355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Ажажа » Дорогами подводных открытий » Текст книги (страница 6)
Дорогами подводных открытий
  • Текст добавлен: 6 октября 2016, 00:16

Текст книги "Дорогами подводных открытий"


Автор книги: Владимир Ажажа



сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

Ориентировочные дальности распространения физических и химических полей движущейся подводной лодки

Таблица

Вид создаваемого или искажаемого поля

Примерная дальность распространения

Подлодка как физическое тело

Непосредственные контакт

Изменение молекулярного состава (концентрационное поле) Изменение температуры Ультракоротковолновое электромагнитное поле

Несколько метров

Коротковолновое электромагнитное поле Средневолновое электромагнитное поле

Несколько десятков метров

Оптическое воздействие Радиоактивное излучение Сейсмические колебания грунта

Космические излучения Электрическое поле Гидродинамическое поле

От 60 до 100 метров

Эффект кильватерной струи Магнитное поле Пассивное ультразвуковое поле Акустическое поле звукового диапазона

Несколько сот метров

Инфразвуки Активные ультразвуковые поля (работающие гидроакустические приборы)

Несколько тысяч метров

Будем считать, что подводная лодка, перемещаясь, действует на окружающую среду всем комплексом перечисленных в таблице полей, а находясь на грунте, – какой-то частью этого комплекса. Хорошо бы знать, как это действие отражается на исследовании живой и неживой природы под водой. Еще лучше было бы совместить зону возмущений среды лодкой с зоной восприятия этих возмущений объектом изучения. Тогда можно было бы говорить о сфере применимости и об эффективности применения данной подводной лодки для какого-то определенного вида исследований. Несмотря на то что отечественные и зарубежные исследователи уделили немало внимания изучению зрительного, слухового и других видов восприятия у морских животных, этот вопрос можно считать только поставленным.

Фирма «Перри Кэбмарин», специализирующаяся на постройке малых подводных лодок, утверждает, что присутствие лодки не пугает рыб и других обитателей рифов. И в доказательство приводит снимок барракуды, спокойно плавающей рядом с одной из лодок. А вот Кусто и Эджертон сообщили, что в Средиземном море и в Индийском океане при опускании в воду кинокамер рыбы и другие морские животные пускались наутек. Кто прав? Видимо, обе стороны, поскольку утверждения каждой основаны на фактах, но эти факты не освещены другими. В частности, ни в первом, ни во втором случае не говорится о сезоне, времени дня, состоянии животного и окружающей среды. Может быть, эта же самая барракуда в другое время года или даже суток не подпустит к себе подводную лодку и на «пушечный выстрел».

16 декабря 1960 года наша «Северянка» двигалась в полной темноте в протянувшемся на две с половиной мили скоплении сельди со скоростью 2 узла. Эхолоты верхнего и нижнего обнаружения регистрировали рыбу. Когда мы включили прожектора, в первый момент нам показалось, что сельдь быстро уплывает от лодки. Спустя 15–20 секунд в передней части лодки отчетливо стали слышны удары сельди о корпус, а в лучах прожекторов появилась масса быстро и беспорядочно движущейся рыбы. Через 30–90 секунд рыба исчезала и даже не регистрировалась эхолотами. Но все повторялось, когда мы выключали прожектора и входили снова в косяк.

На борту лодки в этом рейсе было установлено 6 глубоководных светильников с зеркальными лампами мощностью по 500 ватт, с углами рассеяния светового пучка в 60–70 градусов и силой света в осевом направлении около 5000 свечей. Четыре из них располагались у бортовых иллюминаторов, пятый – у верхнего иллюминатора и был направлен в зенит, шестой закреплен в носовой части и ориентирован вверх под углом 45 градусов к вертикали.

Почему же все-таки боящаяся света сельдь вначале бросалась к лодке? Сразу же возникала мысль, что сельдь принимает свет лодки за излучение светящихся форм планктона и устремляется к пище. Но это предположение не подтвердилось результатами наблюдений.

Если бы свет, излучаемый прожекторами, был похож на сияние светящегося планктона, то это можно было бы допустить.

Может быть, внезапное включение светильников вызывало у рыб, застигнутых в освещенной зоне, подобие шока? И ослепленная сельдь в поисках выхода бросалась в образовавшееся свободное пространство и попадала в поле зрения наблюдателей?

