355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Сурдин » Расширяя границы Вселенной: История астрономии в задачах » Текст книги (страница 11)
Расширяя границы Вселенной: История астрономии в задачах
  • Текст добавлен: 8 октября 2016, 17:45

Текст книги "Расширяя границы Вселенной: История астрономии в задачах"


Автор книги: Владимир Сурдин


Соавторы: Евгений Гусев
сообщить о нарушении

Текущая страница: 11 (всего у книги 16 страниц)

4.29. Солнце – очень яркий источник света, опасный для глаз. От стекла отражается около 4% падающего света; это делает изображение Солнца менее ярким и приемлемым для наблюдения. К тому же при отражении свет оказывается поляризованным. Раздвоение лучей происходит из‑за анизотропии кристалла исландского шпата, т. е. различного значения показателя преломления для лучей, поляризованных в разных направлениях. При определённом положении кристалла один из лучей можно погасить.

С точки зрения астрофизики опыт доказывает, что свет от Солнца не поляризован.

4.30. Уменьшение отверстия объектива усиливало явление дифракции, что уменьшало разрешающую способность телескопа. Для уменьшения яркости изображения Солнца в любительских условиях предпочтительнее использовать объективный светофильтр, например, из алюминированной лавсановой плёнки, отражающий 99,999% света.

4.31. Щелевой затвор с сильной пружиной установили перед объективом. Телескоп с таким затвором и кассетой для фотопластинки в окулярной части был изобретён в Англии в 1857 г.

4.32. Это были наиболее сильные линии поглощения. Спустя 12 лет после открытия Волластона немецкий физик Йозеф Фраунгофер, применив коллиматор, обнаружил в спектре Солнца уже сотни абсорбционных линий, названных в дальнейшем его именем. Фраунгоферовы линии образуются в наиболее холодных, верхних слоях солнечной фотосферы.

4.33. Абсорбционные линии, интенсивность которых зависит от высоты Солнца над горизонтом – это теллурические линии, возникающие в земной атмосфере.

4.34. Магнитные полюса Солнца находятся в полярных районах, период вращения которых составляет 33 d. Изменение наблюдаемого общего магнитного поля светила связано с вращением магнитных полюсов вокруг гелиографических.

4.35. Астрономы Пьер Жансен, Джозеф Локьер и Уильям Хёггинс использовали для наблюдений протуберанцев спектроскоп с большой дисперсией. При этом непрерывный спектр дневного неба сильно ослабевал, а изображение протуберанцев, излучающих в монохроматическом свете (Н α), не испытывало подобного ослабления. Локьер обнаружил также, что эмиссионные линии протуберанцев видны по всей окружности диска Солнца. Хёггинсу даже удалось получить при помощи спектроскопа изображение солнечного протуберанца.

4.36. Вероятно, изображение Солнца с крыльями показывает, что во время полных солнечных затмений древние египтяне обнаружили корону Солнца, которая действительно иногда имеет форму крыльев.

4.37. Спектроскопическими наблюдениями в 1869 г. было доказано наличие в спектре короны линий, тождественных линиям спектра фотосферы. В 1871 г. были получены фотографии короны из пунктов, удалённых друг от друга на несколько сотен километров. В обоих пунктах в короне были зафиксированы одни и те же детали.

4.38. Причины, мешающие днём видеть солнечную корону – рассеяние солнечного света в земной атмосфере, уменьшение светочувствительности глаза при наблюдении яркого объекта, солнечная иррадиация – значительно усиливаются вблизи диска Солнца, где Луна, как и корона днём не видна. В коронографах действие яркого диска Солнца исключается введением непрозрачного экрана такого же углового диметра, как и Солнце; влияние земной атмосферы минимизируется путём наблюдения с большой высоты над уровнем моря.

4.39. В 1930 г. Бернар Лио обнаружил вращение близких к поверхности Солнца частей короны со скоростью около 2 км/с.

