Текст книги "Свет в море"
Автор книги: Виталий Войтов
Соавторы: Олег Копелевич,Юлен Очаковский
Жанр:
Физика
сообщить о нарушении
Текущая страница: 7 (всего у книги 11 страниц)
Измерение цвета моря
«…Замечать надлежит, в какой мере странный или переменный цвет моря происходит от перемены глубины, от цвета морского дна или неба и облаков, от света солнечного или же от находящихся на поверхности воды инородных веществ…»[26]26
О. Е. Коцебу. Путешествие в Южный океан и Берингов пролив для отыскания северо-восточного морского прохода, предпринятое в 1815–1818 гг. на корабле «Рюрик». СПб., 1821.
[Закрыть] – так записано в инструкции, составленной О. Е. Коцебу во время его кругосветного плавания. Однако если для прозрачности воды Коцебу придумал количественную характеристику – глубину исчезновения белого диска, погружаемого в море, то цвет моря он определял лишь качественно – по цвету волн.
Только в 90-х годах прошлого века швейцарский географ Форель предложил первый примитивный прибор для наблюдения за цветом водоемов. Изучая цвет воды горных озер в швейцарских Альпах, Форель использовал набор пробирок, заполненных смесью растворов: синего и желтого, взятых в различных соотношениях.
Его метод необычайно прост: наблюдатель на глаз устанавливает, цвет какого раствора в пробирке совпадает с видимым цветом водоема. Каждая пробирка имеет свой номер. Номер выбранной наблюдателем пробирки записывается в журнал наблюдений в качестве количественной характеристики цвета. Форель использовал 13 пробирок, в которых синий и желтый раствор находились в следующих соотношениях:
№ | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XII |
Синий | 100 | 98 | 95 | 91 | 86 | 80 | 73 | 65 | 56 | 46 | 35 | 23 | 10 |
Желтый | 0 | 2 | 5 | 9 | 14 | 20 | 27 | 35 | 44 | 54 | 55 | 77 | 90 |
В качестве синего раствора он брал смесь медного купороса и аммиака, в качестве желтого – полпроцентный раствор хромпика.
Немецкий океанограф Уле приспособил шкалу Фореля специально для измерений цвета моря. Он изъял пробирки XII и XIII, так как эти цвета не встречались в морях, добавив 10 новых оттенков. Уле ввел третий вид раствора – коричневый, изготовив его путем добавления аммиака к сернокислому кобальту в присутствии воздуха. Соотношения растворов в пробирках Уле выглядят следующим образом:
№ | XII | XIII | XIV | XV | XVI | XVII | XVIII | XIX | XX | XXI |
Синий | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 |
Желтый | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 |
Коричневый | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
Помещенная в деревянную рамку-оправу, предложенную Ю. М. Шокальским (рис. 48), шкала Фореля – Уле стала одним из стандартных океанографических приборов, хотя единой методики ее применения не было. Одни рассматривали эту шкалу на просвет или на фоне белой или черной бумаги, другие наблюдали ее на фоне моря или на фоне опущенного в воду белого диска.
Рис. 48. Шкала цветности
Ясно, что шкала Фореля – Уле могла дать лишь чисто качественную, очень субъективную оценку цвета моря. Главное и, пожалуй, единственное достоинство этого прибора – простота и доступность. А недостатков у него не счесть. Прежде всего с его помощью измеряют не «собственный» цвет моря, который именно и должен интересовать океанологов, а суммарный цвет отраженного поверхностью и выходящего из толщи световых потоков. Во-вторых, нарушаются основные требования колориметрической техники (т. е. техники цветовых измерений). Не предусмотрено постоянство фона, на который смотрят через прозрачные растворы шкалы. Отсутствует редкая граница между сравниваемыми полями (морем и раствором). Известно, что наблюдатель только тогда хорошо улавливает различия в цвете, когда сравниваемые поля имеют примерно одинаковую яркость, а у шкалы Фореля – Уле возможность уравнивать сравниваемые поля по яркости полностью отсутствует. Наконец, такой чисто технический, но весьма существенный недостаток – это непостоянство растворов (изменение их цвета, выцветание).
