355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Ажажа » Подводная одиссея. "Северянка" штурмует океан » Текст книги (страница 14)
Подводная одиссея. "Северянка" штурмует океан
  • Текст добавлен: 4 октября 2016, 22:28

Текст книги "Подводная одиссея. "Северянка" штурмует океан"


Автор книги: Владимир Ажажа



сообщить о нарушении

Текущая страница: 14 (всего у книги 18 страниц)

Результаты измерений видимости объектов в воде позволили выбрать оптимальные условия для изучения работы разноглубинного трала в этом рейсе и произвести его киносъемку для последующего анализа. Для изучения видимости окрашенных сетей их цветные образцы подвешивались в рамах на откидной стреле перед одним из бортовых иллюминаторов. Всего использовалось 20 образцов хлопчатобумажных сетей и 16 капроновых. В условиях сумеречной освещенности на глубинах 7 и 25 м. наименьшей «заметностью» обладали желтая хлопчатобумажная сеть и желто–зеленая капроновая.

Седьмая экспедиция (июнь 1963 г., Баренцево море) была посвящена наблюдению за мойвой, а также гидрооптическим наблюдениям, связанным с заметностью орудий лова под водой.

В этом плавании «Северянка» попала в чрезвычайно плотное скопление мойвы, благодаря чему появилась возможность изучать ее поведение в естественной среде, в том числе и во время нападения хищников (трески). В конце была успешно проверена возможность совмещения наблюдений через иллюминаторы с опусканием аквалангиста. В студеную воду погружался В. А. Матусевич.

Восьмая экспедиция (декабрь 1964 г., Баренцево море). Подводная лодка зондировала район от полуострова Рыбачий до 71° с. ш. В программу работ входило изучение распределения сельди в толще воды, концентрации трески и пикши на грунте. В носовой части НИПЛ и возле рубки были установлены наружные кинокамеры, запечатлевшие рабочие фазы погружения, посадку на грунт, всплытие.

Девятая экспедиция (сентябрь 1965 г., Баренцево море). Совершив переход по маршруту Кольский залив – мыс Нордкап – о–в Медвежий – о–в Надежды – о–в Шпицберген, «Северянка» изучала распределение мойвы в это время года преимущественно гидроакустической аппаратурой в подводном положении. Еще раз подтвердились сезонные различия в поведении рыбы. На НИПЛ было установлено раскрывающееся во время хода устройство для залавливания встречающейся на пути рыбы.

Десятая экспедиция (июнь 1966 г., Баренцево и Белое моря). Изучались гидрологические условия у побережья Мурмана и в Белом море, исследовались планктон и донные организмы в юго–западной части Белого моря.

ПИОНЕРЫ ПОДВОДНОГО МОРЕПЛАВАНИЯ

В науке больше, чем в каком‑либо другом институте человечества, необходимо изучать прошлое для понимания настоящего и господства над природой в будущем.

Дж. Бернал

Свидетельство первое.По–видимому, подводные суда начали плавать задолго до того, как голландский механик Корнелий Ван–Дреббель построил первую подводную лодку, а это случилось, как утверждают историки, в 1620 году.

Французский историк Монжери в 1827 году писал: «По крайней мере, нет сомнения, что такого рода суда (подводные. – В. А.) были употребляемы в Европе в XIII веке. Украинцы часто избегали преследования турецких галер с помощью больших подводных лодок». Монжери при этом ссылается на записи французского философа Фурнье, побывавшего в конце XVI века в Константинополе. Фурнье свидетельствует: «Здесь мне рассказывали совершенно необыкновенные истории о нападении северных славян на турецкие города и крепости – они являлись неожиданно, они поднимались прямо со дна моря и повергали в ужас береговых жителей и воинов. Мне и раньше рассказывали, будто славянские воины переплывают море под водой, но я почитал рассказы выдумкой. А теперь я лично говорил с теми людьми, которые были свидетелями подводных набегов славян на турецкие берега».