4.40. Пятна даже в годы максимума солнечной активности занимают не более 1/500 части поверхности Солнца; к тому же пятна сами тоже излучают энергию, так как даже температура тени в пятне всего на 1500–2000 K ниже температуры нормальной фотосферы. В годы максимума солнечной активности наряду с увеличением количества пятен увеличивается число участков с повышенной яркостью – факелов. Поэтому светимость Солнца практически не меняется.

4.41. Разность визуальных звёздных величин Солнца и полной Луны составляет 14 m. А по Бугеру эта величина равна 13,7 m. Можно лишь удивиться столь малой ошибке, допущенной при сравнении столь разных по яркости источников при помощи такой примитивной техники.

4.42. Разложив солнечный свет при помощи призмы, В. Гершель поместил термометр за границей красной области спектра, там, где уже не видно света. Термометр показал рост температуры. Гершель заключил, что «существуют лучи, приходящие от Солнца, которые преломляются слабее, чем любые из лучей, действующих на глаз. Они наделены сильной способностью к нагреву тел, но лишены способности освещать тела» (Голин и Филонович, 1989, с. 275). Позже эти лучи назвали ультракрасными, а в наше время называют инфракрасными.

4.43. Суть метода очевидна из рисунка, на котором показаны положения верхней планеты (М) и Земли (Е) в противостоянии, а также положения планеты (М') и Земли ') через какой‑то промежуток времени после противостояния. Измеряется угол ∠ M'E'S.Зная время обращения планеты и Земли вокруг Солнца, легко вычислить углы ∠ MSM'и ∠ ESE'.По этим углам определяется синодический угол ∠ M'SE'.Таким образом, в треугольнике M'SE'известны все углы. Принимая расстояние от Земли до Солнца за единицу, легко найти геоцентрическое M'E'и гелиоцентрическое расстояния планеты M'S.

К решению задачи 4.43. Метод определения гео– и гелиоцентрического расстояния верхней планеты.

4.44. Автор приведённого заключения – Роберт Гук (1635–1703).

Предполагаемая им природа сил притяжения – электричество или магнетизм.

4.45. Гипотезу об одинаковой природе планет Солнечной системы выдвинул Дж. Бруно. Подтвердили этот тезис телескопические наблюдения Галилея.

4.46. Галилей и Кеплер первыми показали, что свободное (от влияния сил) движение происходит прямолинейно. К выводу о том, что движение планет по эллиптическим орбитам однозначно свидетельствует о действии на них силы со стороны Солнца, пришёл Кеплер.

4.47. Магнетизм.

4.48. Расчёты показали, что вырванное приливом вещество должно было бы упасть на Солнце или обращаться вокруг него на значительно меньшем расстоянии, чем существующие планеты.

4.49. Лаплас выявил общность происхождения всех тел Солнечной системы, включая Солнце. Однако современные учёные обнаружили, что Венера вращается в обратную сторону по сравнению с Солнцем и большинством других планет, Уран вращается «на боку», а далёкие спутники Юпитера и Сатурна имеют обратное движение. Считается, что эти изменения в движении указанных тел возникли из‑за их взаимодействия с другими телами в уже сформировавшейся Солнечной системе.

4.50. Вильям Гершель воспользовался методом Т. Майера (1723–1762), предложившего выявить движение Солнца в пространстве, считая собственное движение близких звёзд отражением движения Солнца. Скорость Солнца относительно ближайших звёзд составляет около 20 км/с, и направлена она к апексу, находящемуся близ звезды ν Геркулеса.

4.51. Кажущееся изменение высоты Солнца над горизонтом было истолковано как параллактическое смещение; поэтому оно было использовано для попытки определения расстояния до светила.

4.52. Если поверхность Земли выпуклая, то при перемещении наблюдателя вдоль меридиана на север звёзды в северной стороне неба поднимаются над горизонтом, а в южной – опускаются. У шарообразной планеты перемещениям на одинаковые расстояния вдоль разных меридианов соответствуют одинаковые изменения высот небесных светил над горизонтом.