Тем не менее шкала Фореля – Уле получила самое широкое распространение в океанографии. Многочисленные измерения с ее помощью позволили установить, например, что цвету вод Средиземного моря соответствует цвет пробирки I, водам открытых районов всех океанов – I–II, Каспийскому морю – VII–IX, местам впадения рек в Балтийское море – XII.
Конечно, физики моря не могли примириться с недостатками шкалы Фореля – Уле, ведь ясно, что для установления физических закономерностей прибор совершенно не подходит. Усилия были направлены на создание более совершенного измерителя цвета. И такой прибор в 1939 г. создал А. А. Гершун. Названный гидрофотометром прибор позволяет измерять спектральные коэффициенты яркости моря ρ, т. е. спектральные отношения яркости выходящего из моря потока излучения к яркости падающего.
Рис. 49. Гидрофотометр ФМ-46
1 – фотометрическая головка прибора; 2 – труба; 3 – молочное стекло; 4 – фотометрическая призма; 5 – пластинка молочного стекла; 6 – зеркало; 7 – поворотная рукоятка зеркала; 8 – азимутальный штурвал; 9 – светофильтры
Позднее конструкция прибора получила дальнейшее развитие. Сейчас используется разработанный К. В. Маллером прибор подобного типа – гидрофотометр ФМ-46, имеющий ряд значительных преимуществ по сравнению с прибором Гершуна.
Конструкция прибора ФМ-46 представлена на рис. 49, а его внешний вид – на рис. 50. Помимо технических усовершенствований (возможность проведения измерений с высокобортных судов, пригодность для работы в тропиках) прибор обладает весьма ценным качеством – он позволяет измерять яркость излучения, выходящего из толщи моря не только строго по вертикали (в надир), но и под различными углами к ней и в различных азимутах по отношению к Солнцу.
Рис. 50. Так измеряют цвет моря
Прибор ФМ-46 представляет собой визуальный фотометр, в котором сравниваются яркости двух фотометрических полей. Одно из них создается светом, выходящим из толщи моря (по данному выбранному направлению), а другое – естественным светом Солнца и небосвода, освещающим пластинку молочного стекла 5 на фотометрической головке прибора 1. Фотометрическая головка прибора снабжена трубой 2, нижний конец которой на 10–15 см погружен под воду. Для наблюдения толщи моря в заданном направлении на нижнем конце трубы укреплено визирное зеркало 6, которое можно наклонять рукояткой 7 (меняя угол с вертикалью) и поворачивать штурвалом 8 (меняя азимут). Шесть цветных светофильтров 9, установленных в приборе, позволяют измерять спектральный состав выходящего из толщи моря излучения. Яркости фотометрических полей уравниваются путем перемещения молочного стекла 3, находящегося между фотометрической призмой 4 и приемным стеклом 5. Сама труба состоит из трех секций, ее общая длина (в зависимости от высоты борта судна) может быть либо 3,5, либо 6 м. В комплект прибора входит также специальное приспособление для крепления его к борту судна. Наблюдения проводятся с борта судна, освещенного Солнцем. Для измерений требуется почти штилевая погода, и при волнении выше двух баллов наблюдения должны прекращаться. Измеряя коэффициенты яркости моря, необходимо следить за облачностью и фиксировать высоту Солнца.
Гидрофотометр ФМ-46 позволяет количественно оценить распределение энергии в спектре выходящего из толщи моря излучения, а ведь именно от этого спектрального распределения и зависит, как мы видели, «собственный» цвет моря. Кривые на рис. 45 и 47 получены с помощью гидрофотометра ФМ-46. Его преимущества перед шкалой Фореля – Уле очевидны: там – субъективная оценка, здесь – физическое измерение; там одна-единственная цифра – номер пробирки, здесь – две функциональные зависимости коэффициента яркости ρ: от длины волны – ρ(λ) и угла наблюдения ρ(ϴ1φ). Совокупность этих зависимостей содержит в себе всю информацию о собственном цвете моря, причем не только при наблюдении вертикально вниз, но и по другим направлениям.