Комментируя это высказывание, Монжери заявляет: «Запорожские казаки пользовались гребными судами, способными погружаться под воду, покрывать в погруженном состоянии большие расстояния, а затем уходить в обратный путь под парусами». И дает предположительное описание такого судна. Это – челн, обшитый кожей, корпус которого был накрыт герметичной палубой. Над нею возвышалась шахта (прототип боевой рубки), где находился наблюдатель–рулевой. Через шахту поступал воздух при плавании в надводном и полупогруженном положениях. В погруженном состоянии движение осуществлялось при помощи весел, герметизированных в местах прохода через корпус кожаными манжетами».

Но обратимся к веку прошлому, поскольку, хотим мы этого или не хотим, под кальку XX века расчерчивается и история века XXI, и история современная.

Свидетельство второе.В 1913 году лейтенант русского флота В. А. Меркушев написал статью «Опыт плавания подводной лодки подо льдом». В ней говорится о том, что в декабре 1908 года по приказу начальника морских сил Тихого океана были проведены опыты по зимнему плаванию на подводной лодке «Кефаль».

«В 11 часов 48 минут утра (19 декабря 1908 г. – В. А.) началось первое и единственное во всем мире плавание подводной лодки под сплошным ледяным полем, хотя небольшой в среднем толщины, но зато раскинувшимся по всему видимому горизонту. Шел шесть минут подо льдом, имея перископ на три фута выше поверхности и разрезая им дюймовый лед. В 11 часов 54 минуты застопорил машину… В полдень снова дал ход и ушел под лед. В 12 часов 05 минут глубина 17 1 / 2 фут. Перископ и лодка подо льдом и его режет один только флагшток. В 12 часов 54 минуты дал ход и погрузился до 20 фут. Перископ на 4 фута подо льдом… Флагшток давно согнулся, и лодка, идя подо льдом, ничем не выдает своего присутствия, нервируя этим людей, находящихся на конвоире. В 1 час. 20 минут всплыл в миле от маяка Скрыплев. Курс, взятый по перископу и замеченный по компасу, оказался точным… При всплывании пробил ледяное поле, подняв лед на себя…»

«Кефаль» вернулась обратно, идя по поверхности. Подо льдом она пробыла 1 час 32 минуты, считая подъемы до боевого положения, причем ею было пройдено 4 мили.

Однако опыт «Кефали» не был учтен в царском флоте, а факт первого подледного плавания 19 декабря 1908 года даже не вводился в исследования по истории подводного флота, хотя он утверждает приоритет русских подводников в плавании подо льдами и применении способа всплытия во льдах путем его взламывания корпусом подводной лодки.

Свидетельство третье.Даже спустя полвека американские подводники не решались на всплытие сквозь тонкий лед. Командир атомной подлодки «Скейт» Д. Калверт пишет, как ему помог в 1959 году совет известного полярного исследователя, автора переведенной в СССР книги «Гостеприимная Арктика» В. Стефансона. «Интересно было наблюдать, как лед, толщиной 15—20 см, сначала вспучивался над спинами китов, а потом ломался. Вслед за треском ломающегося льда слышалось шумное дыхание кита, и из воды поднимались фонтаны брызг», – прочитал Стефансон Калверту выдержку из своей книги и заметил: «Если киты могут разрушить лед, почему же не сможет сделать этого «Скейт» ?»

За девятнадцать лет до этого помощник командира советской подводной лодки «Щ– 324» старший лейтенант Г. И. Тархнишвили сделал обстоятельный анализ особенностей подледного плавания, пробивания льдов корпусом лодки, разработал рекомендации, представляющие интерес и сегодня. Этот опыт был получен при форсировании советской подводной лодкой пролива Седра–Кваркен в Балтийском море 19 января 1940 года. Глубина пролива в большинстве не превышала 20 метров, фарватер извилист. «Щ-324» ушла под ледяной покров и только через тринадцать часов всплыла, «ломая лед толщиной 10, а местами 25 сантиметров» (из донесения командира лодки капитана 3–го ранга А. М. Коняева).

Интересны записи в вахтенном журнале «Щ-324», сделанные в этот день.