4.53. Только шар при любой проекции даёт круг. Этот довод в пользу шарообразности Земли был впервые приведён Аристотелем (384–322 до н. э.).

4.54. Греческий учёный Эратосфен во второй половине III в. до н. э. по данным наблюдений Солнца в день солнцестояния вычислил дугу меридиана между городами Сиеной (ныне Асуан) и Александрией, расстояние между которыми ему было известно. После этого было уже нетрудно найти длину окружности земного шара – 250 тыс. стадий. Историкам не известно точное значение греческой стадии: по их данным, оно составляет от 155 до 180 м. Взяв среднее от этих значений (168 м), мы увидим, что расчёт Эратосфена даёт окружность Земли (42 тыс. км), весьма близкую к действительной (40 тыс. км).

Развивая метод Эратосфена, Посидоний (135—51 до н. э.) определил длину окружности Земли по наблюдениям звезды Канопус. Эта звезда на острове Родос в верхней кульминации касалась горизонта, а в Александрии её высота в этот момент составляла 7,5°. Расстояние между этими пунктами считалось известным (5000 стадий). В 827 г. н. э. арабские астрономы измерили длину дуги меридиана между Тигром и Евфратом. Окружность Земли была найдена равной (при переводе в современные единицы) 44 тыс. км.

4.55. У сжатого эллипсоида максимальная кривизна поверхности на экваторе, а минимальная – у полюсов. Измеряя на разных широтах линейную длину дуги меридиана, скажем, в 1°, можно узнать форму Земли: если планета сжата, то длина дуги в 1° должна быть больше в высоких широтах, чем вблизи экватора. Это и показали измерения; полярное сжатие Земли свидетельствует о том, что она имеет форму эллипсоида вращения.

4.56. Гравиметрические измерения, показавшие, что зависимость ускорения свободного падения на поверхности Земли от широты такая, какая должна быть у вращающегося сжатого эллипсоида.

4.57. Утверждалось, что на вращающейся Земле тела, находящиеся в воздухе, должны отставать от тел, находящихся на поверхности. Высказывалось даже мнение, что под действием центробежных сил инерции вращающаяся Земля должна была бы распасться на части.

4.58. Исаак Ньютон. Для обеспечения центростремительного ускорения материальной точки на поверхности Земли векторы силы реакции опоры и силы притяжения к центру Земли должны располагаться под тупым углом друг к другу (не равным 180°), что возможно лишь при нарушении сферичности планеты.

4.59. Фуко назвал изобретённый им прибор гироскопом.Согласно закону сохранения момента импульса, положение оси вращения свободного тела в пространстве остаётся неизменным. Поворот осей топоцентрической системы отсчёта при вращении Земли приводит к кажущемуся изменению положения оси гироскопа в пространстве. Этот прибор получил широкое применение в авиации и морском деле.

4.60. Если бы континенты и их опора в земной коре были бы столь же эластичны, сколь и океаны, то вода и суша перемещались бы под действием Луны и Солнца совершенно одинаково, и на побережье морские приливы и отливы перестали бы наблюдаться.

4.61. Под сумерками понимают время после захода Солнца и перед его восходом, когда земная поверхность освещается рассеянными в атмосфере лучами светила. Критерии сумерек чисто фотометрические и достаточно условные. Конец вечерних гражданских сумерек определяется необходимостью включения искусственного освещения для безопасного движения транспорта. При погружении Солнца под горизонт ниже, чем на 12°, навигация на реке или море невозможна без сигнальных огней. А после погружения Солнца на 18 °уже возможны точные фотометрические наблюдения небесных объектов.

Попытки найти связь глубины погружения Солнца с условиями освещённости делали ещё средневековые учёные. В «Оптике» Альха– зена (Ибн аль Хайсам) (965—1039), арабского учёного, работавшего в Каире, указано, что угол понижения Солнца в конце сумерек или начале зари равен 18°. Ротман указывал, что сумерки заканчиваются, когда Солнце опускается под горизонт на 24°, Нониус предлагал отрицательную высоту Солнца в 16 °, Кассини – в 15 °, Риччиоли давал 16 °для утренних и 20 °для вечерних сумерек. Такие расхождения можно объяснить трудностью различения границы раздела частей атмосферы, освещённой и не освещённой Солнцем.