После «разрядки» уплотнения отдаленные сельди, замечая приближение света, уходили в сторону. И пока «Северянка» двигалась с включенными прожекторами, эхолоты показывали, что рыбы поблизости нет.

Безусловно, такое объяснение нуждается в дополнительной проверке. Но одно для нас тогда было бесспорным: искусственный свет отпугивал сельдь. Это подтверждается и тем, что появлявшиеся в освещенной зоне рыбы не скапливались у самих светильников, а беспорядочно ударялись о корпус подводной лодки, леерные стойки и тросы. Было видно, как на стекло верхнего иллюминатора падал дождь чешуи.

Сельдь обитает в верхней, доступной естественному свету зоне океана и имеет развитые органы зрения. А как реагируют на свет подводного судна глубоководные рыбы? Биб за время погружений на батисфере успел познакомиться с 115 747 экземплярами глубоководных рыб. Наблюдая без искусственного света, он пришел к выводу, что 66 процентов этих рыб имеют органы свечения. Если это так, то почему бы этим рыбам не иметь органов, воспринимающих свет?

Ведь уже известно, что рыбы, издающие звуки, хорошо их воспринимают; что так называемых неэлектрических рыб нет совсем, поскольку все рыбы в большей или меньшей степени способны генерировать и воспринимать электрические сигналы; что суммарный электрический сигнал стаи рыб многократно больше сигнала единичной особи и т. д.

Поэтому трудно предугадать, а тем более планировать, какие результаты даст электросвет при наблюдении за рыбами, Не всегда помогает и отсутствие света. Несколько раз исследователи пытались с помощью глубоководной лодки «Триест» посмотреть, из каких же организмов формируется так называемый глубинный рассеивающий слой, присутствие которого отчетливо фиксируется эхолотами. Однако надежды на то, что погружения «Триеста» помогут раскрыть эту тайну, не оправдались: на глубинах, где обычно происходит рассеивание звука, наблюдатели не обнаружили особых скоплений животных. Уильям Кроми, например, считает, что это произошло потому, что «чудище» величиной с кита неизбежно возмущает воду в своем свободном падении и, очевидно, разгоняет все живые существа. И Пикар говорит, что он никогда не мог разглядеть рыб во время быстрого спуска. Даже при медленном спуске «Триеста» редко приходилось наблюдать живые формы, кроме планктона или относительно примитивных видов.

Но и эти «примитивные» виды могут уходить от опасности, причем с изрядной скоростью. Американский конструктор подводной фотоаппаратуры Эджертон, которого мы уже упоминали, произвел любопытные вычисления. Зная длительность светового импульса осветительной лампы-вспышки (около 0,003 секунды) и расстояние до фотографируемого объекта (от 2,5 до 10 сантиметров), он по величине трасс на фотопленке, напоминающих хвосты комет, подсчитал скорость движения этих организмов. Она составила от 0,3 до 3,0 метра в секунду. Оказалось, что даже самые крошечные существа в океане были способны ускользать от нарушившего их покой объекта и, подобно юрким рыбам, держаться от него в стороне.

Рыбы имеют боковую линию, настолько чувствительную, что могут ощущать колебания воды, возникающие при движении, питании и даже дыхании других существ.

Сотрудники Полярного научно-исследовательского института рыбного хозяйства и океанографии много раз спускались под воду в гидростате «Север-1». При погружении гидростата в стаю трески, находящуюся в толще воды, рыбы уходят глубже. Войти в верхнюю часть стаи и видеть треску удавалось лишь на короткое время только при быстром погружении. Исследователи утверждают, что стайное поведение отличается от поведения одиночной рыбы повышенной чуткостью восприятия, быстротой реакции и маневренностью. Наблюдения «Северянки» и другие данные подтвердили это утверждение.

Но неужели подводная лодка, обладая высокой скоростью, все-таки не может догнать и увидеть уходящих от нее рыб или китов? Да, неплохо было бы обладать такой возможностью. Но, во-первых, увеличение скорости лодки будет сопровождаться возрастанием ее физического поля. А во-вторых, лучшие пловцы среди рыб и китов способны двигаться с недостижимой для исследовательских лодок стремительностью. Максимально зафиксированная скорость желтоперого тунца на рывке составляет 16 метров в секунду (около 32 узлов). Американцы, сопоставляя скорость своей подводной лодки «Алюминаут» со скоростью кашалотов и синих китов, пришли к заключению, что преимущество остается за этими животными. Любое из них может уйти от лодки, наибольшая скорость которой не превышает 3,8 узла. Обычная же скорость кашалота около 4 узлов, но в случае опасности он сможет дать и 12 узлов.