«09.10. Заполнена цистерна быстрого погружения…

11.49. Коснулись грунта…

17.26. Слышен шум о лед…

22.00. Всплыли под перископ. Стукнулись надстройкой о лед».

В донесении командира сказано: «Всплыл. С трудом открываю рубочный люк, мостик забит кусками льда».

И вывод Г. И. Тархнишвили: «…получив положительную плавучесть в объеме средней цистерны, лодка типа Щ без труда пробивает снизу лед толщиной 10—12 см, причем никаких опасных кренов не возникает. Соображения о потере остойчивости [12] 12
  Остойчивость корабля – способность плавать в прямом положении, сохраняя равновесие, или возвращаться в начальное положение после прекращения действия сил, вызвавших крен или дивверент.


[Закрыть]
под тяжестью льда такой толщины, по–моему, мало основательны».

Свидетельство четвертое.«Большая советская энциклопедия» (т. 38, с. 213), рассказывая о выдающемся норвежском исследователе Харольде Свердрупе, пишет: «В 1931 году руководил полярной подводной экспедицией на судне «Наутилус»».

Имея в виду этот факт, известный полярник А. Ф. Лактионов в книге «Северный полюс» утверждает: «Опыты плавания на подводных лодках подо льдами Северного Ледовитого океана были возобновлены лишь после Второй мировой войны».

Досадно, что в недавно изданной Российской академией наук (Институт океанографии им. П. П. Ширшова) актуальной, по сути, монографии чтимого мной Н. А. Айбулатова «Вижу дно!» (К истории подводных исследований в России) «Наука», 2006, этот факт приобретает фантазийную окраску. Дословно (стр. 79): «Известно, что океанографические исследования из подводных лодок проводились еще в 30–х гг. XX в. В 1930 г. на п/л «Наутилус» была проведена (! – В. А.) экспедиция на Северный полюс (США, Губерт, Хилкинс)…» Несмотря на то что книга написана по гранту 05—05—65159 РФФИ и предназначена для «океанологов и всех интересующихся развитием отечественной науки», в ней опущены или искажены многие факты и даты.

Иными словами, с «Наутилуса» предполагается вести отсчет подледного плавания в полярных водах. Однако вряд ли это справедливо. «Наутилусу», наскоро переделанному из военной подлодки США, ржавевшей на филадельфийском кладбище кораблей, не только ни разу не удалось нырнуть подо льды, но и вообще погрузиться даже на чистой воде. Дело в том, что «Наутилус» перестал быть подводной лодкой еще до подхода к кромке льдов, потеряв горизонтальные рули (рули глубины). «Есть единственный способ заставить эту лодку погрузиться под воду. Надо набить ее динамитом и взорвать», – заявил организатор экспедиции Д. Уилкинс.

Конечно, было бы неправильным недооценивать заслуги энтузиастов, участвовавших в этой экспедиции. Их усилия, с одной стороны, обогатили науку опытом, который был учтен многими исследователями, во–вторых, выполнив некоторые измерения. Свердруп получил интересные результаты. Материалы экспедиции вошли в монографию «Океаны», изданную в 1942 году.

X. Свердруп оказался хорошим оракулом, когда в 1934 году писал: «И разве не может случиться, что следующая подводная лодка, которая сделает попытку нырнуть под полярные льды, будет принадлежать СССР?»

Действительно, в феврале 1938 года советская подлодка «Д-3» («Красногвардеец») под командованием В. Н. Котельникова, идя вместе с другими кораблями к дрейфующей станции «Северный полюс-1», чтобы снять с льдины отважную четверку папанинцев, в центральной части Датского пролива произвела успешное пробное погружение под ледяную перемычку шириной примерно в пять кабельтовых и прошла подо льдом 30 минут на глубине 50 метров.

Очевидно, именно это событие и следует считать по–настоящему первым арктическим подледным плаванием.

Свидетельство пятое.В декабре 1958 года начал систематические экспедиционные плавания советский исследовательский подводный корабль «Северянка», имея на борту комплексную научную группу (6 человек) и 50 членов экипажа, обеспечивающего непрерывную 3–сменную работу.