Некоторые исследователи для оценки цвета моря используют Международную колориметрическую систему, но этот метод пока еще не получил широкого распространения в гидрооптике.
Почему в воде видно хуже, чем в воздухе
Способность глаза видеть в воде
Известный американский гидрооптик С. Дантли в одной из своих работ писал: «Нигде в природе принцип защитной окраски и маскировки не проявляется лучше, чем на местах кормления в море, где жизнь как хищников, так и их жертв одинаково зависит от способности видеть. Когда человек проникает в подводный мир и всматривается через стекло в подводное окружение, его успех и его безопасность зависят в большей степени от его зрительной способности»[27]27
S. Q. Dantley. Underwater visibility. – «The Sea». N. Y. – London, 1962.
[Закрыть].
А если человек будет всматриваться в «подводное окружение» не через стекло, увидит ли он в воде что-нибудь? Нет, он сможет только отличить темное от светлого и различать неясные, расплывчатые контуры предметов. Человеческий глаз, способный видеть звезды, находящиеся от нас на расстоянии сотен световых лет, оказывается практически беспомощным в воде. Это объясняется условиями распространения света в водной среде и физиологией человеческого глаза.
Тематика нашей книги весьма далека от проблем физиологической оптики, но для того чтобы разобраться в сложнейших физических и физиологических процессах видения под водой, придется, хотя бы кратко, остановиться на некоторых свойствах зрительных органов как человека, так и обитателей моря – рыб.
Глаз взрослого человека представляет собой почти шарообразное тело, диаметром около 25 мм (рис. 51). Снаружи глаз покрыт плотной белковой оболочкой – склерой. Передняя (несколько изогнутая) ее часть прозрачная. Это роговица глаза. Показатель преломления роговицы равен 1,37. За роговицей находится передняя камера глаза, заполненная жидкостью с показателем преломления 1,33. Под склерой расположена сосудистая оболочка, спереди переходящая в радужную, с отверстием в центре – зрачком. В зависимости от силы света, попадающего в глаз, зрачок рефлекторно меняет свои размеры от 1,5–2 мм при сильном освещении до 6–8 мм в темноте. Саморегулируемая реакция зрачка является одним из звеньев процесса, называемого адаптацией глаза к уровню освещения.
Рис. 51. Разрез глаза человека
1 – роговея оболочка; 2 – зрачок; 3 – передняя камера; 4 – хрусталик; 5 – сетчатая оболочка
Важнейшей оптической деталью глаза является его хрусталик, отделяющий переднюю камеру глаза от задней, заполненной прозрачным стекловидным веществом, показатель преломления которого 1,34.
Хрусталик человеческого глаза имеет чечевицеобразную форму и выполняет функции объектива, т. е. проектирует изображение рассматриваемого предмета на сетчатую оболочку глаза. Благодаря способности хрусталика (аккомодации) менять кривизну своих поверхностей (главным образом передней) в определенных пределах на сетчатке всегда получается резкое, сфокусированное изображение разноудаленных предметов. Нарушения аккомодационной способности глаза приводят либо к близорукости, либо к дальнозоркости. Тело хрусталика неоднородно, и его показатель преломления находится в пределах 1,38—1,41.
