Текст книги "Расширяя границы Вселенной: История астрономии в задачах"
Автор книги: Владимир Сурдин
Соавторы: Евгений Гусев
сообщить о нарушении
Текущая страница: 12 (всего у книги 16 страниц)
4.112. Земные и космические радиометрические измерения показали, что максимальная температура в поверхностном слое грунта на Марсе в полдень в жарком поясе не превышает —5 °C; среднегодовая температура на широте тропика —43 °C, минимальная там же —90 °C. В более высоких широтах температура ещё ниже. Полярные шапки состоят из сухого льда (твёрдой углекислоты) с небольшой примесью водяного льда. Открытых водных пространств на Марсе нет и, следовательно, не может быть пространств, покрытых обычным снегом.
4.113. До полётов межпланетных станций основные исследования Марса производились в годы великих противостояний, когда Марс ближе всего подходит к Земле. В 1877 г. как раз и произошло такое астрономическое событие. Незадолго до этого были построены крупные телескопы – рефракторы высокого качества.
4.114. По мнению Г. А. Тихова, в условиях сурового марсианского климата гипотетические растения Марса должны отражать меньше тепловых лучей; следовательно, они должны иметь сине – фиолетовую окраску. Это предположение согласуется с тем фактом, что растения высокогорных районов Земли (голубая канадская ель, тянь – шаньская ель) не имеют в своём спектре инфракрасного избытка. Однако исследования, проведённые автоматическими аппаратами непосредственно на поверхности Марса, опровергли существование там не только растительной жизни, но даже её примитивных форм.
4.115. Фламмарион имел в виду прецессию оси вращения Марса, вызванную приливным гравитационным влиянием Солнца на экваториальное вздутие планеты. Период прецессии оценивается примерно в 175 тыс. лет. По истечении половины этого периода северное полушарие планеты будет повёрнуто к Земле в эпоху великого противостояния, совпадающую с эпохой прохождения Марса через перигелий.
К решению задачи 4.117. Тонкая структура колец Сатурна по визуальным наблюдениям, проведённым в XIX веке.
4.116. В свой несовершенный телескоп Галилей смог увидеть планету Сатурн и дуги окружающих её колец как три соприкасающиеся «звезды». Через два года, когда луч зрения земного наблюдателя оказался в плоскости колец, они из‑за малой толщины вообще перестали быть видны. Лишь в 1656 г. Христиан Гюйгенс с помощью более качественного телескопа доказал, что «ушки» или «ручки» по бокам Сатурна – это не что иное, как части плоского кольца, опоясывающего планету по экватору.
4.117. Директор Парижской обсерватории Д. Д. Кассини в 1675 г. обнаружил, что кольцо Сатурна состоит из двух частей, разделённых тёмной полосой (деление Кассини). Он также предположил, что кольцо планеты состоит из большого количества отдельных небольших тел. В наши дни распространено мнение, что тонкая структура колец Сатурна была открыта лишь на изображениях, переданных межпланетными аппаратами «Пионер-11» (октябрь 1979 г.), «Вояджер-1» (ноябрь 1980 г.) и «Вояджер-2» (август 1981 г.). Однако ещё астрономы XIX века в процессе визуальных наблюдений замечали и очень точно зарисовывали тонкую структуру колец (см. рис.).
4.118. Меркурий, Венера, Марс, Юпитер и Сатурн в максимуме блеска очень яркие и поэтому хорошо видны невооружённым глазом. Наибольший же блеск далёких планет существенно ниже: 5,4 mу Урана, 7,6 mу Нептуна, 13,4 mу Плутона. Для обнаружения этих планет, а также астероидов, необходимы подробные карты звёздного неба и телескопы, массовое применение которых началось только с XVIII века. Правда, в XVII веке астрономы случайно наблюдали и даже зарисовывали Уран и Нептун, но, не имея хороших телескопов и карт, принимали их за звёзды.
4.119. Кометы на больших расстояниях от Солнца имеют дискообразный вид, и поэтому похожи на планеты. При этом они почти так же, как планеты, перемещаются относительно звёзд. Кометы в ту эпоху открывали и наблюдали, а вот открытие новой большой планеты стало полной неожиданностью.
4.120. В. Гершель первым, благодаря остроте зрения и хорошему качеству телескопического изображения, обнаружил у вновь открытого объекта диск. Другие наблюдатели видели планету в виде звездообразного объекта. Планетная орбита Урана была установлена петербургским астрономом А. И. Лекселем вскоре после открытия, в том же 1781 г.