Военные подводные лодки разных стран и раньше использовались для перевозки ученых и аппаратуры к избранным районам исследований. Например, в том же 1958 году пресса США сенсационно сообщила, что четыре подлодки американского флота привлекались для гравиметрических измерений на Тихом океане. Но это не изменило их военного статуса.

Переоборудование подводной лодки в специальную комплексную научную лабораторию мирного назначения и предоставление ее для работы гражданским органам впервые было осуществлено в нашей стране. Член–корреспондент АН СССР И. С. Исаков по этому поводу писал, что «существует область применения подводных лодок (для мирных целей. – В. А.), в которой Советский Союз имеет бесспорный приоритет» (Исаков И. С., Еремеев Л.M., 1969). Об этом же сообщается и в военно–исторической монографии «Неизвестный флот» (Костев Г. Г., Костев И. Г., 2004).

Совершенно определенно высказался в 1959 году и французский журнал «Съянс э Авенир»: «Океанографическая подводная лодка?.. Но она уже существует! Это советская «Северянка», которая провела свои первые опыты в декабре 1958 года. Большая заслуга Советского Союза в том, что он первый (да, первый!) вышел за пределы обычных океанографических исследований на поверхности воды. «Северянка» удивила океанографию, начав изучение моря в самом море, а не только на море. Она предприняла наблюдение рыбных косяков, спустившись к самим рыбам…»

Как видно, у французы не оспаривают пальму первенства в использовании подводного экспедиционного судна, несмотря на то что они еще с 1953 году начали применять оригинальную двухместную подводную лодку, рассчитанную на глубину 4600 м – батискаф ФНРС– 3. Дело в том, что так называемый батискаф никак нельзя назвать экспедиционным судном. Более того, подводные лодки такого типа сами нуждаются в экспедиционном судне – носителе или буксировщике для доставки к месту погружения, они не маневренны, обладают ничтожной дальностью плавания и малыми возможностями для получения объемной научной информации.

В мае 1968 года в Сиэтле на организованной ФАО конференции по исследовательским судам деятельность советской научно–исследовательской подводной лодки «Северянка» была оценена как «лучшие из известных исследований, выполненных подводной лодкой». Ранее подобная оценка звучала в американской (Страсбург, 1960) и английской (Янг, 1965) научной периодике. Это суждение следует признать справедливым, потому что по объему выполненных работ «Северянка», как подводное экспедиционное судно, не имеет себе равных.

Разговор о «Северянке» был бы неполным без учета и еще одного обстоятельства. Поскольку ее научным хозяином был Всесоюзный научно–исследовательский институт морского рыбного хозяйства и океанографии (ВНИРО), вся исследовательская работа, выполненная с помощью этой подлодки, в ряде зарубежных источников обычно классифицируется как «биологические», а иногда, что более точно, как «рыбохозяйственные» исследования. Однако, как уже указывалось, ценность «Северянки» в том, что ее аппаратурное оснащение позволяло проводить комплексные исследования, соответствующие главным направлениям океанологии. В частности, были проведены работы не только по биологии, но и по физике океана (гидроакустика, гидрооптика, измерение течений, волнения, физических показателей водной среды и др.), геологии океана (визуальное изучение дна и фотографирование, взятие проб грунта и др.), химии океана (анализ проб воды, измерение радиоактивности и др.) и, наконец, по технике исследования океана. Поэтому правомернее относить весь цикл работ, выполненных в 1958—1966 годах во время экспедиционных рейсов «Северянки», к океанологическим (океанографическим) исследованиям.

Появление «Северянки» послужило стимулом для массовою строительства и использования научно–исследовательских подводных судов во многих странах.