Приемником излучения, поступающего в глаз, является светочувствительная сетчатая оболочка (ретина), располагающаяся на внутренней поверхности сосудистой оболочки. Анатомическое строение сетчатки очень сложное. При толщине около 0,2 мм она содержит 10 светочувствительных слоев. Светоощущающими элементами сетчатки служат палочки и колбочки, зрительные функции которых различны. Так, палочки (длина около 0,06 мм) обладают огромной чувствительностью, и для их возбуждения достаточно малейшего количества света. Колбочки гораздо менее чувствительны к световым раздражениям, но зато способны различать цвета. Колбочки «работают» только тогда, когда освещенность превышает 30–40 лк; в это время палочки бездействуют. При более низкой освещенности действуют только палочки. Всего в глазу имеется около 7 млн. колбочек и 130 млн. палочек, причем все колбочки расположены в центральной части сетчатки, называемой желтым пятном, а палочки – на ее периферии. Такое разделение зрительных функций колбочек и палочек приводит к тому, что мы различаем цвета предметов только при хорошем освещении. С ухудшением условий освещения колбочки выключаются из процесса восприятия и функция световосприятия переходит к палочкам, не способным к цветоощущению. Поэтому в сумеречном освещении все предметы независимо от их окраски кажутся серыми.
Светочувствительным элементом палочек является вещество родопсин. Оно имеет в темноте пурпурный цвет, но под влиянием света выцветает и разлагается на протеин и ретинен. В темноте происходит восстановительная реакция. Колбочки содержат вещество иодопсин, разлагающееся под действием света и образующее при распаде фосфорную кислоту. Механизм реакций иодопсина до сего времени недостаточно ясен.
В результате распада родопсина и иодопсина (процесс фотодиссоциации) возникают отрицательные ионы, воздействующие на окончания нервных волокон зрительного нерва, к которым присоединены колбочки и палочки. Электрический сигнал поступает в мозг и вызывает возникновение светового (зрительного) ощущения.
Рассматривая строение человеческого глаза, мы не случайно указывали значение показателей преломления отдельных его частей. Дело в том, что они близки к показателю преломления морской воды, который равен 1,34. Только у хрусталика он несколько больше. Это приводит к тому, что если глаз непосредственно соприкасается с водой, то лучи света проходят в него почти не преломляясь, т. е. они не могут быть сфокусированы хрусталиком на сетчатой оболочке. У человека с нормальным зрением аккомодационных возможностей его глаза не хватит для изменения формы хрусталика настолько, чтобы он в воде фокусировал изображение точно на сетчатку. Только очень близорукие люди, у которых в воздухе изображение фокусируется впереди сетчатой оболочки, в воде будут видеть более или менее нормально.
Рис. 52. Разрез глаза рыбы
Поэтому необходимым условием для видения под водой является изоляция глаза от воды при помощи масок, употребляемых аквалангистами, или стеклянных иллюминаторов водолазных шлемов и батискафов. В этом случае между глазом и водой создается воздушная прослойка и лучи света попадают в глаз уже не из воды; а из воздуха. При переходе из воздуха в глаз лучи преломляются и глаз функционирует нормально.
Но как же обходятся без иллюминаторов рыбы? А здесь постаралась природа. На рис. 52 представлен разрез глаза рыбы. Первое, что обращает внимание, – это шарообразная форма хрусталика, позволяющая рыбам отчетливо видеть предметы на близком расстоянии (около 1 м). Благодаря особому аккомодационному устройству хрусталик может смещаться в глазу и занимать положение, указанное на рисунке пунктиром. При этом рыба хорошо видит и на более далеком расстоянии (максимальная дальность видения рыб не превышает 15 м). Ниже приводятся данные сопоставления углового поля зрения глаза человека и рыбы.
Поле зрения | Горизонтальное | Вертикальное | Бинокулярное |
Человек | 154° | 135° | 125° |
Рыба | 160 – 170° | 150° | 20 – 30° |
Такая специфика строения глаза дает возможность рыбе даже при неподвижном положении видеть большую часть окружающей среды.
Светочувствительными элементами глаза рыбы также являются палочки и колбочки. Но природа и здесь резко дифференцировала органы зрения у различных видов рыб. У глубоководных обитателей моря колбочки отсутствуют. Они просто не нужны – незначительная доля дневного света, проникающая на эти глубины, воспринимается только палочками.