4.62. Кислород, как и другие газы, земная атмосфера теряет также из‑за того, что молекулы, имеющие скорость движения больше второй космической скорости, убегают от Земли. Однако химический состав и давление атмосферы стабильны на протяжении, по крайней мере, сотен миллионов лет. Это означает, что атмосфера одновременно пополняется кислородом, например, за счёт разложения кислородосодержащих горных пород, фотосинтеза и диссоциации воды.

4.63. Голубой цвет Земли установил советский астроном Г. А. Тихов (1875–1960) из колориметрических наблюдений пепельного света Луны.

4.64. Полагают, что источником падающего из космоса на Землю вещества в современную эпоху являются астероиды и кометы, приходящие, как минимум, из‑за орбиты Марса, а не вещество околоземной зоны, как это было в начальной фазе формирования Земли.

4.65. На поверхности планет земной группы и спутников планет Солнечной системы обнаружено большое количество кратеров. Древние греки называли кратеромбольшой сосуд для разбавления вина водой.

4.66. Периодичность изменения фаз позволила использовать Луну как мерило времени. Поэтому в славянских языках название спутника Земли и интервала времени звучат одинаково – месяц.На санскрите Луна называется мас,что и означает «измеритель». Латинское мензиснаходится в близком родстве со словом мензурка.

4.67. Астроним лунапо этимологии близок к словам луч, люкс, лысина, что отражает свойство Луны как источника света.

4.68. Даже не очень зоркий глаз видит своеобразный рисунок на поверхности Луны, так называемый лунный лик.Поэтому составить грубую карту Луны может каждый из нас без телескопа. В этом убедился один из авторов книги, имеющий отнюдь не 100–процентное зрение (рис. 1): в целом рисунок верно отражает расположение


К решению задачи 4.68.

лунных морей, хотя малые моря Восточного полушария – моря Ясности, Спокойствия, Нектара, Изобилия и Кризисов – слились в одну Я – образную фигуру.

Угловой диаметр лунного диска для земного наблюдателя составляет около 30′. Если принять разрешающую способность зоркого невооружённого глаза равной 1′, то карта Луны, составленная без телескопа, окажется мозаикой размером 30×30 и будет содержать около 700 элементов. Такое изображение Луны мы изготовили искусственно, взяв телескопический снимок лунного диска и ухудшив его качество до разрешения в 1′ (рис. 2).

Астрономам дотелескопической эпохи практически удалось достичь этого идеала. Посмотрите на рисунок, сделанный английским учёным Вильямом Гильбертом (1540–1603), рис. 3.

На нём легко угадывается расположение лунных морей, даже тех, которые не заметны на первом рисунке. Мельчайшие детали на карте Гильберта (1651) действительно имеют размер около 1′. Некоторым деталям на своей карте Гильберт дал названия, например, Британия (современное Море Кризисов), Большая страна Восточная (Море Дождей), Большая страна Западная (Море Ясности), Остров Средилунный (Залив Центральный), Море Средилунное (Апеннины), и др. Как видим, в отличие от более поздней традиции, тёмным областям Луны Гильберт давал имена материков, а не морей.

4.69. Основанием для суждения об удалённости Луны и планет от Земли являлась скорость их видимого движения по звёздному небу; предполагалось, что удалённые тела движутся медленнее, чем более близкие.

4.70. Ускорение свободного падения на расстоянии Луны Ньютон нашёл из кинематических данных, вычислив центростремительное ускорение Луны по расстоянию до неё (R≈60 радиусов Земли) и периоду обращения (T =1 месяц). Ускорение Луны оказалось примерно в 3600 раз меньше, чем ускорение свободного падения у поверхности Земли, что и привело к выводу о квадратичной зависимости силы от расстояния в законе всемирного тяготения (Кудрявцев, 1982, с. 109).

