355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виталий Войтов » Свет в море » Текст книги (страница 3)
Свет в море
  • Текст добавлен: 9 октября 2016, 19:48

Текст книги "Свет в море"


Автор книги: Виталий Войтов


Соавторы: Олег Копелевич,Юлен Очаковский

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 3 (всего у книги 11 страниц)

Южнее многолетних льдов

Поверхность морей, омывающих нашу страну с севера, летом почти свободна от льдов. Лишь кое-где в сине-зеленых водах видны отдельные льдины.

В мае-июне здесь наблюдается «цветение» водорослей. Условия для этого вполне подходящие. Солнечного света много, а происходящее осенью и зимой энергичное перемешивание слоев обеспечивает поверхностную водную толщу питательными солями. Прогретый солнечным теплом и перемешанный ветром самый верхний водный пласт как бы отделяется от остальной толщи воды резким перепадом температуры – так называемым температурным скачком. Над ним обычно и наблюдается скопление планктона. Планктонные организмы, микроскопические рассеиватели света, вызывают заметное ослабление солнечных лучей. Поэтому в оптике моря слои с большой концентрацией этих мельчайших обитателей океана принято называть оптически рассеивающими слоями. Они могут быть тонкими и могут иметь толщину в несколько десятков метров. О. А. Соколов наблюдал из иллюминатора научно-исследовательской подводной лодки «Северянка» обилие планктона в Баренцевом море на глубинах 20–75 м.

«…Глубина 20 м. Вода, стала изумрудно-зеленой. Под водой была в самом разгаре весна, цвели мельчайшие водоросли.

40 м. Становится все темнее и темнее. Лодка плавно, но довольно быстро продолжала погружение…

45…50 м… Включили свет, открылось великолепное зрелище, какого нельзя увидеть в обычной надводной жизни: словно под водой в обратную сторону шел снег. Освещенные лучами прожекторов хлопья планктона плавно проплывали мимо иллюминатора вверх. Лодка продолжала погружение.

75 м. Естественный свет почти перестал просматриваться. Вода стала прозрачнее…»[10]10
  В. Г. Ажажа, О. А. Соколов. Подводная лодка в научном поиске. М., «Наука», 1966.


[Закрыть]

Спустя неделю-две после «цветения» планктона в Баренцевом море на глубине 70–75 м прекрасно видны мелкие детали дна и вполне можно определить вид растений и животных. А осенью, когда биологические процессы резко идут на убыль, условия для подводных наблюдений становятся еще лучше.

Прозрачность воды субарктических морей, конечно, меньше чем в Северном Ледовитом океане. Особенно она падает в весенний биологический сезон. Вблизи берегов на прозрачность моря оказывают влияние мутные речные воды, а на мелководных банках – взмученные ветром или приливом тонкие донные осадки.

Широты, богатые жизнью

На севере Атлантического океана, там, где встречаются холодные субарктические воды и теплые атлантические, гидрологи выделяют зону так называемого полярного фронта. Этот фронт обнаруживается не только по гидрологическим свойствам. Метеорологи также отмечают заметное различие температуры воздуха по обе его стороны.

Весной полярный фронт очень четко выявляется и по прозрачности: он разделяет мутные атлантические и более прозрачные субарктические воды.

В атлантических водах весной происходит бурное «цветение» фитопланктона и их прозрачность резко падает. В. Г. Богоров указывает, что именно в умеренных широтах обоих полушарий в весенний сезон самая обильная жизнь.

В другие сезоны наблюдается обратная картина: прозрачность атлантических вод оказывается выше субарктических. Академик Н. М. Книпович еще в начале нашего столетия отмечал, что пять синих прозрачных атлантических струй («пятерня Книповича») отчетливо выделяются на фоне зеленоватых вод Баренцева моря. Как и в субарктической зоне, для умеренных широт характерно наличие оптически рассеивающих слоев.

Синий пояс океана

Моряки эпохи парусного флота, пересекая тропические широты, проклинали царящие здесь длительные штили. Нередко в жарком неподвижном воздухе бессильно повисали паруса, и даже гордые клиперы, порой развивавшие скорость до 18 узлов, безнадежно застревали в самых синих и малоподвижных водах океана. Отсутствие ветра и палящие лучи солнца придают этим широтам определенное своеобразие.