Именно «Северянка» стала началом цепной реакции, породившей ежегодные появления все новых и новых гражданских подводных лодок. Интересна таблица из американского журнала «Мэканикл инжиниринг» («Mechanical engineering», 1968, vol. 90, № 6), демонстрирующая динамику роста (с 1958 по 1967 г.) подводного исследовательского флота в различных странах (табл. 1)

Указаны уже спущенные на воду суда [13] 13
  Таблица далеко не полная. Известно, что многие американские фирмы скрывают не только данные о технических характеристиках построенных гражданских подлодок, но даже сам факт их строительства и последующей эксплуатации. В 1955 г. в Лонг Бич (Калифорния) была спущена на воду исследовательская подлодка «Сетасе» («Cetacea») с глубиной погружения 780—1000 м. Кроме того что она производит погружения у юго–восточного побережья США, о ней ничего не известно. – В. А.


[Закрыть]
однако «Северянка», о которой в свое время достаточно упоминалось в печати, в этой и других подобных зарубежных таблицах, отсутствует. А как же у нас? Данные сведены в таблицу 2 (Айбулатов, 2006).

Кстати, «забывчивость», характерная для заграничной широкой, а иногда, к сожалению, и для научной печати, распространяется не только на оценку русского или советского участия в развитии подводных методов исследований. Всем известно имя Жака Пикара, который вместе со своим отцом Огюстом Пикаром, блестящим физиком, неустрашимым аэронавтом и гидронавтом, строил «глубинные дирижабли» «ФНРС-2» и «Триест». Приняв эстафету oтцa, Жак Пикар возглавил коллективы, создавшие гражданские подводные лодки «РХ-8» («Огюст Пикар») и «РХ-15» («Бен Франклин»). Кроме того, Пикар–сын был бессменным пилотом «Триеста» в десятках погружений, в том числе и 23 января 1960 г., когда он опустил подводный корабль на глубину 10919 м. в котловине Челленджер Марианской впадины в сопровождении лейтенанта американского военного флота Дона Уолша.

Однако американская пресса, как правило, указывает, что в Марианскую впадину погружались Уолш и Пикар (вместо Пикар и Уолш) или же упоминают одного Уолша, создавая ложное впечатление, что заслуга в этом принадлежит главным образом гражданину США.

Представляется, что спуск исследователей на максимальную глубину Мирового океана по своему научно–техническому значению может быть сравним только с первым космическим полетом человека.

К другим достижениям, имеющим важное значение и для развития морских исследований, следует отнести, конечно, трансокеанские плавания боевых атомных подводных лодок. Принципиальная возможность их использования для плавания подо льдом открывает широкие перспективы в изучении полярных районов; ведь льдом закрыто около 10 процентов поверхности океанов. Атомные лодки провели, начиная с 1957 года, ряд попутных океанологических наблюдений, всплывали в географической точке Северного полюса.


В 1960 году американская атомная подводная лодка «Тритон» (командир Э. Бич) за 61 день обошла под водой по маршруту Магеллана вокруг Земли.

Свидетельство шестое.В 1966 году под командованием контр–адмирала А. И. Сорокина отряд советских атомных подводных лодок за 45 суток совершил в буквальном смысле исторический виток вокруг земного шара – первое групповое кругосветное путешествие под водой. Попутно с отработкой задач по плану боевой подготовки, что являлось главным, проводились и океанографические исследования. Это было тем более важно, что отряд проходил различные климатические пояса – и экватору и полярные области.

В 1969 году вступила в эксплуатацию первая в мире атомная научно–исследовательская подводная лодка военно–морских сил США, называющаяся «НР–I». «НР» – это русская транскрипция двух букв английского алфавита, которыми начинаются слова «атомная исследовательская».

В том же году состоялся тридцатидневный подводный дрейф американской научно–исследовательской подводной лодки «Вен Франклин» в Гольфстриме. Экспедицию возглавлял Ж. Пикар.

Свидетельство седьмое.В 1970 году советская гидрографическая дизель–электрическая подводная лодка «Вега» под командованием Б. И. Парногосовершила экспедиционный рейс, длившийся 249 дней. Научный коллектив во главе с В. И. Егоровым, выполняя многочисленные батиметрические измерения, собрал обширный материал по гидрографии и гидрометеорологии Тихого и Индийского океанов.