4.71. Колумб использовал Альманах Региомонтана (1474 г.), в котором с помощью теории Птолемея были предвычислены каждодневные положения Солнца, Луны и планет для Нюрнберга на период 1476–1506 гг. Во время четвёртого плавания, когда 29 февраля 1504 г. корабль находился на Ямайке, Колумб, воспользовавшись предвычисленным моментом затмения Луны, сначала разыграл перед туземцами роль божественного провидца, а затем из наблюдений определил долготу своего местонахождения относительно Нюрнберга, допустив ошибку в 2,5 часа к западу. Что стало причиной этой ошибки – неточность в определении местного времени, ошибки в Альманахе или просто желание Колумба доказать, что он действительно достиг берегов Азии, – этого мы никогда не узнаем. Но о точности астрономического определения долгот в ту эпоху свидетельствует такой факт: 14 августа 1499 г. во время своего второго путешествия Америго Веспуччи наблюдал покрытие Марса Луной и определил долготу своего местонахождения с очень высокой точностью (Хауз, 1983, с. 21).

4.72. Поскольку редкие моменты лунных затмений и покрытий ярких звёзд и планет не позволяли морякам оперативно измерять долготу во время плавания, И. Вернер предложил новый метод, основанный на измерении расстояний от Луны до нескольких специально выбранных зодиакальных звёзд. Поскольку Луна перемещается за час приблизительно на свой диаметр (0,5°), эти расстояния быстро меняются и могут быть использованы как указатель местного времени в том пункте, для которого заранее составлены эфемериды Луны. Сравнив его с местным временем пункта наблюдения и учтя суточный параллакс Луны, можно определить долготу пункта.

Метод лунных расстояний совершенствовался в течение нескольких веков. Были составлены таблицы положения Луны и опорных звёзд как функция всемирного времени (которое вместе с Гринвичской обсерваторией как раз и появилось для определения долгот этим методом). Измеряя расстояния до Луны от избранных звёзд и от горизонта в данном месте Земли, можно определить местное время и долготу пункта. Наиболее точную теорию движения Луны для этой цели разработал Леонард Эйлер (1707–1783). По мере повышения точности теории возникла потребность и в усовершенствовании угломерного инструмента: вместо жезла Якобаи его развития – поперечного жезлабыл изобретён зеркальный секстант.Но полностью проблема определения долготы была решена только после изобретения морского хронометра.

4.73. Причина векового ускорения Луны анализировалась многими астрономами в течение трёх столетий. Парижская академия наук в 1770 г. даже объявила конкурс на лучшее объяснение этого явления. Его изучение, продолжающееся до сих пор, оказало сильное влияние на развитие всей небесной механики (Бронштэн, 1990). Частичное объяснение векового ускорения Луны было найдено в 1783 г. Лапласом: оно связано с вековым изменением эксцентриситета земной орбиты под действием возмущений от планет. Но главная причина была найдена в 1865 г. французским астрономом Шарлем Делоне (1816–1872), предположившим, что «ускорение Луны» лишь кажущееся и вызвано замедлением вращения Земли,которая до недавнего времени служила в астрономии точнейшими часами. Подобные лунным ускорения в движениях Солнца, Меркурия, Венеры и Марса, обнаруженные в XIX веке, подтвердили идею Делоне. Как он и предполагал, причиной замедления вращения Земли оказалось приливное трение, вызванное в основном воздействием на Землю самой же Луны.

4.74. Причиной физической либрации Луны служит её вытянутость вдоль направления к Земле. Из‑за оптической либрации по долготе, имеющей чисто кинематическое происхождение (равномерное вращение вокруг оси и неравномерное обращение по эллиптической орбите), большая ось фигуры Луны не направлена постоянно на центр Земли. Поэтому со стороны Земли на выступы лунной поверхности действует момент силы, в одних положениях – тормозящий, а в других – ускоряющий вращение Луны.

