Текст книги "Дорогами подводных открытий"
Автор книги: Владимир Ажажа
Жанры:
Научпоп
,сообщить о нарушении
Текущая страница: 10 (всего у книги 11 страниц)
Можно предположить, что крайняя степень пассивности рассредоточенной сельди в течение значительной части суток в условиях ее зимовки является не следствием подавления жизнедеятельности рыбы неблагоприятными условиями, а, наоборот, особенностью приспособительного характера. Сельдь в это время тратит минимум энергии и вместе с тем переносится преобладающими течениями к нерестилищам…
Тогда нам, как я уже о том говорил, не удалось провести наблюдения за тралом. Это мы попытались сделать во время третьей экспедиции. Происходило это так.
Сгрудившись у небольшого, размером с блюдце, верхнего иллюминатора исследовательской подводной лодки, пятеро научных сотрудников смотрят вверх. На первый взгляд мне и нашему кинооператору Василию Китаеву в этой ситуации повезло больше, чем остальным, поскольку мы ведем наблюдение, лежа в специальном кресле, отдаленно напоминающем зубоврачебное. В лодке очень тесно, и кресло пришлось сделать складным, перегиб приходится как раз на поясницу и непрерывно напоминает о том, что путь ученого труден и тернист. Мы вдвоем приближены к иллюминатору по следующей причине: у Василия в руках киноаппарат, а я должен управлять курсом и скоростью лодки, как только ожидаемый объект появится в поле зрения.
На Севере весна, полярный день вступил в сзои права, и под водой очень светло. Естественная освещенность такая, что в солнечный полдень на глубине 150 метров у верхнего иллюминатора можно читать газету, хотя и с трудом.
Трал, за которым мы наблюдаем, разноглубинный. Простой трал – донный. Это огромный мешок, ползущий по грунту на прочных тросах за судном – траулером. Таким орудием лова с успехом добывают рыбу, живущую у дна, – камбалу, треску и т. п. Но скопления рыбы в толще воды, например косяки сельди, для донного трала недоступны. Поэтому идея ловить рыбу не связанным с дном тралрм, а находящимся «во взвешенном состоянии» встречала все больше сторонников. Проводилось немало опытов и у нас, и за рубежом, но добиться хороших результатов так и не удалось. Наконец, в 1956 году, советские научные работники, специалисты по технике лова рыбы, сконструировали трал для промысла сельди на разных глубинах, и он стал добывать до 20–30 тонн сельди за несколько минут траления. Это были огромные уловы. Иногда при подъеме трала не выдерживала и рвалась даже прочнейшая капроновая сеть.
Однако при работе с таким тралом оставалось много неясного. Еще в конце 1956 года на борту траулера «Северное сияние» во время освоения лова сельди разноглубинным тралом в Северной Атлантике перед научной группой, в которую входил и автор, возникло много вопросов, связанных с формой трала при разных скоростях его буксирования и поведением при этом рыбы. Для ответа на них требовалось своими глазами взглянуть, что происходит под водой.
Трал для лова рыбы в толще воды представляет собой довольно сложное сооружение. Главная его часть – мешок, гибкая сеть сложной формы. Правильно рассчитанный траловый мешок под влиянием сил сопротивления воды принимает определенную форму. Передняя часть трала, которой он захватывает рыбу, называется устьем. У него четыре стороны, или, как их именуют, подборы. К подборам присоединяются буксирные тросы-ваера, идущие к траулеру. Горизонтальное раскрытие устья трала обеспечивается распорной силой, создаваемой во время движения закрепленными на буксирных тросах плоскими площадками-досками. Вертикальное раскрытие зависит от количества поплавков на верхней подборе и грузов на нижней. Горизонт хода трала, то есть глубина, на которой он движется, зависит от длины буксирных тросов и скорости хода траулера. Инженеры, проектирующие тралы, не имеют возможности проверить в полкой мере их работу в воде. А ведь достаточно небольшого просчета – и вместо уловистого трала за кормой судно будет буксировать никому не нужный бесформенный груз из тросов и веревок.
Рассчитывать днем на встречу с рыбой во время наблюдений за тралом не приходилось. Вряд ли какая-либо даже самая отважная из рыб захочет сблизиться с восьмидесятиметровым стальным чудовищем, да еще когда под водой так хорошо видно. Кроме того, в этом районе в толще воды нам могла встретиться только такая несолидная рыбка, как мойва, но ее стаи пока не фиксировались гидроакустическими приборами «Северянки», хотя мы в течение трех суток и пытались их обнаружить.