4.121. При расчёте орбиты Урана были использованы позиционные наблюдения планеты, считавшейся в то время звездой, сделанные наблюдателями – предшественниками Гершеля, начиная с 1690 г., т. е. почти на протяжении целого века.
4.122. Галилей наблюдал в телескоп Нептун ещё в 1612 г., не зная, что этот объект – планета. Французский астроном Жозеф Ла– ланд также наблюдал Нептун 8 и 10 мая 1795 г. Он заметил, что положение объекта за двое суток изменилось, но посчитал первое из наблюдений неверным. Лишь в 1846 г. Урбен Леверье открыл Нептун путём вычислений. 31 августа он сообщил о вычисленных им параметрах орбиты Нептуна и указал, что объект должен иметь блеск около восьмой звёздной величины и заметный диск. Откликнувшись на просьбу Леверье, астроном Берлинской обсерватории Г. Галле в первую же ночь наблюдений, 23 сентября, обнаружил неизвестную планету с диаметром диска 8″. Движение объекта относительно звёзд подтвердило открытие. К теоретическому открытию Нептуна причастен и английский астроном и математик Джон Адамс, который на основании возмущений в движении Урана рассчитал элементы эллиптической орбиты и массу гипотетической планеты и осенью 1845 г. представил свои результаты английским наблюдателям, которые, однако, не откликнулись на его предложение организовать поиск планеты.
4.123. После успешного теоретического открытия Нептуна многие астрономы пытались обнаружить следующую за ним планету. Для прогноза её положения использовались разные подходы: правило Тициуса – Боде, расположение афелиев периодических комет, возмущения в движении Урана (поскольку его орбита была изучена значительно полнее, чем орбита Нептуна). Большую работу по анализу движения Урана проделал Персиваль Ловелл (1855–1916), американский предприниматель, путешественник и страстный любитель астрономии, в совершенстве овладевший математическим аппаратом небесной механики и на свои средства построивший прекрасную обсерваторию во Флагстаффе (штат Аризона). Он выявил в движения Урана некоторые возмущения, не объяснимые влиянием известных планет, и в 1905 г. впервые предположил вариант орбиты более далёкой, чем Нептун, планеты. Тогда же начались её поиски. Теоретическую работу по предсказанию положения гипотетической планеты Ловелл продолжал до 1915 г., когда был опубликован его наиболее полный «Трактат о транснептуновой планете».
После смерти Ловелла сотрудники его обсерватории продолжали поиск «планеты Х». Открытие было сделано молодым астрономом Клайдом Томбо (1906–1997) только в 1930 г. при помощи специально сконструированного 13–дюймового телескопа после 10–ти месяцев непрерывных фотографических наблюдений. Чтобы выявить медленно перемещающуюся на фоне звёзд планету, снимки эклиптикальной области неба, полученные с интервалом в 2–3 суток, сравнивались при помощи блинк – компаратора. Фактически для обнаружения Плутона пришлось исследовать почти всю широкую полосу вдоль эклиптики, так что теоретические прогнозы оказались бесполезными. История поисков Нептуна и Плутона описана в книгах Саймона (1966) и Уайта (1983).
4.124. Видимый блеск Солнца на Плутоне составляет —18,8 m. Значит, Солнце освещает Плутон гораздо ярче, чем полная Луна – Землю.
4.125. Оба аппарата должны были достичь окрестностей Юпитера: «Галилео» – чтобы стать спутником планеты и сбросить в её атмосферу зонд, а «Улисс» – чтобы под действием притяжения Юпитера выйти из плоскости эклиптики и направиться к полярным областям Солнца. Поэтому для запуска этих аппаратов требовалось вполне определённое взаимное расположение Земли и Юпитера, которое повторяется через каждый синодический период Юпитера, равный 399 d, или 13 месяцам.
4.126. Кеплер был первым, кто предположил, что между орбитами Марса и Юпитера должна находиться неизвестная планета. Он считал, что совершенству Солнечной системы мешает непомерно большой промежуток между орбитами этих двух планет. В 1772 г. в книге «Руководство по изучению неба» немецкий астроном Иоганн Боде после знакомства с законом планетных расстояний, открытым Тициусом, предсказал существование на расстоянии 2,8 а. е. от Солнца «большой планеты», которая должна совершать полный оборот вокруг светила за 4,5 года.
4.127. Верхние планеты описывают петли около противостояния. В это время они имеют наибольший видимый блеск. Церера была вновь найдена ровно через год после своего открытия – 31 декабря 1801 г. – благодаря эфемеридам, рассчитанным Карлом Гауссом. 23–летний учёный смог вычислить орбиту новой планеты, разработав для этого математический метод определения эллиптической орбиты по трём наблюдениям.