Средняя скорость синего кита 10 узлов, при необходимости он может развивать 22 узла.

Как это ни огорчительно, но надо признать, что наблюдатели в подводной лодке никогда не смогут подойти близко и встретиться «лицом к лицу» со многими представителями морской фауны, разве только на экранах гидроакустических приборов. Конечно, не исключено, что обитатели моря сами почему-либо захотят познакомиться с подлодками поближе.

Лодка под водой может светиться и без прожекторов. Вот что удалось выяснить по этому поводу через иллюминаторы «Северянки» во время ее восьмой экспедиции. Лодка находилась на грунте неподвижно. Выключались все светильники и освещение в отсеках. Там, где находился конец стрелы [13]13
  Стрела – в данном случае длинная поперечная наружная балка для подвешивания приборов.


[Закрыть]
с выключенным светильником, можно было наблюдать очень редкие вспышки с интервалом в 5-10 минут. Стоило лодке начать всплывать, рефлектор светильника и конец стрелы озарялись многочисленными вспышками. Их производили гребневики, медузы и другие более мелкие формы планктона. С увеличением хода лодки свечение усиливалось. Оно сопровождало лодку от грунта до поверхности (это происходило в Мотовском заливе Баренцева моря). Прямо у борта лодки светились организмы, вспышки которых вызывались завихрениями воды либо ударами о борт судна. И в открытом море через верхний иллюминатор можно было видеть прямо-таки движущееся «звездное небо» – так много гребневиков светилось, проносясь над палубой лодки. Тросы, которые поддерживали и ориентировали стрелу, а также натянутый вдоль палубы леер, антенны и другие выступающие части палубы, вызывали завихрения. Поэтому свечение организмов перед верхним иллюминатором было интенсивнее, чем перед бортовыми. Порой оно было настолько сильным, что вспышки у иллюминаторов наблюдались даже при включенных наружных светильниках.

Несомненно, что лодка на грунте, когда часть механизмов выключена, обладает меньшим спектром физических полей, чем на ходу. Но «засиживаться» ей нельзя. Долгое пребывание на одном месте может вызвать экологические нарушения в значительном радиусе. Как полагают биологи, применявшие подводный дом «Черномор» в 1968 году, зона влияния дома на животный мир лежала в пределах 20 метров. Чтобы этого не случилось, лодка, по-видимому, через какой-то промежуток времени должна менять место пребывания на грунте.

Проблема «взаимоотношения» подводного исследовательского аппарата со средой и объектом исследования очень сложная и интересная. Здесь она затронута лишь с одной целью – показать ее значимость при оценке эффективности действий исследовательской подводной лодки и необходимость дальнейшей разработки. Примеры брались, главным образом, из практики наблюдений за рыбами, хотя физическое поле лодки влияет не только на них. Причем степень влияния поля и его составляющих зависит не только от восприимчивости окружающей среды, но и от характеристики самой подводной лодки.

Очевидно, обзор всех «за» и «против» применения подводных аппаратов для океанологических и других исследований будет не полным, если не коснуться самого главного критерия эффективности, который сводится в конечном счете к сопоставлению затрат с научной отдачей. Это важно сделать прежде всего потому, что и смысл книги, пожалуй, в том, чтобы представить подводные суда как богатейший и еще, по сути дела, слабо затронутый резерв технических средств исследования Мирового океана, как весьма перспективное дополнение к надводным судам.

Этот критерий, по-видимому, должен выражаться дробным числом, в знаменатель которого выносятся затраты (например, суточные расходы), а в числитель – достигнутый научный эффект. Действительно, чем выше эффект и меньше затраты – тем выше и критерий и эффективность в целом. Поскольку назначением всякого исследовательского средства, в том числе и подводного, является получение научной информации, то результатом его суточной деятельности, то есть эффектом, должна быть какая-то сумма замеров (наблюдений). Но специфика подводных методов исследований состоит в том, что трудность получения информации возрастает с глубиной. Судите сами: исследовать дно на глубине 10 метров легче, чем на 10 километрах. Да и подлодка для такой глубины всего пока одна. Поэтому в числитель нужно добавить сомножитель, выражающий зависимость критерия эффективности от глубины. Он показывает, что ценность информации, полученной с глубины, будет выше и определяется особо.