В то же время спектральная кривая чувствительности глаза у трески, хамсы, ставриды, кефали и некоторых других видов рыб, обитающих в верхних слоях моря, близка к кривой видности человеческого глаза.
У некоторых видов глубоководных рыб 1 мм2 поверхности сетчатки содержит до 20 млн. палочек.
Опыты показали, что рыбы могут воспринимать свет, интенсивность которого составляет всего 10-10 от естественной освещенности на поверхности моря. Не исключено, что глаза ряда рыб реагируют на свет еще меньшей интенсивности Зато свет большой интенсивности для подобных рыб может оказаться губительным. Это явление обычно называют фотофобией, т. е. – светобоязнью.
Интересная закономерность наблюдается и в изменении размеров глаза в зависимости от глубины. Она проявляется двояко: либо в увеличении размера глаза, либо в почти полном отсутствии органов зрения.
Обычно увеличение размеров глаза отмечается у рыб, обитающих на глубинах, где еще наблюдается хотя бы незначительная естественная освещенность. У сверхглубоководных рыб, как правило, глаза уменьшаются, а у многих видов и полностью отсутствуют.
Диаметр глаза некоторых глубоководных рыб составляет 40–50 % от длины головы. Зрачок имеет продолговатую форму, и его концы заходят за хрусталик. В результате увеличивается чувствительность глаза. Глаза ряда рыб обладают светящимся органом, постоянно раздражающим сетчатку, что повышает ее чувствительность. Телескопическая форма глаза многих рыб также увеличивает их чувствительность и расширяет поле зрения.
Вот что об этом пишет американский писатель Р. Кэррингтон: «У многих сверхглубоководных животных глаза маленькие или совсем атрофированы. В этой зоне единственный источник света – это естественно светящиеся вещества, поэтому функция глаза состоит в том, чтобы воспринимать сигналы, а не образ предмета. Так, у Cetomimus, длина которого составляет 10 см, глаза имеют 1 мм в диаметре, а соотношение между диаметром глаз угря Суета atrum и длиной его тела еще меньше. У некоторых сверхглубоководных рыб глаза совсем отсутствуют. В таких случаях зрительный нерв часто выступает на поверхности головы в том месте, где должен быть глаз, и получает световые импульсы непосредственно»[28]28
Р. Кэррингтон. Биография моря. Л., Гидрометеоиздат, 1966.
[Закрыть].
Отсюда можно заключить следующее: многим глубоководным рыбам глаз нужен не столько для того, чтобы видеть, сколько для восприятия световых сигналов. Что же это за сигналы?
Более 50 % морских организмов обладают органами, продуцирующими свечение. Они весьма разнообразны: от кожных слизистых желез, содержащих фосфоресцирующее вещество, до устройств, напоминающих прожектор. Иногда такой «прожектор» расположен во рту рыбы. С его помощью она может привлекать добычу. В отдельных случаях светящиеся органы рыбы играют роль фар, причем рыба может по желанию включать и выключать их, а кроме того, менять направление пучка света, освещая пространство вокруг себя. Во мраке больших глубин светящиеся органы в сочетании с органами зрения помогают рыбам, плавающим стаями, отличать себе подобных.
Всем сказанным еще не исчерпывается разнообразие строения глаза у различных видов рыб. Есть рыбы (плавающие у поверхности), глаз которых устроен так, что они могут видеть одновременно в воде и в воздухе. У таких рыб глаз разделен горизонтальной перегородкой на две половины. Верхняя (воздушная) часть хрусталика более плоской формы, приближающейся к форме хрусталика человеческого глаза.
У одного из видов тропических рыб – «морских собачек» – глаз разделен вертикальной перегородкой. Они обозревают окрестности, выставив переднюю часть головы из воды.