4.128. Речь идёт о малых планетах («планетоидах» Пиацци). Часто эти объекты называют астероидами(термин Гершеля). Орбиты большинства астероидов подобны орбитам больших планет, но из‑за отсутствия у них при наблюдении в телескоп видимого диска они названы «звездоподобными».
4.129. Марс в римской мифологии – бог войны. В мифах его сопровождают Фобос и Деймос, по одним мифам – сыновья Марса, по другим – его псы. Война несёт с собой страх и ужас.
4.130. Спутники Марса представляются с Земли слабыми «звёздочками», движущимися вместе с планетой относительно истинных звёзд. Заметить их визуально удалось лишь потому, что наблюдения проводились в период великого противостояния Марса. К тому же, Холл использовал 26–дюймовый рефрактор Вашингтонской обсерватории, который был тогда сильнейшим инструментом в мире.
4.131. Поскольку угловая скорость вращения Земли больше угловой скорости обращения Луны, приливное влияние Луны тормозит нашу планету. Но в системе Марс – Фобос ситуация иная: в своём вращении Марс отстаёт от Фобоса, поэтому их приливное взаимодействие ускоряетвращение Марса и тормозитФобос, который из‑за этого постепенно приближается к Марсу. Вследствие малости массы Фобоса данный эффект оказывает ничтожное влияние на вращение Марса.
4.132. Галилей заметил, что обнаруженные им объекты совершают периодические движения относительно Юпитера.
4.133. В 1676 г. Рёмер объяснил кажущуюся неравномерность движения спутников Юпитера конечной скоростью распространения света. Из этих наблюдений Рёмер с неплохой точностью определил скорость света.
4.134. Определив из наблюдения момент затмения спутника Юпитера по местному времени и сравнив его с моментом этого же явления, заранее вычисленным по всемирному времени (эти моменты астрономы публиковали в виде эфемерид), навигатор мог найти долготу своего места наблюдения. Сейчас этот метод имеет лишь исторический интерес.
4.135. Кажущееся изменение яркости спутников Юпитера на фоне разных участков диска планеты можно объяснить эффектом сравнения: диск Юпитера ярче в середине, чем по краям, а его спутники не меняют своей яркости, поскольку из‑за малого фазового угла для земного наблюдателя всегда одинаково освещены Солнцем. Меркурий же при прохождении по диску Солнца обращён к Земле своей неосвещённой стороной, поэтому он темнее любой точки солнечного диска, даже пятен.
4.136. Спутники Урана движутся в плоскости экватора планеты, ось вращения которой лежит почти в плоскости её орбиты (i=98°). В 1901 г. и в 1944 г. ось вращения Урана находилась на луче зрения земного наблюдателя, но планета располагалась в диаметрально противоположных частях орбиты. Астрономы в эти годы наблюдали систему Урана с противоположных полюсов вращения планеты и обращения её спутников.
4.137. Согласно третьему обобщённому закону Кеплера, меньший, чем у Луны, орбитальный период Тритона указывает на большую массу Нептуна по сравнению с Землёй.
4.138. Рассмотрим простой случай: ось вращения астероида параллельна его орбитальной оси. Тогда прямое вращение астероида (в направлении орбитального обращения) отклоняет его «фотонный двигатель» назад по курсу и таким образом ускоряет движение астероида, поднимая его орбиту и уводя его в сторону Юпитера.
Соответственно, обратное вращение астероида за счёт фотонной отдачи приближает его к Марсу.
Влияние эффекта Ярковского на движение спутников планет ослаблено тем, что при медленно меняющемся направлении фотонного импульса отдачи (с орбитальным периодом планеты) направление движения спутника меняется быстро (с орбитальным периодом спутника). Вероятно, наиболее сильное влияние этот эффект оказывает на мелкие спутники Сатурна, входящие в состав его кольца. Тень планеты, в которую на каждом обороте попадают частицы кольца, даёт преимущество обращённой к Солнцу дуге орбиты. Поскольку вблизи планеты приливные силы синхронизуют орбитальное и осевое вращение частиц, влияние эффекта Ярковского на этой дуге орбиты тормозит движение спутника. Следовательно, в целом эффект Ярковского вызывает приближение таких спутников к поверхностям их планет.
4.139. Наличие радиантов у потоковых метеоров указывает (на основании эффекта перспективы), что метеорные тела движутся в земной атмосфере прямолинейными параллельными путями.