Но такой критерий справедлив только для неподвижных исследовательских средств. Его можно применить к опущенному на тросе со стоящего на якоре судна прибору; гидростату (не дрейфующему с кораблем); к аппаратуре, устанавливаемой на дне или на якоре; к подводной лодке, совершившей посадку на грунт; даже к неподвижному водолазу – наблюдателю.

Но наблюдения в одной точке или станции не всегда позволяют составить нужную картину, то есть не обладают достаточной информативностью. Выход из этого – или умножение числа станций или использование подвижных носителей аппаратуры и наблюдателей, к которым относятся исследовательские подводные лодки. Тогда в числитель критерия эффективности войдет еще один сомножитель – дальность подводного плавания.

Это один подход к оценке эффективности, о котором мы рассказали упрощенно. Назовем его статистическим, поскольку здесь предлагается путь подсчета единиц информации, то есть числа замеров [14]14
  При всем этом наблюдатель у иллюминатора или другого зрительного устройства, допустим экрана телевизора, может быть рассмотрен как элемент наблюдательной системы с производительностью около одной единицы информации в секунду. (По современным данным скорость ввода информации в длительную память составляет менее 1 бит/сек.).


[Закрыть]
.

Деятельность лодки можно планировать заранее. Можно, исходя из производительности установленных приборов, прикинуть число замеров. Но ведь под водой множество неизвестного, незапланированного, ради чего большинство исследователей и стремятся под воду. Они готовы за открытие какого-либо нового явления или живого объекта отдать тысячи замеров, выполненных по программе.

Стало быть, кроме статистического критерия, основанного на оценке стоимости единицы информации, можно говорить о критерии логическом, когда единицы информации несоизмеримы по своему научному значению.

На «Северянке» нам во второй экспедиции на фоне будничной работы удалось пережить волнение от встречи с неизведанным. Обращусь к своему дневнику.

«Около четырех часов утра мы увидели такое, что, наверное, долго не будет давать мне покоя… Опершись лбом о кожаную подушечку, укрепленную над стеклом иллюминатора, я вглядывался в освещенное пространство и считал сельдей. Ихтиолог Борис Соловьев занимался тем же у другого иллюминатора. Тишина нарушалась четкими ударами самописцев эхолотов и дыханием спящих. В этот момент я и увидел «лиру». Иначе и нельзя было назвать медленно проплывающее перед глазами незнакомое животное.

Представьте себе часто изображаемую легендарную лиру – эмблему поэзии, высотой сантиметров в тридцать, перевернутую основанием вверх. Собственно «лира» – это две симметрично согнутые тонкие лапы-щупальца, отливающие изумрудом и покрытые поперечными полосами, наподобие железнодорожного шлагбаума. Лапы беспомощно свисали из небольшого, напоминающего цветок лилии прозрачного студенистого тела с оранжевыми и ярко-синими точками. «Лира» была наполнена каким-то пульсирующим светом. Этот свет, напоминающий горение газовой горелки, пробегал от тела по щупальцам.

Почти одновременно со мной двух «лир» обнаружил и Борис. Бесполезно щелкнув несколько раз фотоаппаратом, заранее зная, что снимки не получатся, – так, для очистки совести, – мы взяли «лир» на карандаш и сделали несколько зарисовок. Всего до начала дня нам встретилось девять экземпляров».

Ни в море, ни впоследствии на берегу нам не удалось установить, что же это было. В определителях и справочниках сведения об этом подводном жителе пока отсутствуют, и мы не знаем, как его классифицировать. Возможно, когда эта книга увидит свет, о таинственной «лире» будет известно больше, потому что размах морских исследований растет.

Подводными тропами

 
О, сколько нам открытий чудных
Готовит просвещенья дух,
И опыт – сын ошибок трудных,
И гений – парадоксов друг.
 
А. С. Пушкин

Между надводными исследовательскими судами и большими подлодками, с одной стороны, и подлодками-малютками – с другой, обязанности должны быть разграничены. Если первые проводят крупномасштабное изучение, то перед вторыми ставятся более локальные задачи исследования определенного участка донной поверхности или толщи воды. Например, садящиеся на грунт или зависающие лодки могут производить подробную съемку в районе точки приземления на дне, физико-химические исследования и определять структуру грунта.