4.75. Терминатор Луны представляется нам дугой эллипса, а в первой и последней четвертях – прямой линией. Форма терминатора в виде полуэллипса однозначно свидетельствует о шарообразности Луны.

4.76. Галилей сделал вывод о том, что поверхность Луны покрыта мелкими неровностями. Однако задолго до Галилея, основываясь на физическом эксперименте, к такому же выводу пришёл Плутарх (начало II в. н. э.).

4.77. Араго рассуждал так: поскольку общий цвет Луны желтоватый, то менее яркие пространства морей, очевидно, должны казаться зеленоватыми. Максимум чувствительности человеческого зрения при слабом освещении смещается в коротковолновую часть спектра.

4.78. Галилей указал, что при наблюдении вдоль поверхности горные гряды проецируются друг на друга, поэтому видимая зазубренность края лунного диска мала. Тем не менее, неровности края Луны можно обнаружить в телескоп.

4.79. В 1937 г. советский физик К. П. Станюкович доказал, что в момент удара метеорита о поверхность твёрдого космического тела происходит центрально – симметричный взрыв, поэтому форма образовавшегося кратера получается круглой. Американский астроном Р. Болдуин в 1949 г. также указал, что соотношение «диаметр– глубина» для воронок от бомб и снарядов, а также метеоритных и лунных кратеров подчиняется одному закону. Космические исследования подтвердили отсутствие активной вулканической деятельности на планетах и спутниках (кроме спутника Юпитера Ио) при обилии кратеров на них.

4.80. Причина эффекта Барабашова – Маркова заключается в изрытости лунной поверхности и наличии на ней множества камней, что и было подтверждено снимками Луны с космических аппаратов и прямыми исследованиями на лунной поверхности. В полнолуние тени от деталей рельефа не видны земному наблюдателю.

4.81. Приведённые Кеплером сведения практически верны. На лунном небе Земля почти неподвижна. Для наблюдателя на большей части лунной поверхности Земля не восходит и не заходит. Солнечные сутки на Луне (равные 29,5 земных суток) почти поровну делятся между днём и ночью, как на Земле в дни равноденствий, поскольку угол между плоскостью лунного экватора и плоскостью эклиптики составляет всего 1°30′.

4.82. Расчёт Кеплера верен: невидимость полной Луны действительно возможна в Исландии в летнее время, когда та часть эклиптики, вблизи которой проходит Луна в полнолуние, лежит южнее небесного экватора на 23,5°. Кроме того, для этого узлы лунной орбиты должны быть расположены так, чтобы в полнолуние Луна была на 5° ниже эклиптики.

4.83. Галилей безусловно прав в том, что, будь планеты зеркальными шарами, мы не увидели бы их дисков, а заметили бы только отражённое ими изображение Солнца. Однако суммарный блеск планеты от этого почти не изменился бы. Рассмотрев отражение параллельного пучка света от зеркального шара, мы увидим, что рассеянный свет равномерно распределяется в полном телесном угле 4π. А шар с шероховатой поверхностью большую часть света отбрасывает в направлении источника. Именно поэтому Луна особенно ярка вблизи полнолуния. Однако и «зеркальная Луна» светила бы не намного слабее, хотя выглядела бы не как диск, а как очень яркая звезда с угловым размером всего 4'' (детальный расчёт см.: Сурдин, 1995, задача 7.40).

4.84. Характерный размер неровностей на Луне существенно больше длины световых волн, но меньше длины радиоволн.

4.85. Восход Солнца на видимом полушарии Луны (появление терминатора) начинается с её правого края, который для наблюдателя на поверхности Луны естественно называть восточнойчастью горизонта. В эпоху полётов человека на Луну это стало актуально.

4.86. Естественно, Кеплер не мог знать, что Луна необитаема. Но, полагая, что её жители разумны, он должен был придерживаться в своих фантазиях критерия целесообразности. Круглый кратер обеспечивает тень в полярных областях Луны (весьма вероятно, что на постоянно затенённой внутренней поверхности полярных кратеров Луны действительно так холодно, что там сохраняется замёрзшая вода!). Но в экваториальных областях нет смысла возводить стенки, параллельные экватору: они не дают тени. Там уберечь от Солнца могут лишь узкие траншеи, перпендикулярные экватору. Но форма лунных кратеров не зависит от широты. Следовательно, они естественного происхождения.