4.140. Метеорные тела, как и планеты, в космическом пространстве движутся вокруг Солнца по эллиптическим орбитам, возмущаемым планетами.
4.141. В вечерние часы в атмосферу Земли попадают только те метеорные тела, которые догоняют Землю; в предутреннее время число метеоров увеличивается, так как при этом скорость метеорных тел складывается с орбитальной скоростью Земли. Из соотношения часовых чисел метеоров в эти два интервала времени можно оценить их скорость. Полученное Скиапарелли значение скорости метеороидов очень близко к параболической скорости космических тел на расстоянии Земли, которое может быть только у тел, движущихся по очень вытянутым орбитам. Точное определение скоростей метеорных тел требует знания распределения метеороидов по массам и зависимости блеска от массы, которые даже сейчас известны лишь приблизительно. Скорости тел разных потоков могут сильно различаться. Тем не менее, оценки Скиапарелли согласуются с современными значениями.
4.142. Да, наблюдалось бы. В зависимости от прицельного параметра догоняющий Землю метеороид может войти в атмосферу над любой точкой планеты, если его скорость не слишком велика.
4.143. В ноябре 1833 г. американский астроном Д. Олмстед установил, что радиант звёздного дождя из созвездия Льва не меняет в течение нескольких часов своего положения относительно звёзд. Это указывало на космическое происхождение метеоров данного потока.
4.144. Было высказано предположение, что метеорное вещество обращается вокруг Солнца не сплошным облаком, а замкнутым кольцом, которое пересекает орбиту Земли лишь в одном месте. Такое условие снимало требование совпадения периода обращения метеороидов с периодом Земли вокруг Солнца.
4.145. Араго сделал вывод о неоднородном распределении метеорных частиц в рое Леонид.
4.146. В настоящее время вулканическая деятельность на Луне настолько ничтожна, что выбросы твёрдого лунного вещества маловероятны. Современная наука утверждает, что метеориты – это обломки астероидов. Однако выбросы в космос твёрдого лунного или марсианского вещества всё же возможны при ударе об эти тела крупных метеоритов.
4.147. Хладни утверждал, что высоты и скорости движения болидов противоречат прежним представлениям об их атмосферной природе. Он также обратил внимание, что в многочисленных письменных сообщениях о наблюдении болидов нередко говорится о последующем падении горячих метеоритов.
4.148. Современные учёные считают, что метеорные тела возникают в результате разрушения комет, т. е. между ними есть генетическая связь. Однако высказывание Кеплера, скорее всего, отражает лишь чисто зрительное сходство комет и метеоров.
4.149. Кометы – внеземные объекты.
4.150. Они использовали параллактический метод определения расстояния до небесных тел, где базисом служило расстояние между наблюдателями.
4.151. Тихо Браге впервые из наблюдений попытался определить параллакс кометы и нашёл его меньшим, чем у Луны.
4.152. Скиапарелли в работах 1866 г. доказал, что метеорные тела, как и кометы, движутся по орбитам с большим эксцентриситетом. Плоскости орбит и тех и других тел наклонены к плоскости земной орбиты под самыми разными углами, включая и i≈90°. Было также найдено, что орбиты метеороидов августовского потока Персеид совпадают с орбитой яркой кометы 1862 года. Петерсон на основании расчётов Леверье отождествил орбиты ноябрьских метеороидов с орбитой кометы Темпля 1866 года. Австрийский астроном Вейсс доказал тождественность орбит кометы Биелы и метеорного потока 28 ноября.
4.153. Галлей обнаружил, что орбиты комет 1456, 1531, 1607 и 1682 годов весьма сходны и предположил, что это одна и та же комета, возвращающаяся к Солнцу с периодом в 76 лет. Поэтому следующее прохождение этой кометы он предсказал на 1758 г. В назначенный срок комета не появилась. Знаменитый французский математик А. К. Клеро (1713–1765), понимая, что задержка кометы вызвана возмущающим влиянием планет – гигантов, взялся за численное решение задачи о движении кометы в поле нескольких тел: Солнца, Юпитера и Сатурна.
Выполнить этот невероятно большой объём вычислении в одиночку было невозможно. Клеро помогали известный астроном Ж. Лаланд и математик мадам Лепот. Позднее Лаланд писал: «Шесть месяцев мы вычисляли с утра до ночи, иногда даже не отрываясь для еды, и следствием этого было то, что я расстроил своё здоровье на все остальные дни своей жизни. Помощь госпожи Лепот была такова, что без неё мы никогда не осмелились бы предпринять этот громадный труд, состоявший из вычислений расстояния кометы от двух планет – Юпитера и Сатурна – для каждого градуса небесной сферы в течение 150 лет» (цит. по: Марочник, 1985).