Утром к «Северянке» подошел большой рыболовный траулер «Приз» с разноглубинным тралом на борту. После спуска трала лодка должна была пристроиться «в затылок» траулеру, а затем погрузиться на несколько метров ниже заранее известной глубины и догонять трал. После этого нужно уравнять скорости лодки и трала, непрерывно удерживаясь под ним.
И вот с траулера получен условный сигнал: «Трал спущен. Лег на курс траления». «Северянка» разворачивается вслед. «По местам стоять к погружению!» – разносится по отсекам. Вторая команда: «Идем под трал. В носовом отсеке внимательно слушать забортные шумы». Впиваемся глазами в верхний иллюминатор. Потекли томительные минуты. За двойными 35-миллиметровыми стеклами светлое, чуть голубоватое пространство, рассеченное пополам идущей вдоль лодки надводной радиоантенной. На антенну намотался кусок какой-то тряпицы. Вот он, плавно колеблясь, начинает наползать на иллюминатор. Так ведь это же хвост нашего трала! Лодка идет под двумя электродвигателями. Нужно срочно уменьшить ход, чтобы не проскочить трал.
Мы, находившиеся на лодке научные сотрудники, не раз видели предполагаемую форму трала на чертежах и моделях и каким-то образом были подготовлены к наблюдению. Но то, что мы увидели в иллюминатор, превзошло все наши ожидания. Прямо над нами, подобно фантастическому дирижаблю, шел трал. На светлом фоне снизу он казался свинцово-синим. Встречным потоком воды он был натянут настолько, что, казалось, гибкие нити тралового мешка звенят, как струны. Известно, что по законам оптики предметы в воде кажутся расположенными к наблюдателю ближе, чем в действительности. Это делало зрелище более внушительным. Казалось, не будь иллюминатора, до трала можно дотянуться рукой.
Первое впечатление быстро сменилось деловой озабоченностью. «Прошу приблизиться к траловой доске», – просит инженер Евгений Зайцев. Лодка начинает выделывать «фигуры высшего пилотажа». Следуя вдоль тонкой нитки буксирного троса, она подходит под большую овальную доску и, уравняв скорость, как бы повисает под ней. «Доска имеет угол атаки 25 градусов, – диктует Евгений, – идет без вибрации, устойчиво». При помощи расположенного на наружной палубе «Северянки» эхолота измеряю вертикальное раскрытие трала – 11 метров. Точно, как предусмотрено конструкторами.
Снова наблюдаем устье. Горизонтальное раскрытие значительно меньше расчетного. Это значит, что в таком виде трал будет ловить намного меньше рыбы, чем ему положено. Осматриваем нижнюю подбору. Она должна иметь форму так называемой цепной линии. А сейчас средняя часть цепной линии слишком провисла. По всей видимости, силы сопротивления воды на подбору действуют неравномерно и возрастают у мест крепления буксирных тросов. Этого не должно быть. Трал придется пересчитывать. Но чтобы убедить в этом конструкторов, надо трал заснять. Инженеры уступают место кинооператору. Несколько часов «Северянка» находится под тралом, совершая вдоль него всевозможные маневры, и столько же часов Китаев кропотливо ведет киносъемку каждого узла и каждой ячеи. Такой случай вряд ли раньше представлялся какому-либо кинооператору.
Несколько дней мы наблюдали за тралом. Для этого требовалось большое внимание от наблюдающего в верхний иллюминатор и согласованности действия всего экипажа подводной лодки. Ведь трал все время пытался убежать из поля зрения. Возможно, что с изменением глубины на «Северянку» и траулер действовало различное по силе и направлению течение. Вмешивался и ветер, сносящий траулер с курса. Однако все невзгоды не помешали подводникам обеспечить решение важной и трудной задачи.
Впервые в истории науки человек своими глазами увидел, как работает под водой разноглубинный трал, и заснял этот процесс на пленку.