4.87. Пепла на Луне не найдено. Но исследования на лунной поверхности подтвердили наличие там рыхлого материала – реголита. Считается, что он образовался вследствие больших перепадов температуры и ударов метеоритов.

4.88. Наблюдения Ильсмура доказали наличие у поверхности Луны электронного газа с концентрацией 1000 частиц в кубическом сантиметре, что соответствует плотности лунной атмосферы 4×10 –17от плотности приземного слоя воздуха.

4.89. Некоторые полагают, что краевые части лунного диска во время полной фазы затмения подсвечиваются солнечной короной; попробуйте сами оценить такую возможность. Не исключено, что ощущение объёмности Луны возникает из‑за эффекта иррадиации, связанного с физиологией нашего зрения.

4.90. Тень Земли не является совершенно тёмной: в ней присутствует слабый свет, рассеянный в земной атмосфере. Вероятно, поэтому края лунного диска подсвечены немного сильнее его середины, что и создаёт ощущение объёмности. В полнолуние из‑за неровностей поверхности диск Луны выглядит равномерно ярким, что и даёт ощущение плоского диска.

4.91. Максимум чувствительности сумеречного (палочкового) зрения сдвинут в коротковолновую сторону по сравнению с дневным (колбочковым) зрением. К тому же освещение при закрытом Солнце создаётся преимущественно светом небосвода, имеющим тёмно – синий цвет.

4.92. Наблюдения современных астрономов подтверждают, что даже при закрытии 90–95% площади диска Солнца освещённость на Земле остаётся достаточно высокой. Ослепляющее действия края солнечного диска сильно затрудняет наблюдение тёмного диска Луны.

4.93. Иногда внутренняя корона Солнца имеет существенно более высокую яркость, чем обычно. Это отмечалось во время некоторых затмений.

4.94. Луна освещается преломлёнными в нижних слоях земной атмосферы солнечными лучами.

4.95. Найденный Гершелем угол преломления лучей Солнца в нижних слоях земной атмосферы (54′), не является чрезмерным, поскольку он может достигать удвоенного угла рефракции, а у горизонта рефракция достигает 35′. Но астрономы отмечали, что во время некоторых затмений Луна всё же совершенно исчезала (Гевелий 25 апреля 1642 г., Мёдлер и Бер 10 июля 1816 г.). Возможно, в эти моменты нижние слои атмосферы были закрыты облаками.

4.96. Луна ярче во время апогейного лунного затмения.

4.97. Причина этого явления была понята в том же XIX веке. Касательные к земному шару лучи Солнца проходят через большую толщу атмосферы и вследствие экстинкции значительно ослабевают. Таким образом, нижние слои земной атмосферы играют роль непрозрачного тела.

4.98. Рефракция света в земной атмосфере, приподнимающая над горизонтом изображения небесных светил.

4.99. Изогнутые линии – изображения незакрытого Луной «серпа» солнечной атмосферы в цветах разных спектральных линий. Эмиссионные линии различных химических элементов образуются в слоях хромосферы, находящихся на разной высоте над фотосферой и неоднородных по яркости. Поэтому разные линии имеют различную протяжённость дуги.

К решению задачи 4.99. Позитивное изображение спектра вспышки, принадлежащего солнечной хромосфере и протуберанцам. Затмение 31 августа 1932 г. Снимок Ликской обсерватории.

4.100. Непрерывный спектр внутренней короны связан с рассеянием света фотосферы на свободных электронах. Однако фраунгоферовы линии в этом спектре не видны, поскольку из‑за очень высокой температуры короны доплеровское уширение линий «размазывает» их по непрерывному спектру и делает крайне мелкими и незаметными. В спектре короны видны линии излучения, но не те, что обычно присутствуют как фраунгоферовы в спектре фотосферы, поскольку в короне совсем иные физические условия. Например, водородные линии в спектре короны отсутствуют, потому что водород там полностью ионизован по причине высокой температуры.

