов в час, то есть двадцать – тридцать телеграмм. Это очень мало. Сколько же надо строить радиостанций, чтобы на разных волнах, то есть по разным линиям связи, передавать достаточное количество телеграмм? В большом городе, особенно к праздникам, одних поздравительных телеграмм – сотни тысяч.

Вместо телеграфистов стали работать автоматы.

Небольшой моторчик тащит бумажную ленту с заранее пробитыми дырочками, соответствующими телеграфным знакам.

По ленте скользят контакты; через дырки они замыкают ток электрической цепи, а этот ток уже дальше попадает на радиостанцию.

Таким образом, аппарат передает очень коротенькие тире и точки (ведь дырки на ленте можно сделать маленькими и пустить ее очень быстро).

Мотор успевает передать не тысячу слов в час, а больше двадцати тысяч.

Но какой же радист сможет разобрать столь быстрые, почти сливающиеся в один тон сигналы?

Опять возьмем мотор и заставим его тянуть ленту. По ленте скользит тонкое перо, прикрепленное к легонькой катушке. Катушка эта находится в магнитном поле, и под действием тока, поступающего от приемника, перо чертит на ленте ломаную линию, из которой нетрудно понять, где тире, а где точка.

Казалось бы, все в порядке: скорость хорошая, можно передать сотни телеграмм в час. Но что же с ними делать? Надо перевести телеграфные знаки в буквы. Сколько дорогого времени потребуется! Нет, не годится подобная система связи. Надо, чтобы телеграмма сразу печаталась буквами, и желательно побыстрее.

Сделали и такой аппарат советские инженеры. Потом, чтобы не было в телеграмме искажений, стали повторять одни и те же сигналы.

А то раньше любой атмосферный разряд или вспышка северного сияния как бы меняли буквы на ленте: из точек делали тире. Так что при получении искаженной телеграммы не всегда нужно было сердиться на работников связи. Виновата "радиопогода" – скажем, гроза где– нибудь на далеких островах.

Но наконец и с погодой справились. Можно ли теперь успокоиться? Оказывается, нет.

Советские инженеры-связисты сделали новые аппараты, которые могут передавать больше тысячи телеграмм в час. Для этого они применили фотоэлемент и луч света.

Есть ли предел совершенствования аппаратов? Нет, конечно.

Возможно, будущего связиста заинтересует передача изображений на расстояние.

Несомненно, это тоже связь, действующая во многих городах нашей страны.

Большое будущее у фототелеграфии. По существу, это способ передачи почтовой корреспонденции со скоростью телеграфа.

Все, что ты напишешь на листке бумаги, точно передаст фототелеграмма. Все твои росчерки, закорючки и хвостики. Все особенности твоего почерка и даже, что менее приятно, все грамматические ошибки. Чертежи и фотографии, документы и рисунки через несколько минут как бы перенесутся в другой город.

А если представить себе ближайшие возможности передачи изображений, то, скажем, почему бы нам не получать газеты без письмоносцев? Пусть каждое утро снимается с валика нашего домашнего аппарата газетная полоса, переданная… по телефону.

В ночные часы, когда не нагружена телефонная линия, к ней присоединяется аппарат для приема изображений. И вот не спеша вращается валик с рулоном бумаги; постепенно на нем появляются четкие строки завтрашней газеты.

Если в сегодняшней фототелеграфии применяется сложная кухня с проявителями и фиксированием, то в данном случае можно обойтись без этого фотохимического процесса и принимать изображения, предположим, на бумаге, пропитанной йодистыми солями. Под действием электрического тока соединения йода разлагаются и темнеют, отчего становятся ясно видимыми коричневые буквы.

Можно передавать газету и не по телефону, а по трансляционной сети или даже по обычным осветительным проводам.

В принципе создание подобного аппарата для приема газет (и не только газет, а программ театров, афиш, таблиц футбольных соревнований и т. д.) вполне осуществимо. Аппарат получается достаточно простым, но над ним еще надо поработать.

Кто знает, не займешься ли ты этим увлекательным делом?

Радистам не хватает волн

Нет ничего удивительного в том, что советские коротковолновики на своих маленьких радиостанциях перекрывают расстояния в десятки тысяч километров.

Сейчас этим никого не поразишь. "Дальнобойность" радиоволн перестала быть чудом науки. Советские ученые могут точно рассчитать, где какую волну будет слышно и что нужно сделать, чтобы связь была круглосуточной.