Возможно, особенно с точки зрения историографа, приведенные выше факты изложены без необходимого протокольно–документального оформления, нужного количества ссылок и т. п., но эту сторону вопроса всегда можно дополнить, поскольку описываемые события, за исключением разве трудно доказуемых фактов из «Свидетельства первого», действительно имели место. С помощью исторических справок автор преследовал другую цель – подчеркнуть значительную, а во многом и ведущую роль нашей страны в развитии подводного плавания вообще, арктических и подледных плаваний – в частности и особенно (поскольку это является нашей темой) в развитии нового метода изучения океана и его ресурсов – с помощью исследовательских подводных судов.

ГЛУБИННЫЙ МИКРОСКОП

Но как сломать печать на книге, в которой вместо листов ходячие волны и которая имеет несколько тысяч футов толщины?

М. Ф. Мори

После знакомства с плаваниями «Северянки» логичен вопрос как и когда можно использовать подводные суда в морских исследованиях? Какие новые открытия позволят они совершить?

Хочется заранее предостеречь всех поклонников исследовательских подлодок от преувеличения их роли. Сегодня эти лодки пока лишь дополняют грандиозную работу, выполняемую на морях и океанах надводными средствами. А что будет завтра? Задача состоит в том, чтобы определить четкие перспективы их развития и использования.

Итак, на что же способны исследовательские подводные лодки? По–видимому, на многое. Чтобы не потеряться в этом многом, попробуем опереться на прочитанный материал и рассмотрим пять основополагающих преимуществ подлодки как исследовательского судна.

Преимущество первое. Подводное судно позволяет безопасно доставить аппаратуру и исследователей на глубину вплотную к объекту наблюдений или приблизить к нему.

То есть подводная лодка – это не что иное} как подвижный глубоководный герметичный носитель. В пределах своих технических возможностей он может быть спилотирован на дно или в толику воды: под ледовый покров, в глубинный рассеивающий слой, в места со сложным рельефом дна. Ему подвластны места, не доступные водолазу или батисфере.

Исследователь получает идеальную возможность наблюдать сам, тут же делать измерения приборами. Многое, что было получено другими способами, теперь можно проверить лично. Благодаря этому традиционный метод исследования «наугад», то есть с помощью опускаемых на тросе приборов, получает громадное подспорье.

Присутствие под водой исследователя придает наблюдениям новое качество: высокую достоверность и быстрое получение результатов. Многие сомнения или догадки разрешаются на месте. Более того, человек тут же может принять решение повернуть подводную лодку, направить ее в другое место. Поэтому все измерения или сбор образцов можно делать селективными, то есть выборочными. Исследователь–подводник способен точно размещать и ориентировать под водой научную аппаратуру и контролировать ее работу. Например, если нужно взять пробу воды у самого дна, входное отверстие пробоотборника с помощью манипулятора можно нацелить так, что оно не коснется ила и не вызовет мути. Такую же операцию можно провести и с надводного корабля, а лодка снизу будет ее по акустическому телефону направлять и корректировать.

Морские геологи из американского института Скриппса, находясь на борту подлодки «Дениза», обнаружили у берегов Калифорнии неизвестное подводное течение. Под их наблюдением с подводного судна опустили измеритель скорости течения. Через иллюминатор исследователи имели возможность контролировать эту операцию. Они проследили, чтобы прибор не попал за какой‑нибудь большой камень или в углубление, где показания оказались бы неверными. Так была точно измерена скорость, составившая около четверти узла.

Важно, что в руках исследователя не только носитель, способный перемещаться в трех измерениях. Лодка способна двигаться быстрее, медленнее, останавливаться (зависать на месте, на подводном якоре, на гайдропе, ложиться на грунт), дрейфовать в водной массе. Она позволяет возвращаться в прежнюю точку, отмеченную гидроакустическим или другим указателем, чтобы осмотреть тщательнее и определить, что и насколько изменилось.

И вот здесь, пожалуй, уместно привести слова заведующего кафедрой океанологии МГУ профессора А. Д. Добровольского по поводу практики океанологических наблюдений: «К сожалению, очень редко работы ведутся в соответствии с принципами прослеживания неожиданно обнаруженного явления; преобладает стремление выполнить заранее намеченный план – это свойственно не только американским исследованиям, но и нашим».