4.101. Вулканом хотели назвать планету, существование которой подозревали внутри орбиты Меркурия. Но её так и не открыли.

4.102. Несмотря на длительные исследования многих астрономов, планета, орбита которой полностью бы находилась внутри орбиты Меркурия, не была обнаружена. «Избыточное» смещение перигелия Меркурия получило объяснение в рамках общей теории относительности (см.: Роузвер, 1985).

4.103. Днём Меркурий, всегда расположенный на небе недалеко от Солнца, имеет большую угловую высоту и, следовательно, влияние земной атмосферы на его изображение минимально. Скиапарелли, используя большое увеличение телескопа, смог более подробно исследовать его поверхность.

4.104. В 1874 г. немецкий астроном Иоганн Цёлльнер при помощи сконструированного им визуального фотометра измерил зависимость яркости Луны, планет и искусственных тел от фазы освещения. Он доказал, что фазовые зависимости Меркурия и Луны аналогичны и отличаются от фазовой зависимости гладкого шара. В 1885–1893 гг. немецкий селенограф К. Мюллер подтвердил, что поверхность Меркурия покрыта горами и скалами тёмного цвета.

4.105. Древние греки полагали, что утром они видят планету Фосфорос, а вечером – Гесперис. Позже они убедились, что это одна планета, и стали называть её Афродита. А римляне, соблюдая традицию, дали ей имя своей богини красоты – Венеры.

4.106. В 1761 г. Ломоносов наблюдал в телескоп редкое явление – прохождение Венеры по диску Солнца. При вступлении Венеры на диск Солнца и при её схождении была видна яркая кольцеобразная полоска вокруг чёрного диска планеты. Ломоносов верно объяснил это явление преломлением солнечных лучей в атмосфере Венеры.

4.107. Земля, находясь в противостоянии для Венеры, освещает её поверхность в 13 тыс. раз слабее, чем она освещает Луну в «полноземелие». Такое слабое освещение не может быть обнаружено, тем более – глазом. Тем не менее, опытные наблюдатели не раз указывали на существование этого феномена (Мейер, 1902, с. 125). В настоящее время предполагают, что пепельный свет Венеры вызван физикохимическими процессами, происходящими в атмосфере этой планеты.

4.108. На Венере, как и на Земле, горы высотой 43 км обладали бы такой тяжестью, что обязательно разрушили бы кристаллическую решётку пород в своём основании, и оно растеклось бы, не выдержав давления. Поэтому таких высоких гор на этих планетах нет. Самые большие горы в Солнечной системе обнаружены на Марсе (H=25–27 км), где сила тяжести на поверхности заметно меньше, чем на Земле и Венере.

4.109. Температура на поверхности Венеры, измеренная космическими аппаратами, оказалась около 480 °C, что больше критической для воды (Т=374,4 °C), выше которой она не может существовать в жидкой фазе ни при каком давлении.

4.110. Смена времён года на Марсе происходит, как и на Земле, вследствие изменения солнечной инсоляции, причиной которого служит наклонение плоскости экватора планеты к плоскости её орбиты. Смена времён года на Марсе наиболее наглядно проявляется в изменении размера полярных шапок.

4.111. Гипотеза основывалась на предположении о существовании у Марса мощной атмосферы (Кассини, Ремер, XVII в.). Покрытия звёзд Марсом, во время которых звёзды исчезали мгновенно, указали на то, что атмосфера планеты тонкая и не может вызвать сильное поглощение в коротковолновой части спектра. В 1865 г. было замечено, что красный цвет гуще около центра диска, что также свидетельствовало против атмосферной гипотезы. Хёггинс в 1867 г. отметил, что белый цвет полярных шапок также противоречит атмосферной гипотезе.


    Ваша оценка произведения:

Популярные книги за неделю