Задачи, выполняемые этими двумя группами судов, и возможности этих судов различны. Но проводимые ими разнообразные исследования взаимно дополняют друг друга, позволяют выявить неизвестные ранее явления – словом, постепенно составляют прочную систему знаний об океане.

О результатах плавания исследовательских подлодок опубликовано не так много материалов, как хотелось бы. Во-первых, еще продолжается этап экспериментирования, отработки и поисков оптимальных типов подлодок. Много погружений совершается не в научных целях, а для решения чисто инженерных задач, а также в интересах рекламы. Во-вторых, несмотря на афишируемую гражданскую принадлежность зарубежных исследовательских лодок, львиная доля выполняемых работ (примерно 75 процентов) финансируется и направляется военно-морскими ведомствами. Например, постройка и использование формально принадлежащей океанографическому институту в Вудс-Холле подлодки «Элвин» субсидировались ВМФ США, то есть фактически лодка создана для обеспечения военных программ. Мне же пришлось быть участником совершенно обратного процесса, когда не устаревшая, а серийная военная подводная лодка была передана для народнохозяйственных исследований и превратилась в «Северянку».

Построенная в 1953 году и переоборудованная в 1958-м, «Северянка» совершила шесть экспедиционных рейсов. В 1961 году она была поставлена на ремонт и дооборудование, а затем в 1963–1966 годах провела еще четыре экспедиции.

Обследуя рыбопромысловые районы, лодка совершила сотни длительных погружений на глубины до 170 метров, провела в океане в общей сложности 9 месяцев, пройдя 25 тысяч миль. В научную группу (обычно 5–9 человек) входили специалисты различных направлений: ихтиологи, гидробиологи, морские геологи, океанографы, специалисты по рыболовству, гидрооптики, гидроакустики, специалисты по морской и подводной технике (всего на борту лодки побывало 45 научных работников). Иногда «Северянка» взаимодействовала с научно-исследовательскими и промысловыми судами, что благоприятно отражалось на результатах наблюдений.

Наших ученых давно занимала проблема непосредственного наблюдения жизни на глубинах. Еще в 1935 году в Москве во ВНИРО (Всесоюзный научно-исследовательский институт морского рыбного хозяйства и океанографии) создается лаборатория подводных исследований; основателем ее был профессор Иван Илларионович Месяцев. Неутомимый исследователь и блестящий организатор, Месяцев своим личным примером показал, как нужно сочетать теорию с практикой. В первые годы Советской власти он работал в Заполярье, своими исследованиями помогая рыбакам осваивать богатства сурового, тогда почти не изученного Баренцева моря, – Месяцев был одним из организаторов предшественника ВНИРО, первого в стране научно-исследовательского учреждения – Плавучего морского института, созданного в 1921 году по декрету, подписанному В. И. Лениным. Он менял названия, рос, и от него закономерно отпочковывались различные рыбохозяйственные и мореведческие научные учреждения, охватившие сейчас своей комплексной сетью специализированных исследований не только моря, омывающие СССР, но, по сути дела, и весь Мировой океан.

Месяцев одним из первых понял огромную важность подводных наблюдений для выяснения биологических особенностей, характера и поведения различных морских обитателей, в первую очередь важнейших промысловых рыб. После смерти Месяцева дело его продолжали ученики, а добрую память об И. И. Месяцеве разносит по морям и океанам научно-исследовательское судно Полярного института, на борту которого начертано его имя.

В предвоенные годы сотрудники ВНИРО провели водолазные наблюдения за промысловыми рыбами в Каспийском и Азовском морях, в частности за их поведением во время лова ставными неводами – так называют большую сеть-ловушку, размером с дом, принцип устройства которой такой же, как у всем известной верши. Был закончен проект и построена модель первой советской батисферы с глубиной погружения 600 метров, установлен контакт с военными моряками и начаты переговоры о возможности использования малой подводной лодки для наблюдения за рыбами, но разразившаяся война не позволила ей выйти в научное плавание.

Развитие рыболовства в послевоенный период ставит новые и новые задачи, быстрому разрешению которых могло помочь подводное научно-исследовательское судно. Конкретно они сводились к следующему. Во-первых, наблюдение за поведением различных видов промысловых рыб в разное время года и особенно в процессе их лова. Во-вторых, кроме частных вопросов, связанных с использованием разноглубинного трала, это проверка работы разнообразных конструкций тралов, дрифтерных сетей и других орудий лова. Третья задача – расшифрование показаний ультразвуковых гидроакустических приборов для поиска рыбы, что, в свою очередь, позволило бы в итоге определять запасы рыбы в море.