Но несмотря на полученный интересный материал, полного удовлетворения от проделанной работы не было. Казалось, почему бы и не радоваться? В предыдущей экспедиции у Фарерских островов через иллюминатор подлодки удалось провести интереснейшие наблюдения за атлантической сельдью – объектом лова. Теперь получены ценные данные о движении разноглубинного трала – орудия лова. Остается только пронаблюдать главное – сам процесс лова, тогда многое станет ясным и можно дальше совершенствовать траление.
Но пока стало ясным другое: наблюдение за ловом – задача для «Северянки» невыполнимая.
Главная причина, заранее предопределявшая неудачу, – явное стопроцентное безрыбье на пути трала, так как движущаяся в прозрачной воде рядом с тралом лодка все вокруг распугивает. А наблюдать «безрыбный трал» – полдела. Тем более что осмотреть в работе мельчайшие детали трала нам также не удалось. Подходить вплотную к нему было небезопасно – ничего не стоило зацепиться выступающими частями лодки, в первую очередь горизонтальными рулями глубины и гребными винтами. Столкновение с массивной распорной траловой доской тоже не сулило ничего хорошего.
О наблюдении за тралом, идущим по дну, вообще не приходилось говорить из-за опасности врезаться в неровности рельефа.
С сожалением приходится говорить о том, что нам не довелось поплавать подо льдом. «Северянка» проходила вплотную у кромки больших ледяных полей, лавировала в мелком битом льду. Но нырять под лед командир не решался, оберегая людей и корабль. Ведь по замыслу конструкторов «Северянка» на подледное плавание не рассчитана. Время не военное, задачи сугубо мирные – зачем рисковать? А пробыть при случае под ледяным куполом лодка все-таки смогла бы. Правда, недолго – из-за ограниченной энергоемкости ее аккумуляторной батареи. Научная группа все время искала этот случай, придумывала его, но верный морскому уставу командир оставался непреклонен…
А через несколько лет началась самая настоящая подледная одиссея. Хотя она не связана впрямую с сюжетом главы, о ней следует непременно рассказать, потому что именно подледные плавания могут быть ярким примером использования подводных лодок для получения научной информации из мест, недоступных для других источников. Например, только с подводных лодок можно произвести массовые измерения толщины льда, так как такие измерения с самолета не дают желаемой точности. При подледном плавании подводной лодки, кроме того, непрерывно или эпизодически могут фиксироваться температура, соленость, прозрачность, освещенность и другие физико-химические характеристики морской воды, а также непрерывный профиль морского дна.
Д. И. Менделеев в начале нашего века очень много внимания уделил проблемам исследования Арктики и планам организации высокоширотных экспедиций. Вдохновленный успешными плаваниями ледокола «Ермак», Менделеев предполагал также использовать подводную лодку. Он писал: «Между множеством дел России не следует забывать мирную победу надо льдами и, по моему мнению, можно с уверенностью достигнуть Северного полюса и проникнуть дней в десять от мурманских берегов в Берингов пролив. Я до того убежден в успехе попытки, что готов был бы приняться за дело, хотя мне уже 70 лет, и желал бы еще дожить до выполнения этой задачи, представляющей интерес, захватывающей сразу и науку, и технику, и промышленность, и торговлю». По замыслу Менделеева, подводная лодка для арктической экспедиции должна была иметь в длину 50 метров, в ширину – 10 и объем 2100 кубических метров. Для того времени это были колоссальные размеры (военные лодки тогда едва достигали в длину 20 метров и имели водоизмещение порядка 100–150 тонн). Понимая непригодность существовавших двигателей для длительного подледного плавания, Дмитрий Иванович предложил пневматический двигатель. Резервуары для его питания должны были содержать свыше 8 кубических метров воздуха под давлением 900 атмосфер. Общая длина внутренних воздухопроводов должна была составить около 26 километров. Царское правительство отказало Д. И. Менделееву в необходимых средствах.