А может ли видеть, что происходит в воздухе, рыба, не обладающая столь универсальными глазами, Как некоторые ее сородичи? Из-за явления полного внутреннего отражения света водной поверхностью эта рыба видит только те предметы, которые находятся к вертикали глаза под углом, не превышающим 48°. Одновременно с этим глаз рыбы способен воспринимать и изображение предметов, находящихся в воде и отразившихся от водной поверхности. В том, как это происходит, наглядно убеждает рис. 53.
Рис. 53. Что видит рыба из-под воды
Видеть происходящее в толще моря может не только глаз рыбы или защищенный стеклом иллюминатора глаз человека. Современная техника позволяет наблюдать жизнь глубин и при помощи «искусственного глаза» – передающей камеры подводного телевизора, но об этом немного позже. А сейчас остановимся на том, что значит видеть предмет, погруженный в море.
Мог ли капитан Немо видеть в море на полмили?
В фильме «Человек-невидимка» самостоятельно перемещаются различные предметы. Как же удалось кинематографистам добиться нужного зрительного эффекта при экранизации известного научно-фантастического романа Г. Уэллса? Актер был одет в черный бархатный комбинезон, облегавший его тело, включая лицо и руки, а съемка велась на фоне стены, задрапированной также черным бархатом. Черная поверхность бархата отражает очень мало света, т. е. яркость ее очень мала. Кроме того, заметить один кусок бархата на фоне другого при равенстве их яркости зрители не в состоянии. Основная причина – отсутствие яркостного контраста между рассматриваемым объектом и фоном. Оказывается, наш глаз распознает предметы только в том случае, если их яркость и яркость фона, на который они проектируются, не совпадают. Могут ли, однако, быть условия, когда предметы все же различимы при равенстве их яркости с яркостью фона? Это бывает в том случае, если рассматриваемый объект и фон разного цвета, т. е. между ними существует цветовой контраст.
В условиях сравнительно небольших освещенностей в море (когда главным образом функционируют не колбочки, способные различать цвет, а палочки) для видения гораздо большее значение имеет яркостный, а не цветовой контраст.
Величину яркостного контраста можно выразить численно простой формулой:
где Вф – яркость толщи моря (фона), а Вп – яркость рассматриваемого на этом фоне предмета.
Если яркость предмета больше яркости фона, то формула имеет следующий вид:
Эти формулы показывают, что глаз способен оценить лишь разность яркостей предмета и фона, но не в состоянии определить, во сколько раз предмет ярче фона или наоборот.
Обычно контраст оценивают в процентах. Если кусочек черного бархата, яркость которого практически равна нулю (Вп = 0). положить на лист хорошо освещенной бумаги, то
т. е. кусок бархата будет отчетливо виден. Возвращаясь к примеру с фильмом «Человек-невидимка», мы также можем количественно определить контраст (яркости комбинезона и драпировки были равны, т. е. Вп = Вф):
Практически для того, чтобы предмета не было видно на каком-либо фоне, не обязательно контраст должен равняться 0. Глаз человека перестает различать предмет, если величина контраста не превышает 2 %, так называемый порог контрастной чувствительности глаза. Величина эта не постоянная: у разных людей она различна, зависит от условий наблюдения и может меняться от степени утомления глаза и даже от настроения человека. Иногда значение порога контрастной чувствительности достигает и 5 %.
С какими же величинами контраста мы имеем дело в море? Известно, что величина коэффициента яркости моря близка к 0,02. Погрузим в море объект, выкрашенный белой краской самого высокого качества. Белая поверхность отражает большинство упавших на нее лучей, т. е. имеет коэффициент яркости, близкий к единице (допустим 0,90). Тогда
Здесь контраст определялся не по абсолютным значениям яркости, а по ее коэффициентам. Полученная величина характеризует практически предельный контраст, который может наблюдаться в море, так как все предметы, окрашенные не в белый цвет, имеют коэффициент яркости меньший, чем у белой поверхности.