И действительно, планируя подводные наблюдения на «Северянке», мы обнаружили, что не в состоянии предсказывать что‑либо наверняка Поэтому каждый рейс «Северянки», выполнявшийся по программе, был в то же время и научной разведкой.

В самом деле, как поступать, если что‑то встретится вне программы? В условиях, предоставляемых подводной лодкой, исследователь может изменять содержание наблюдений, комбинацию и режим работы приборов. Вся система может быть тут же «запрограммирована» на изучение нового объекта. При этом для получения результатов возможны любые импровизации, неосуществимые при слепом погружении аппаратуры с надводного судна. Словом, подводная лодка позволяет перейти от пассивного сбора научной информации к постановке управляемою эксперимента

И еще один важный момент. Некоторые подводные приборы нуждаются в частой корректировке, другие – в периодической калибровке, настройке и даже в ремонте. Только человек, находящийся рядом, может среагировать на непредвиденные или необычные отклонения в показаниях приборов и принять решение на месте.

Таким образом, человек (исследователь) и машина (подлодка) выступают как единая система, позволяющая извлечь максимум информации из приборов и умения, способностей и знаний человека.

Важно еще, что результаты ценны и своим комплексным характером – ведь наблюдение за любым объектом может сопровождаться измерением разнообразных характеристик окружающей среды.

Преимущество второе. Подводное судно доставляет измерительную аппаратуру прямо к объекту, а это повышает точность измерений и уменьшает их трудоемкость.

В самом деле, ошибки в показаниях многих опускаемых с надводного судна приборов и устройств растут с глубиной.

С возрастанием измеряемой глубины падает точность эхолотов. Ошибка эхолотов увеличивается, кроме того, и в случае изрезанного или наклонного дна На ее величину также влияет и изменение плотности морской воды. Так, для глубины 1000 метров ошибка может составить 40 метров, то есть 4 процента измеряемой величины. Профиль дна на эхограмме обозначается неверно: глубины неточны, уменьшены углы наклона дна, сглажены неровности.

Правда, многие исследователи смирились с «пороками» эхолота, считая, что они перекрываются такими его качествами, как автоматическое действие и наглядность изображения результатов. А если поставить эхолот на подводной лодке? Погружаясь, она сокращает глубину, приближает приемо–излучающую систему эхолота к объекту, искажения в показаниях уменьшаются.

Приближать эхолот нужно еще и потому, что с возрастанием измеряемой глубины ослабляется эхо–сигнал. Он может ослабнуть настолько, что его нельзя будет уловить. В океане существует целая группа факторов, ослабляющих звуковую энергию. Она теряется при переходе сигнала через слой скачка плотности; ослабляющее влияние оказывают также и волнение моря, и насыщенность верхнего слоя воды пузырьками воздуха, примерно до глубины 50 метров, и, наконец, планктон, концентрирующийся главным образом тоже в верхних слоях воды до 300 метров.

Подводные лодки, движимые электроэнергией, имеют в отличие от надводных судов сравнительно небольшой уровень собственных шумов. Чем не идеальные условия для изучения в океане звуков различного происхождения?

И еще одно: установка приборов на наружной части подлодки освобождает от необходимости думать о надежности лебедок, тросов, кабелей, не потеряется ли проба при подъеме, не изменится ли ее качество, то есть о том, что обычно волнует на надводных судах.

А ведь и с подводной лодки можно опускать приборы на тросе еще глубже, за пределы ее погружения.

Свердруп описывал устройство шлюзового колодца «Наутилуса», предназначенного для этого. Опускать приборы с подлодки можно независимо от погоды.

Преимущество третье. Движущееся подводное судно позволяет делать непрерывные комплексные измерения в трехмерном пространстве. Как это понять?