Вначале уже рассказывалось о первых подледных и высокоширотных плаваниях русских и советских подводных лодок. Можно добавить, что перед Великой Отечественной войной профессор В. Ю. Визе разработал проект использования подводных лодок в зимнее время для перевозки грузов между Мурманском и дальневосточными портами. В 1955 году с аналогичным проектом выступил профессор Г. И. Покровский. В 1941–1945 годах советские подводные лодки, выполняя боевые задания, более сотни раз погружались под лед. Попытки проникнуть под лед американцы начали осуществлять по окончании второй мировой войны, опираясь в какой-то мере на опыт плаваний германских подводных лодок у кромки льда, а также в редких случаях и во льдах Гренландского и Баренцева морей. В 1946–1947 годах у кромки льдов в Южном Ледовитом океане плавала американская дизель-электрическая подлодка «Сеннет». Первое в американском флоте успешное погружение под лед совершила в Чукотском море 1 августа 1947 года подлодка «Бофиш». Она прошла подо льдом 3 мили. После этого участник похода В. Лайон создал эхоледомер – прибор, дающий возможность определять расстояние от лодки до нижней поверхности льда и толщу льда и фиксировать на самописце профиль нижней поверхности ледяных полей. Через год образцы этого оборудования были установлены на подводной лодке «Карп». Опытные плавания дизель-электрических лодок подо льдом совершали и английские подводники.
Эти подледные плавания позволили сделать вывод, что дизельные подводные лодки могут продвигаться подо льдом, выбирать открытые пространства и всплывать для зарядки аккумуляторных батарей. Однако практическая энергоемкость позволяет им обходиться без всплытий ограниченное время (не более 30 часов при скорости движения до 3 узлов).
С появлением атомного двигателя возможности подводных лодок по срокам нахождения под водой и по скоростям плавания резко улучшились. Спущенная на воду в январе 1955 года американская атомная подводная лодка «Наутилус» уже в 1957 году совершила 3 похода подо льдами Северной Атлантики и Северного Ледовитого океана. Во время плавания в августе 1958 года эта подлодка прошла под Северным полюсом и за 96 часов покрыла расстояние в 1830 миль.
К 1960 году атомными подлодками были отработаны задачи длительных подледных плаваний (около 40 суток), всплытий из-подо льда в любое время года, подледных плаваний на мелководье и т. п. После четырех подледных плаваний на атомных лодках В. Лайон писал: «К настоящему времени мы можем оперировать в арктической среде в любых условиях: в мелких водах, среди айсбергов, вокруг островов по каналам, в условиях полной ночи и в течение 24 часов дневного света летом».
Наблюдения, выполненные во время подледных плаваний подводных лодок, представляют значительный научный интерес. Так, по данным В. Лайона, летом ледяной покров представляет собой скопление дрейфующих обломков тающих льдин всевозможной величины, формы и толщины, больших плоских ледяных образований (полей) толщиной 1,6–3,6 метра и льдин со старыми грядами торосов толщиной 9 метров и более, возникших в результате разлома и нагромождения плоских полей. В это время наблюдаются отдельные участки чистой воды (около 5 процентов) различной формы. Некоторые из них могут быть пригодны для всплытия лодок.
Зимой старый лед скрепляется с новым в сплошной ледяной покров. В нем под влиянием ветра возникают зоны сжатия и разрежения, показателем которых являются свежие торосы и разводья, покрытые молодым льдом. Отмечалось, что при температуре воздуха около минус 40 градусов толщина ледяного покрова в разводьях за несколько часов достигала 2,5 сантиметра, за неделю – 30, а за месяц – 90 сантиметров. Участки льда с толщиной менее 90 сантиметров при наблюдении в перископ напоминают толстые зеленые просвечивающие линзы. Эти участки подводники называют ледяными просветами.
Считается, что при плавании подо льдом глубина погружения лодки должна быть не менее 50 метров, так как ледовые образования порой достигают такой глубины. В мелководных районах морей и проливах, даже при наличии айсбергов, подледное плавание возможно, если глубины позволяют пройти ниже максимальной осадки ледяного покрова.
По данным американских исследователей В. И. Уитмена и Д. Д. Шуле, проводивших первичный анализ обширного материала наблюдений с подводных лодок и самолетов, средняя площадь в Арктическом бассейне, занятая торосами, составляет 13 процентов летом и 18 – зимой, причем отдельные зоны протяженностью в несколько сотен миль более чем на 50 процентов представляли торосистые льды. Осадка тяжелого всторошенного льда часто достигает 18–25 метров летом и более 20–30 метров зимой.
Данные наблюдений с подводных лодок в зимнее и летнее время на маршрутах протяженностью около 40 тысяч миль показали, что вероятная максимальная осадка торосистой льдины составляет 46 метров. Во время всплытий подводных лодок более чем 100 раз отмечалась высота торосов около 6 метров. Около 2 процентов ледового покрова летом и примерно 8 процентов зимой имеют осадку более 30 метров. Средняя толщина составляет около 3 метров.