Рассмотрим еще один пример. Допустим, предмет, который мы наблюдаем под водой, окрашен очень темной краской, имеющей коэффициент яркости 0,02, т. е. равен коэффициенту яркости моря. Следовательно, контраст в данном случае равен нулю и предмет нам не будет виден. А если этот предмет – подводная лодка, то выходит, что создание «лодки-невидимки» вполне реальная вещь? При всей привлекательности подобной идеи, ее осуществление возможно только в научно-фантастических романах. Не надо забывать о том, что кроме яркостного контраста существуют и цветовой. Другими словами, для того, чтобы создать «лодку-невидимку», надо ее не просто окрасить краской, коэффициент яркости которой будет равен коэффициенту яркости моря, но соблюсти еще одно условие. Спектральный состав этой краски должен абсолютно точно соответствовать спектральному составу света, идущего из глубин моря к его поверхности. Именно при этих условиях не только яркостный, но и цветовой контраст будет отсутствовать. Надо сказать, что сложность изготовления такой темной краски да еще требуемого спектрального состава превосходит современные технические возможности. Кроме того, как известно, кривые спектральных коэффициентов яркости у разных морей различны. Допустим все же, что когда-нибудь удастся изготовить краску, удовлетворяющую всем требованиям. Будет ли это означать, что окрашенные ею предметы станут полностью невидимыми в воде, т. е. будут абсолютно замаскированы? Отнюдь нет.
Дело в том, что коэффициент яркости моря беспрерывно меняется и эти, даже небольшие, изменения скажутся на величине контраста. Поэтому абсолютно замаскировать предмет, находящийся под водой, физически невозможно. Речь может идти только о создании такой окраски, которая максимально затрудняет визуальное обнаружение предмета, т. е. о максимально возможном приближении контраста к нулевому значению. Пожалуй, лучшим мастером маскировки является природа. Большинство обитателей моря наделено способностью приспосабливать свою окраску к фону (рис. 54). Естественно, и человек старается не отставать от природы. Подводные лодки всех флотов мира в целях маскировки, как правило, окрашивают краской с коэффициентом яркости, приближающимся, насколько это возможно, к спектральному коэффициенту яркости моря.
Все наши рассуждения о контрасте относились к тому случаю, когда наблюдатель находился в непосредственной близости от рассматриваемого объекта, т. е. тот контраст, который он наблюдал, был действительным. По мере удаления от объекта контраст все более и более ослабевает, т. е. наблюдатель, находящийся под водой на некотором расстоянии от объекта, будет оценивать не действительное, а видимое им различие в яркости предмета и фона, или видимый контраст. Это изменение величины контраста имеет очень большое значение для видения под водой. Экспериментально доказано, что при горизонтальном наблюдении изменение действительного контраста происходит по закону Бугера: КВ = Кд∙10-εz, где Кв – видимый контраст; Кд – действительный контраст; z – расстояние от наблюдателя до предмета; ε – показатель ослабления излучения, направленного от предмета в глаз наблюдателя.
Рис. 54. Камбала меняет окраску
Условия наблюдения в воде тем и отличаются от наблюдений в воздухе, что показатель ослабления морской воды в сотни раз превышает показатель ослабления воздуха. Рассеяние света водой приводит не только к ослаблению прямого луча, идущего от предмета к наблюдателю, но создает между ними своеобразную световую дымку, вуалирующую рассматриваемый объект и затрудняющую его видение.
Эта дымка вызывает очень большие трудности при работе под водой с искусственными источниками света. Казалось бы, чем более мощным прожектором освещен предмет под водой, тем лучше он будет виден, но это далеко не так. Увеличение мощности прожектора хотя и улучшает освещенность поверхности предмета, но одновременно с этим приводит к повышению интенсивности дымки. Поэтому при различных работах под водой используют прожекторы мощностью 1–3 квт, причем стараются приблизить источник света к рассматриваемому объекту. Кроме того, условия видимости улучшаются, если объект освещается как бы со стороны, т. е. угол между линией визирования и прожекторным пучком достаточно велик. Наиболее неблагоприятными будут условия наблюдения вдоль прожекторного пучка. В этом случае яркость дымки максимальная.