Поэтому ученый совет ВНИРО на своем заседании единогласно одобрил мое предложение о том, что пора начать исследования на подводной лодке.

А потом началось то, чего больше всего на свете не любят научные работники – организационная деятельность. Написав, как нам показалось, убедительную докладную, с заместителем директора ВНИРО отправляемся в Министерство рыбной промышленности. Получаем задание подсчитать примерную стоимость переоборудования. На бумагу легли первые цифры. Затем наше министерство в письме главному командованию Военно-Морского Флота изложило просьбу о передаче нам лодки. Ответ был положительным, но высказывалось опасение – точны ли расчеты, не утонет ли лодка после переделки.

Я проводил день за днем у кораблестроителей, среди которых было много знакомых по военной службе. Они помогли произвести расчет прочности и определить максимально допустимый размер иллюминаторов. Снова письмо министерства главному командованию и окончательное согласие последнего.

И вот наступил знаменательный день 20 апреля 1957 года. Советское правительство приняло решение о передаче современной боевой подводной лодки институту для переоборудования ее и использования в научных целях.

В документе, который называется техническим заданием, наш институт должен был выразить свои требования к конструкторам: какой должна стать лодка в результате переоборудования. Составленный мною первый вариант технического задания после того, как с ним познакомились ведущие сотрудники института, был переработан с учетом необходимости проведения разносторонних подводных исследований. Лаборатория гидроакустических приборов предложила установить дополнительный эхолот с вибраторами, обращенными кверху, геологи моря потребовали устройство для того, чтобы брать пробы грунта, а специалисты по технике лова – подводный телевизор. Наконец техническое задание, неоднократно обсужденное и согласованное, передано в конструкторское бюро. За время разработки проекта переоборудования, на что ушло несколько месяцев, институт должен был своими силами создать ряд оригинальных приборов для первого в мире подводного научного судна. Для этого во ВНИРО была организована лаборатория технических средств подводных исследований, которую предложили возглавить мне.

Костяк лаборатории составили молодые задорные парни, увлеченные новым и необычным делом. Это прежде всего инженер Олег Соколов, хорошо знающий море и умеющий работать за двоих, и техник Виктор Фомин, болезненный с виду, но обладающий редким умением поладить с любым самым капризным механизмом.

С юношеским увлечением отдавался делу и самый солидный по возрасту механик Виталий Викторович Гришков, создававший сложнейшие электронные приборы с непринужденностью ювелира.

Перед нами стояла задача подготовить к экспедиции фотометр, термосолемер и подводный телевизор. Фотометр должен показывать, на какую глубину и в каком количестве проникает под воду дневной свет. Освещенность имеет большое значение для жизни рыб и, в частности, сильно влияет на поведение сельди. Ночью сельдь поднимается ближе к поверхности, днем она уходит от солнечных лучей вглубь.

Термосолемер предназначался для измерения температуры и солености морской воды. Температура оказывает большое влияние на распределение рыбы в море. Атлантическая сельдь, например, чутко реагирует на такое незначительное изменение температуры, как полградуса. Зачастую опытные рыбаки только по замерам температуры воды могут сказать, стоит ли в данном месте ожидать рыбу или нет. Важным показателем, по которому можно судить о поведении и местонахождении обитателей моря, в частности рыб, служит и соленость. Нашей задачей было создание прибора, который позволял бы производить несколько замеров температуры и солености в минуту с высокой точностью с подводной лодки без остановки ее движения.

Больше всего хлопот доставил нам подводный телевизор.

Подводное телевидение переживает еще зарю развития, и мы, не имея, по сути, выбора, вынуждены были остановиться на далекой от совершенства модели аппарата, разработанной Институтом океанологии Академии наук. Сложность заключалась в том, что эта установка подводного телевидения предназначалась для надводного судна и для монтажа на подводной лодке требовала капитальной переделки. Много напряженных дней и бессонных ночей провели в лаборатории Олег Соколов и Виктор Фомин, пока на голубом экране телевизора появилось похожее на оригинал изображение.