По данным, полученным с подводных лодок «Сарго» и «Си Дрэгон», с января по март ледовый покров занимает 98 процентов всей площади Арктического бассейна, но в то же время встречаются значительные участки с небольшой сплоченностью льда. В летнее время чистая вода составляет 15 процентов площади бассейна.
Автоматическая регистрация рельефа дна на эхограмме производилась во время всех подледных плаваний атомных подводных лодок как на отдельных участках, так и на всем маршруте. Эффективность таких измерений подчеркивается сравнением данных о том, что с 1937 по 1959 год советскими дрейфующими станциями было выполнено 20 000 измерений глубины, и сведений, что только подводная лодка «Наутилус» в 1958 году произвела 11 000 измерений эхолотом.
С появлением атомной подлодки удалось совершить невозможное: проникнуть под ледяной купол Центральной Арктики и записать на ленту эхолота рельеф дна по маршруту следования. Обозначения: по вертикали – глубина в метрах, по горизонтали – расстояние, представленное в градусах северной широты (один градус широты на навигационной карте меркаторской проекции равен шестидесяти милям)
Атомные подлодки внесли новый вклад и в гидробиологию.
Сбор планктона подо льдом – чрезвычайно трудоемкая операция. Чаще всего для этого приходится бурить лед – ведь свободные ото льда разводья для этого менее показательны. Впрочем, из пробуренной лунки пробу тоже можно взять только по вертикали. Следовательно, о том, как распределяется планктон по горизонтали, мы можем получить только косвенное представление. Перед тем как качали систематически работать советские и американские дрейфующие станции, значительные коллекции были получены с судов, таких, как «Фрам» и «Седов», – которые дрейфовали в паковом льду. Советские исследователи высаживались также на Северном полюсе с самолета и организовывали станции на льду, где, в частности, производился и сбор планктона.
Измерения, произведенные американскими атомными подводными лодками, показали, что под арктическими льдами скуден мир живых существ. Эхолот не зафиксировал никаких звукорассеивающих слоев, обычно наблюдающихся в других океанах.
На подлодке «Скейт» пробы планктона собирались путем фильтрации морской воды через шелковый фильтр, который вместе с воронкой укреплялся на всасывающем трубопроводе в машинном отсеке.
За каких-нибудь двадцать лет скрытые льдом студеные глубины Северного Ледовитого океана исхожены подводными атомоходами вдоль и поперек
Наибольшие скопления планктона были обнаружены на дне озер, образующихся на поверхности льда, а также на подводной кромке льда в полыньях. Иногда в большом количестве попадались омертвевшие споры водорослей внутри льда и на его поверхности. Это, по-видимому, можно считать результатом замерзания полыней и таяния поверхностного льда – процессов, которые постепенно поднимают водоросли на поверхность.
Серии коллекций планктона, полученные быстроходной атомной подводной лодкой «Си Дрэгон» в I960 году являются первыми квазисиноптическими, то есть как бы сводными, или обзорными, горизонтальными сборами планктона под арктическими льдами. Фильтрование производилось с помощью 24 сетей. Временной механизм подключал вращающуюся раму с сетью на 10 минут, полчаса или на 12 часов.
Измеритель потока в схеме отсутствовал, поэтому количество профильтрованной воды не измерялось. Пробы фиксировали пятидесятипроцентным раствором формалина.
Все эти научные работы проведены военными атомными подводными судами «по совместительству». Между тем можно со всей определенностью утверждать что применение для подледных изысканий специально построенных подводных лодок имеет большое будущее уже хотя бы потому, что огромная часть мирового океана покрыта льдом.
Ну, а в настоящем исследователи «мира безмолвия» успешно развертывают свою научную деятельность в теплых морях, где условия позволяют использовать комплекс «подводная лодка – плавбаза».
В одной такой южной экспедиции довелось участвовать и мне. Тут и цели были другие, чем у «Северянки», да и сама лодка была гораздо меньше. Это было в 1973–1974 годах, на Черном море, где сотрудники Академии наук СССР во главе с профессором В. П. Зенкевичем проводили изучение режима подводных каньонов. Одна из групп состояла всего из трех человек – самого Зенковича, кандидата технических наук В. Л. Меншикова и автора этих строк. В нашем распоряжении была сверхмалая подводная лодка «Южанка».