Новые, пока еще не решенные проблемы стоят перед советскими связистами. Как я уже рассказывал, давно заняты длинные, средние и короткие волны. На них работают радиовещательные станции, судовые передатчики, радиомаяки. На этих волнах мы говорим с далекими городами и странами. На них работают самолетные радиостанции, станции метеослужбы, где-то на узких участках диапазона коротких волн перекликаются любители.

Невозможно перечислить все радиостанции, работающие на этих волнах. Они часто мешают друг другу и не могут ужиться между собой. Тесно им.

Только освоение новых волн может разрешить этот "жилищный кризис", когда на каждый метр коротковолнового диапазона претендуют десятки радиостанций.

Если бы мы освоили не только ультракоротковолновый диапазон, но и дециметровый и даже сантиметровый, то простой расчет показал бы нам, что в диапазоне от десяти метров до одного сантиметра мы можем разместить в тысячу раз больше станций, чем на всех других диапазонах – длинном, среднем и коротковолновом, вместе взятых.

Но и этого мало. Ультракороткие волны распространяются на сравнительно небольшие расстояния, поэтому одни и те же волны можно часто повторять.

Поясню примером: каждый районный центр может иметь свою собственную радиостанцию ультракоротких волн, причем все районные станции будут прекрасно работать на одной общей волне без всяких помех.

Интереснейшая задача стоит сейчас перед советскими связистами. Радио по праву отвоевывает первенство в системе дальних связей, так как имеет много преимуществ перед проводом.

Однако, несмотря на применение направленных антенн, разговор между Москвой и, скажем, Ташкентом, а также и другими городами могут слушать тысячи радиолюбителей, так как эти линии междугородной связи лежат в коротковолновом диапазоне.

А нельзя ли здесь применить ультракороткие волны? Их возможности неограниченны.

Но как же преодолеть их основной недостаток – малую дальность? Правда, об этом я упоминал как о достоинстве, потому что одни и те же волны можно повторять, не опасаясь взаимных помех радиостанций.

Это все верно. Но что же делать, когда требуется связь не на десяток километров, а на сотни, даже тысячи?

Разберемся и в этом.

Линейный надсмотрщик

Мы идем с тобой по полю. Открытое, ровное место. Ни столбов, ни проводов, ни каких-либо других признаков, что здесь проходит линия связи, не замечаем.

Однако, внимательно присмотревшись, на горизонте можно увидеть ажурную металлическую башню, несколько напоминающую решетчатую ферму высоковольтной линии.

Подойдем ближе. На вершине башни в несколько десятков метров высотой стоят какие-то странные решетки или что-то похожее на металлические рефлекторы. Это, оказывается, антенны радиостанций.

Но возле мачты никого нет. Откуда же ведется передача и кто обслуживает эту радиостанцию?

Теперь ты уже рассмотрел, что наверху стоит герметически закрытый металлический ящик. Это одно из звеньев длинной цепочки радиостанций, которые связывают два города.

Если пройти или проехать от этой мачты еще несколько десятков километров в сторону города, то ты вновь увидишь точно такую же мачту. Еще через десятки километров опять такая же мачта.

Итак, если в Москве вызвать через междугородную телефонную станцию какой-нибудь город, с которым осуществляется подобная радиосвязь, то получится примерно следующее: из квартиры ток побежит по телефонному проводу на АТС и оттуда на междугородную станцию. Затем, превратившись в высокочастотные колебания, уже на радиостанции, расположенной на вершине первой мачты, волна как бы перескочит на антенну соседней мачты; приемник примет эту волну и передаст на свой передатчик, который пошлет ее на следующую радиостанцию.

Так от одной до другой мачты будут перескакивать радиоволны, пока не пройдут всю цепочку связи.

Конечно, все это происходит мгновенно, и никто из абонентов, разговаривающих по этой радиолинии, не заметит ни малейшей задержки.

Сейчас применяется так называемая импульсная система. Она позволяет передавать одновременно десятки переговоров, причем мощность радиостанций в этой цепочке ничтожна (подробнее об импульсной системе я расскажу в главе "Сквозь ночь и туман").

Радиолиния работает на дециметровых волнах. Их огромным преимуществом является возможность концентрирования энергии в узкие пучки при помощи специальных, направленных антенн. В этом случае энергия зря не расходуется – она не рассеивается по сторонам, а идет как по каналу. Кроме того, нет опасений, что при пользовании такой линией будешь говорить "по секрету всему свету". Тянется она высоко над землей, и по ней, как по прозрачному незримому кабелю, бегут переменные токи высокой частоты.