Возникли у нас и бесчисленные «малые» заботы по контролю реконструкции лодки. Проект переделки конструкторское бюро подготовило в срок. Заводы, расположенные в различных концах страны, заканчивали изготовление иллюминаторов, подводных прожекторов, устройства для взятия проб грунта. Недавно я пробовал подсчитать, сколько раз мне тогда пришлось бывать в командировках, и сбился со счета. Около двух месяцев я провел на заводе, где переделывалась «Северянка». Все заранее предусмотреть не удалось, а время не ждало, и приходилось прямо на месте вносить изменения в проект и принимать новые решения о монтаже аппаратуры. Затем меня на заводе сменили О. Соколов и В. Фомин. Как раз в это время «Северянка» была спущена на воду, и в канун Октябрьского праздника вахтенный по лодке электрик Стокин через бортовой иллюминатор в мутной воде у заводского причала увидел первую рыбу, вернее даже не рыбу, а маленькую рыбешку-недоросля. Это было хорошим предзнаменованием.

Мы решили назвать первенца советского подводного научного флота «Северянкой». Такое имя она получила потому, что ее базой стал северный порт Мурманск и плавать ей предстояло в северных водах Атлантики.

День рождения «Северянки», то есть сдача ее заводом в эксплуатацию, намечался на середину декабря 1958 года.

К этому сроку необходимо было подготовить подробную программу исследований. Заявок было много: ихтиологов интересовало, как выглядят скопления рыбы, на каком удалении одна от другой ходит рыба в косяке, как она уклоняется от хищников, питается, мечет икру и многое другое.

Конструкторы орудий лова стремились увидеть, как движется под водой трал, сколько метров составляет вертикальное и горизонтальное раскрытие его устья, как реагирует рыба на приближение трала. Гидроакустики собирались сравнивать показания приборов для поиска рыбы с действительными размерами и плотностью косяков различных рыб. Океанографов интересовала картина морского дна, состав слагающих его грунтов, придонные течения.

Нам, сотрудникам подводной лаборатории, в первую очередь хотелось получить сведения о дальности видимости под водой, об освещенности, возможностях подводных прожекторов и телевизора, и в первую очередь не терпелось проверить работу приборов, построенных собственными руками.

Наконец, была общая важная задача – разрабатывать способы и приемы научной работы на подводной лодке, накапливать опыт подводных наблюдений, с тем чтобы в будущем, и не далеком, можно было приступить к постройке подводного корабля, специально предназначенного только для научных исследований.

Пришла пора подумать и об участниках плавания. За счет «самоуплотнения» экипажа, обслуживающего механизмы, «Северянка» могла взять на борт пять-шесть человек научных сотрудников. Это максимум: на подводной лодке всегда остро стоит проблема спальных мест и бытовых удобств.

Надо подобрать такой штат, который, несмотря на малую численность, смог бы обеспечить выполнение намеченной программы. Для этого научные работники должны обладать многими непременными качествами.

Первое и непреложное условие для участия в экспедициях – железное здоровье.

Второе условие – хорошие морские качества. Под этим термином подразумевается способность переносить качку без ущерба для работоспособности. Под водой не качает. Но когда лодка всплывает, она из-за низко расположенного центра тяжести уподобляется ваньке-встаньке и раскачивается, как маятник. Забегу вперед и замечу, что во время наших атлантических плаваний крен «Северянки» порой достигал 40–50 градусов.

И третье условие – это умение проводить исследования в море, то есть добывать научный материал в любых условиях, не считаясь с лишениями походной жизни. И когда встал вопрос об ихтиологах для нашей «Северянки», мы оказались в затруднении. В институте было немало ученых-рыбоведов, имевших экспедиционный опыт и нужный кругозор, но они или уже оказались в других экспедициях, или их забраковала медицина. И наши взоры обратились к бывшему работнику ВНИРО кандидату биологических наук Дмитрию Викторовичу Радакову, сотруднику Института морфологии животных Академии наук СССР. Радаков давно интересовался подводными делами и не раз сам опускался под воду в водолазном костюме или с аквалангом, пытаясь разобраться в законах стайного поведения рыб. Его коренастая, энергичная фигура часто появлялась во ВНИРО. Радаков заходил в нашу лабораторию и делился результатами и планами своих исследований. Дмитрия Викторовича уговаривать не пришлось. На вопрос, сможет ли он принять участие в экспедиции, он ответил утвердительно и сразу же оказался в водовороте нашей подготовки.


    Ваша оценка произведения:

Популярные книги за неделю