На каком же расстоянии под водой вообще можно увидеть сравнительно большой предмет, освещенный прожектором?
В широко известном романе Жюля Верна «Двадцать тысяч лье под водой» есть следующие строки: «…чтобы ориентироваться в пути, необходим свет, который рассеивал бы тьму.
…Позади рубки помещается мощный электрический рефлектор, который освещает море на расстоянии полмили»[29]29
Ж. Верн. Собр. соч., т. 4. М… ГИХЛ. 1956.
[Закрыть].
Мы знаем, что Жюль Верн сумел гениально предвидеть пути развития техники на многие годы вперед. В момент издания его книги не могло быть и речи об использовании электроэнергии для движения подводных лодок. Более того, еще даже не были изобретены электрические лампочки накаливания. Но допустим, что на «Наутилусе» действительно был установлен мощный прожектор. Мог ли он осветить море на полмили от лодки и что при этом видел наблюдатель?
Попробуем произвести хотя бы весьма приближенный расчет той доли излучения прожектора, которая могла бы достигнуть поверхности предмета, находившегося от него в полумиле (0,5 морской мили = 926 м).
Допустим «Наутилус» находился ночью (чтобы исключить влияние дневного света) в очень прозрачных океанских водах. Величина показателя ослабления направленного излучения ε для таких вод близка к 0,1 м-1, а показателя ослабления рассеянного излучения α – 0,015 м-1.
Экспериментальные исследования, проведенные советскими гидрооптиками М. Н. Булхургиным и В. П. Николаевым, показали, что на расстояниях, не превышающих глубину исчезновения белого диска, ослабление интенсивности прожекторного пучка происходит по закону Бугера: Iz = I0∙10-εz.
На больших расстояниях уже рассеявшийся прожекторный луч ослабляется также по закону Бугера, но с показателем ослабления для рассеянного света: I'z = I'0∙10-αz.
В чистых океанских водах глубина исчезновения белого диска примерно равна 40 м. Подставим в уравнения имеющиеся у нас данные, приняв первоначальную интенсивность прожектора (I0) за 1:
Таким образом, на расстоянии 40 м от прожектора интенсивность его света составит всего 1/10000 первоначальной. Далее:
Практически невозможно наглядно представить себе всю ничтожность той доли света, которая даже в очень прозрачной воде дошла бы от прожектора «Наутилуса» до предмета, удаленного от него на полмили. Но и в том случае, если бы прожектор находился рядом с предметом и хорошо его осветил, все равно на таком расстоянии до наблюдателя не смог бы дойти свет, отраженный предметом.
Реальная дальность видимости в различных морях в условиях искусственного освещения определяется прежде всего отражательной способностью поверхности наблюдаемого предмета и прозрачностью воды и вряд ли может превышать 50–60 м.
Интересные данные о видимости под водой при естественном свете недавно были опубликованы американским исследователем Р. Ф. Базби. Так, в районе Майами на глубине 305 м наблюдатели в батискафе могли видеть дно с расстояния 5–6 м. У берегов Калифорнии к западу от Сан-Диего на глубине около 185 м горизонтальная видимость колебалась от 9 до 15 м. Неожиданно хорошая видимость была отмечена у берегов Флориды, где с глубины 190 м можно было различить дно, находившееся на 55 м глубже.
При наблюдениях под водой в условиях естественного освещения дальность видимости во многом зависит от угла, под которым рассматривается предмет. Вызвано это тем, что в верхних слоях моря, где свет еще не полностью рассеян, яркость фона в различных направлениях различна, что сказывается на величине контраста. Кроме того, это обусловливает и различие в яркости вуалирующей дымки в зависимости от направления.