Эти замечательные линии еще надо строить, чтобы они пересекали нашу великую страну во всех направлениях. По ним можно одновременно передавать и телевизионные программы, и телеграммы, и десятки телефонных переговоров.

Представляешь себе, как можно нагрузить такую линию?

В гололедицу рвутся телефонные и телеграфные провода, а радиолиния абсолютно надежна. Мачты ее не гниют, изоляторы не трескаются.

Промежуточные станции работают автоматически и не требуют непрерывного обслуживания.

Но все же предстоит еще очень много работы. Необходимы стойкие лампы, высококачественные детали и электроматериалы. Нужно добиться простоты и дешевизны всей конструкции – не забывай, что таких радиостанций потребуется немало – тысячи.

Можно себе представить, как заманчивы перспективы для будущего связиста.

Даже скромная должность линейного надсмотрщика, который ходит и проверяет линию, через несколько лет станет совсем иной.

Линейный надсмотрщик завтрашнего дня будет работать с невидимыми линиями, и лишь решетчатые башни на горизонте будут напоминать ему о столбах со стаканчиками и гудящих проводах.

Он должен уметь не только сращивать провода и менять изоляторы, но и заменить лампу, проверить на переносном приборе характер импульсов передатчика, измерить волну – все, что сейчас делает инженер в исследовательской лаборатории.

Такова профессия будущего связиста на одном из самых маленьких участков работы.

Проект «радиоАТС»

Городская телефонная связь. Казалось бы, где здесь романтика? Где здесь полет изобретательской мысли? Ведь все уже сделано. Разве можно что-нибудь придумать совершеннее и умнее современной АТС? Но это совсем не так.

Ты когда-нибудь представлял себе, что делается под землей в большом городе?

Сколько там металла: трубы водопровода, газа, канализации, электрокабели и, наконец, бесчисленное количество телефонных жил – кабелей в свинцовых, железных, бронированных оболочках!

Сколько трудностей испытывают строители и связисты, когда приходится искать место под землей, чтобы проложить новый кабель!

Сейчас под землей гораздо теснее, чем на улицах, где висит паутина трамвайных и троллейбусных проводов.

С каждым днем возрастает потребность в телефонной связи. Строятся новые АТС, всюду прокладываются кабели. А может быть, обратиться к помощи радио?

Но сколько же надо волн, чтобы в каждой квартире работал радиотелефон на своей "собственной" волне! Ведь у каждого телефона есть свой провод, своя линия.

Допустим, что ты выбрал путь инженера-связиста, успешно закончил институт и занялся исследовательской работой.

Тебе поручили замечательную тему под скромным названием: "Проектирование городской АТС на радио частотах".

Попробуем вместе решить эту, не скрою от тебя, очень сложную задачу.

Итак, начинается первый этап проектирования.

Прежде всего надо решить, как же быть с линиями связи. На каких волнах будет работать наша АТС?

Ясно, что не на длинных и не на средних. Не хватит места и в коротковолновом диапазоне. Даже ультракороткие волны нам не помогут. Ведь речь идет о десятках тысяч телефонных радиоаппаратов, а у каждого из них должна быть своя волна.

Нельзя тут обойтись без расчетов. Надо знать, каково должно быть расстояние между соседними волнами, чтобы аппараты не мешали друг другу.

Предположим, что мы выбрали дециметровый диапазон. В современных аппаратах можно получить достаточную устойчивость волны (она не будет, как говорят радисты, "гулять"), поэтому волны могут соседствовать довольно близко.

Но нельзя же отдавать связистам весь дециметровый диапазон, который применяется и в радиолокации и в других областях высокочастотной техники!

Значит, только часть волн можно выделить для АТС, только узкий участок диапазона. А этого связистам окажется мало.

Вот если бы перейти на сантиметровые или, еще лучше, миллиметровые волны и применить их для нашей АТС!

Вполне закономерный вывод. Однако все это не так просто.

Миллиметровые волны еще не вышли за стены лабораторий. Несмотря на то что со времени открытия Лебедева, который их впервые получил и исследовал, прошло несколько десятков лет, а после него с этими волнами работали многие инженеры, практическое использование миллиметровых волн чрезвычайно затруднено. Уж очень капризными они оказались.

Но это не должно нас останавливать. Пройдет несколько лет – и миллиметровые волны еще послужат нам, оставив свой неуживчивый характер в лаборатории.

Итак, решено. Выбран нужный диапазон. Пусть это будут миллиметровые волны.

Если с передачей и приемом миллиметровых волн дело обстоит более или менее благополучно – предположим даже, что инженеры создали надежную и устойчивую аппаратуру, – то с законами распространения этих волн мы не сможем ничего поделать.