Обычно надводное научно–исследовательское судно позволяет выполнить две гидрологические станции в сутки. Так называется остановка в океане для выполнения измерений. При этом невозможно опустить за борт сразу все многочисленные приборы – не хватит места на палубе, да и лебедок маловато. Кроме того, метод станций не позволяет составить точную картину об окружающем пространстве, то есть обладает пониженной информативностью. Другое дело подводная лодка. Ее можно направить любым курсом: вверх, вниз, вбок, вперед и при этом непрерывно измерять и регистрировать недоступные глазу физические и химические характеристики среды: температуру, соленость, электропроводность, радиоактивность и многое другое.

Для этого на лодку ставят разную аппаратуру. Но любой ее вид содержит источник питания, датчики и регистраторы. Представьте: лодка идет, приборы работают, и исследователь сразу же получает данные о распределении многих физических и химических полей в океане. Есть приборы, которые автоматически вычерчивают графики распространения таких полей. Разумеется, в пределах глубины погружения лодки и чувствительности приборов.

А если поставить на подлодку фильтр с ионитами, как это делают на надводных кораблях, то можно определять концентрацию растворенных в воде элементов (стронция, висмута, селена, меди, железа, алюминия, цинка, драгоценных металлов) не только на поверхности, но и на глубине. Интересно, что единственный непрерывный температурный профиль от поверхности до самой большой в океанах глубины 10 919 метров был получен в 1960 году с помощью исследовательской подводной лодки «Триест».

Совершив посадку на грунт или став на подводный якорь, подводное судно можно использовать и как многосуточную станцию, иначе говоря, как подводную обсерваторию. Тогда можно, например, измерять элементы внутренних волн [14] 14
  Как известно, на разделе между двумя слоями разной плотности, например двумя слоями с разной температурой и соленостью, могут возникать волны и внутри океана, как обычные, так и длинные, со скоростью, не превышающей 2 узлов, но большой высоты (до 80 метров). Обнаруживаются с помощью длинных рядов измерений температуры и солености.


[Закрыть]
, период которых в большинстве случаев определяется часами, а иногда даже днями.

Преимущество четвертое. Подводное судно позволяет получать информацию, которая недоступна для других средств, а также дает возможность применить новые методы для получения известных данных.

Если сопоставишь подводные фотоснимки с увиденным в иллюминатор подводной лодки, то сравнение будет не в пользу фотоаппарата. Оказывается, человеческий глаз лучше разбирается в деталях и в цвете. Часто некоторые мелкие морские организмы, легко опознаваемые через иллюминатор подлодки, были неразличимы на фотопленке. Но фотографировать нужно. И лучше это делать с подлодки, чем опускать фотоаппарат на тросе, так как исследователь сам способен выбрать объект съемки, определить освещенность, установить фокусное расстояние. То же и с киносъемкой. Убедительное этому доказательство – кинокадры, снятые на недоступных водолазам глубинах с подводных лодок «Северянка» и «Дениза».

Хуже, чем глаз, различает предметы и передающая телевизионная трубка. Но все‑таки поворотная телевизионная камера, если ее установить на подлодке, может увеличить поле и дальность зрения наблюдателя, ограниченное иллюминаторами. Ведь существуют же подводные лодки, где конструкторы вместо иллюминаторов предусмотрели только телевизионные «окна» в подводный мир.

Немало придонных живых существ благодаря окраске и форме так могут слиться с фоном, что нет никакой возможности их обнаружить, не заставив их каким‑то образом сдвинуться с места. В апреле 1959 года в Териберской губе мы именно таким образом обнаружили камбалу и крабов, когда в поисках промысловой рыбы в районе Мурманского побережья несколько раз садились на грунт. Однажды, как только осело облако частиц, вызванное прикосновением лодки к грунту, наблюдавшие в иллюминатор обратили внимание, как во многих местах неподвижное до этого дно «ожило». С него медленно поднимались имеющие такую же, как и грунт, окраску, похожие на лепешки камбалы и, энергично двигая хвостами, устремлялись под корпус «Северянки». Невозможно было заметить и крабов до того момента, пока и они не начали ползти под лодку.


    Ваша оценка произведения:

Популярные книги за неделю