Клеро и его помощники успели закончить вычисления вовремя. Оказалось, что под влиянием притяжения Юпитера комета должна опоздать на 518 суток и под влиянием Сатурна – ещё на 100. Клеро предсказал дату прохождения кометой перигелия – 13 апреля 1759 г. и указал, что точность вычислений такова, что ошибка может составить 1 месяц. Комета прошла перигелий 13 марта. Галлей оказался прав: комета вернулась.
4.154. Наблюдения показывают, что разные кометы имеют свои особенности в строении хвоста. Например, хвост кометы Донати (1858) имел вид пустотелого конуса, а хвост самой большой кометы XX столетия, кометы Хейла – Боппа, казался сплошным: плотность вещества на оси хвоста была выше, чем на его периферии.
4.155. Невидимость кометы на фоне Солнца свидетельствует о малой оптической плотности вещества в голове кометы и очень небольшом размере её твёрдого ядра.
4.156. Комета 1882 года, по – видимому, относилась к классу так называемых «царапающих комет», которые в перигелии с большой скоростью проходят вблизи поверхности Солнца. Солнечное излучение вызывает усиленное газообразование, следствием чего является усиление её яркости. К подобным кометам следует отнести яркую комету 1965f Икейя – Секи, которая после прохождения перигелия приобрела хвост длиной около 40°.
4.157. Ослабление блеска звёзды во время покрытия не наблюдалось, из чего был сделан вывод, что ядро кометы или отсутствует или имеет ничтожные размеры, а вещество в голове кометы сильно разрежено.
4.158. Немецкий астроном Иоганн Энке после долгих исследований пришёл к выводу, что кометы, открытые в 1786 г. Пьером Мешеном ив 1818 г. Жаном – Луи Понсом, являются одной и той же кометой с периодом обращения вокруг Солнца всего 3,3 года. Энке также доказал, что кометы, наблюдавшиеся в 1795 и в 1805 гг., – это та же самая комета. Учёный предсказал её новое появление в 1822 г., что блестяще подтвердилось. В знак признательности за большую работу по идентификации кометы и за расчёт её орбиты этой комете дали имя Энке.
4.159. Ранее считалось, что кометы светят только отражённым солнечным светом. Наблюдения Донати показали, что основная часть излучения исходит от раскалённых газов. Спектральные полосы показали наличие молекулярных соединений водорода и углерода: CO, циан, метан. Помимо эмиссионного спектра в кометах наблюдается и слабый непрерывный спектр, исходящий от ядра и отчасти от диффузного компонента кометы.
4.160. По современной терминологии упомянутое явление называется «противосиянием» и представляет собой свечение межпланетного вещества в противосолнечной точке. Не исключено, что часть этого излучения возникает в газовом хвосте магнитосферы Земли.
4.161. Восемь химических элементов получили свои названия в связи с именами тел Солнечной системы: гелий от Гелиоса – Солнца, селен от Селены – Луны, теллур от Теллуса – Земли; уран, нептуний и плутоний – от названий планет Уран, Нептун и Плутон; палладий и церий – от имён крупнейших астероидов, Паллады и Цереры.
4.162. На спутнике Юпитера Ио, на планете Венера (косвенно) и на спутнике Нептуна Тритоне (сухие вулканы).
4.163. Легко заметить, что значения средней плотности космических тел, определённые в XIX веке, оказались весьма точны для планет со спутниками, к числу которых относится и Солнце: его спутниками служат сами планеты. Но для планет без спутников – Меркурия и Венеры – значения средней плотности, вычисленные астрономами
XIX века, оказались довольно грубыми приближениями. Понятно, что это связано с трудностями определения массы планеты, лишённой спутников. До эпохи космонавтики массы таких планет определяли по их гравитационному влиянию на движение далёких тел – других планет и астероидов; точность метода была невелика. В конце XX века эту трудность удалось преодолеть с помощью искусственных спутников (для Венеры) и пролётных зондов (для Меркурия), возмущения в движении которых, вызванные притяжением планеты, были точно измерены радиотехническими методами.
Что касается невысокой точности определения в XIX веке средней плотности Урана и Нептуна, то она связана с трудностями измерения их диаметра: поперечник этих планет виден под углом всего в несколько секунд.