Медленно пройдя зигзагами сквозь заслон небольших, но назойливых акул катранов по подножию Пицундского откоса, мы миновали песчаное плато и на глубине 80 метров включили забортное освещение. Первая встреча с каньоном, к которой готовились заранее, все-таки произошла неожиданно. На дне возникла резкая граница светлого и черного. Сначала мы ее прошли, но тут же повернули обратно, чтобы посмотреть, что это. Под нами от глубины 250 метров прямо вниз шел обрыв с неровными верхними краями. Пошли дальше, прижимаясь ко дну. Оно шло ступенями и местами так быстро уходило из-под киля, что приходилось погружаться вертикально. По курсу вырастали отвесные стены, и мы, не доходя до них 1–2 метров, задерживались на месте для их обследования, а затем медленно подвсплывали. Стены – светлые, слоистые. Местами слои образуют карнизы. Эти слоистые поверхности не носят следов механического воздействия и, вероятно, не подвергались эрозии. По-видимому, и обрывы и стены – давние, тектонические трещины, возникшие прямо на морском дне.
«Южанка» плавно парит. Видимость, вопреки ожиданиям и несмотря на множество крупных взвешенных частиц, оказалась отличной. Прожекторы высвечивали пространство на расстоянии не менее 10 метров. Иногда, включая вертикальные – для подъема и спуска – или лаговые – для движения бортом – движители, мы поднимали под собой облако мути и тут же спешили выйти из него.
Переход в глубинную сероводородную зону ощутили по косвенным факторам. Индикатором явились лежащие на дне мертвые рыбы. В основном это была мелкая ставрида, разбросанная на значительной площади.
В нашем распоряжении был магнитофон, позволивший вести непрерывную подробную запись всего, что мы видели. Кое-что интересное удалось запечатлеть на кино– и фотопленке. Хотели идти еще глубже, но примерно на глубине 310 метров потеряли микрофонную связь с обеспечивающим судном и тут же начали всплытие.
Изучение режима подводных каньонов именно у берегов Грузии имеет большое теоретическое и народнохозяйственное значение. К берегу в ряде мест подходят вершины своеобразных подводных оврагов. Галечник и песок пляжей во время штормов попадают в эти подводные «ловушки» и, как было установлено несколько лет назад, по их крутым откосам сползают на глубины, исчисляемые сотнями метров. За год такие потери только в Грузии превышают, по расчетам, девять миллионов тонн материала.
Это одна из причин, почему здесь исчезают пляжи и происходят местами катастрофические разрушения берегов.
Один из каньонов, прозванный за свою прожорливость Акулой, подходит чрезвычайно близко к берегу. Наша группа предполагала, что по нему и скатывается на большие глубины львиная доля наносов. Хотя подавляющее большинство других исследователей утверждало, что ловушками для наносов являются все одиннадцать примыкающих к Пицунде каньонов.
Погружение «Южанки» в Акулу началось в понедельник 13 августа. Она дошла до глубины 415 метров. Когда лодка всплыла и ее краном извлекли из воды и поставили на кильблоки на палубе обеспечивающего судна, в ее контейнере-накопителе нашли «вещественное доказательство» – крупную гальку. Такой галькой устлано дно каньона на всем его протяжении. В других каньонах береговая галька не обнаружена, а если и попадалась, то редко и на больших глубинах. А главное, она была не берегового происхождения, а местного, то есть следствием разрушения древних обнажений – конгломератов.
В результате семи погружений «Южанки», наблюдений, кино– и фотосъемки, взятия проб манипулятором была, во-первых, впервые открыта и обследована целая подводная провинция и, во-вторых, выявлена дифференцированная роль каньонов в разрушении берега Пицундского полуострова. Свои выводы мы представили инженерам, которые должны разрабатывать меры для обуздания Акулы.
В погружениях «Южанки», кроме упоминавшихся, участвовали также Д. М. Дубман, Г. А. Орлова, Ю. В. Андреев, Ю. А. Будзинский, В. М. Пешков и представитель Грузинской академии наук А. Г. Кикнадзе. Работы подобного типа проведены в нашей стране впервые.