Я уже рассказывал об опытах с дециметровыми волнами, когда человек, ставший на пути радиолуча, как бы разрывал линию связи. Идут эти волны прямолинейно, почти не огибая препятствий.

Миллиметровые волны в этом отношении еще хуже: они подчиняются законам света.

Если ты учил в школе этот раздел физики, то запомнил, что "угол падения равен углу отражения". Возможно, ты вычерчивал эти углы на доске, проводил опыты в физическом кабинете, возился с призмами и линзами, не задумываясь над тем, что радиоволны очень высокой частоты отражаются так же, как и лучи света, по тем же законам. Миллиметровые волны преломляются в призмах и, как световые лучи, проходят через линзы. Но только линзы для этих опытов нужны особые.

Вот какие странные волны мы выбрали для нашей АТС.

Встает новая задача, которая влечет за собой немалые неприятности. В городе миллиметровые волны не пройдут через стены домов, так же как не проходит свет уличного фонаря. Для таких волн совершенно необходима прямая видимость. Ты уже читал, что антенны УКВ надо ставить повыше. Ну, а в данном случае речь идет о миллиметровых волнах – значит, это требование особенно важно.

Как получить абсолютно прямую видимость между антеннами наших радиотелефонов и антеннами центральных приемопередатчиков АТС?

Это можно сделать только в том случае, если антенны центральной станции так высоко поднять, чтобы с любой крыши их было видно. Я говорю именно "с крыши", предполагая устанавливать антенны на самых высоких точках зданий. Это очень просто, потому что антенны для наших аппаратов представляют собой маленькие стерженьки с рефлекторами или рупорами.

Для "радиотелефонизации" целого здания, где в каждой квартире будет стоять аппарат, потребуется небольшая мачта, на которой мы и прикрепим перекладину с гребенкой или рефлектором антенны. К антеннам будут подходить высокочастотные кабели от аппаратов.

Можно все сделать несколько иначе – например, приемопередатчики поместить в герметическом шкафу на крыше, а от них к телефонам протянуть провода.

Или вот еще новый вариант. На миллиметровых волнах работает только одна линия связи. На крыше – одна антенна и один приемопередатчик. В то же время по этой радиолинии идет несколько десятков переговоров уже на других, более длинных волнах.

Вероятно, такой вариант будет самым простым и надежным.

Теперь подумаем о центральной станции.

Ее можно установить на очень высокой мачте, чтобы антенны этой "радиоАТС" были видны со всех концов города.

А если поднять эти антенные гребенки на привязном аэростате? Можно, конечно. Но тут возникает новая трудность: для того чтобы в любой момент можно было вызвать АТС, надо иметь там столько же приемников, сколько и абонентов. Поэтому выгоднее проектировать небольшие подстанции в домах, чтобы от каждой из них тянулась только одна радиолиния, работающая на миллиметровых волнах.

Или, может быть, в каждом районе, как это делается сейчас в крупных городах, будут свои АТС? Тогда нужно строить несколько мачт или поднимать несколько аэростатов.

Мы только начали проектирование, а сколько уже появилось неясных вопросов!

И чем дальше станем мы продолжать нашу работу, тем больше появится сложных задач, подчас даже неразрешимых.

Такой "радиоАТС", которую мы задумали, нет, и вполне возможно, что техника связи пойдет иным путем.

Рассказывая об этом проекте, я не хотел предугадывать будущее телефонной связи, а опять стремился показать творческую сущность любого проектирования.

Профессия связиста подкупает своим многообразием. Можно выдумывать новые АТС на аэростатах или стальных решетчатых башнях, можно строить радиостанции для установки на самолетах и катерах. Или, наконец, можно тянуть невидимые линии связи без проволоки и радио, где только дрожащий луч света, за многие километры принятый фотоэлементом, заставляет звучать мембраны телефонных трубок. В данном случае я говорю об аппаратах оптического телефона, которым удобно пользоваться в горах.

Есть ли в нашей стране хоть один пункт, хоть одна точка на карте, которая не была бы связана со всей жизнью нашей Родины? Эти линии связи обслуживает многотысячная армия преданных своему делу людей, которые ежечасно, ежесекундно прислушиваются к биению пульса страны.

Радость и горе, счастье, надежды, мечтания и тревоги – все, чем живет Родина, они слышат первыми в телефонах приемников, первыми видят на ползущей телеграфной ленте, на еще не высохших снимках, переданных по проводам.

Большое, интересное дело!


    Ваша оценка произведения:

Популярные книги за неделю