Из-за сильного испарения концентрация солей в воде здесь выше средней океанической. Но в то же время вода очень теплая, а следовательно, сравнительно легкая. Слабые ветры плохо перемешивают толщу воды, и в ней мало биогенных элементов. Это самая неплодородная океаническая «почва». Не удивительно, что она дает очень низкий «урожай» фитопланктона. Ж.-И. Кусто и Ф. Дюма были поражены исключительными условиями видимости под водой у пустынного островка Сальведжем Гранде, находящегося в тропической части Атлантического океана между Мадейрой и Канарским архипелагом. Плавая на поверхности воды, они через маски изучали дно на глубине 30 м.

«Ничто не говорило о том, что нас отделяет от него плотная толща воды. На грунте – ни камешка, ни малейшего следа животных или растительных организмов. Вода словно дистиллированная; эпитет „прозрачная“, предполагающий прекрасную видимость на расстоянии, сравнимом с длиной хорошего концертного зала, здесь явно был недостаточным. Подводный ландшафт вырисовывался с пугающей четкостью…»[11]11
  Ж.-И. Кусто, Ф. Дюма. В мире безмолвия. М., «Молодая гвардия», 1957.


[Закрыть]

Особое место в субтропическом поясе синих и прозрачных вод занимает удивительное море без берегов – Саргассово море. Еще в середине прошлого столетия о Саргассовом море всерьез говорили как об огромном водовороте – ловушке для парусных судов. Саргассово море представляли также в виде сплошного луга из плавучих водорослей, пересечь который нельзя не намотав водоросли на винт. Действительно, водорослей много, но они не образуют сплошного покрова. На один квадратный километр приходится 10 000—20 000 кустов водорослей размером 20–40 см. В то же время планктона в верхней толще Саргассова моря в 30–70 раз меньше, чем в Норвежском море.

Для гидрооптиков Саргассово море считается эталоном прозрачности. Лет 30 назад немецкий океанограф Г. Дитрих писал, что вода Саргассова моря по своим оптическим свойствам почти не отличается от дистиллированной.

Поверхностную толщу (0—150 м) профессор Н. Н. Зубов образно назвал производственной мастерской океана. В ней идет процесс фотосинтеза и рождается фитопланктон, наиболее эффективно замутняющий воду в открытом океане. Естественно, что прозрачность поверхностной толщи несколько меньше, чем в подстилающих слоях.

Однако американский биофизик Дж. Кларк сообщил, что в Саргассовом море он обнаружил аномальный ход прозрачности – очень высокую прозрачность верхней толщи (0—200 м) и понижение прозрачности на остальных глубинах.

В 1960 г. в Саргассовом море проводились оптические измерения с борта советского научно-исследовательского корабля «Михаил Ломоносов». Эти измерения не подтвердили выводов Кларка. Поверхностный слой (0—150 м) из-за присутствия небольшого количества фитопланктона был несколько мутнее, чем нижележащие водные слои.

Однако даже в поверхностном слое прозрачность вод Саргассова моря очень высока, особенно в сине-фиолетовой части спектра, следствием чего является насыщенный сине-фиолетовый цвет воды.

Прозрачные «реки» в океане

Пассатные течения, пересекающие океаны с востока на запад в тропических широтах, самые мощные и длинные течения Мирового океана. Они переносят огромные массы прозрачной воды. В Тихом океане пассатный поток омывает множество коралловых атоллов. И хотя поэты воспели синеву и кристальную прозрачность лагун, атоллы тем не менее являются источниками нарушения однородности прозрачных пассатных течений. С подветренной стороны атоллов создается разряжение пассатных струй и возникает небольшая зона подъема глубинных вод, что приводит в конце концов к возникновению обильного планктона. От этого источника вдоль пассатного потока тянется своеобразный мутноватый «хвост», обрывающийся в 30–50 милях от продуктивной зоны. На картах прозрачности такие образования мутной воды похожи на комету с головой близ атоллов.

В тропических широтах, как, впрочем, и в субтропических, можно пренебречь сезонными изменениями прозрачности, ведь сезонных изменений в поступлении солнечного света (как в северных широтах) здесь нет. Независимо от времени года человек, живущий в тропиках, в полдень лишается своей тени: круглый год солнце стоит высоко. Развитие тропического фитопланктона также круглогодично. Однако биологи заметили, что существует связь между ветром и численностью фитопланктона. В определенный сезон пассат усиливается, и тогда более энергично идет перемешивание водных слоев, что благоприятствует развитию фитопланктона. Его численность несколько увеличивается, но не надолго. Регулятором, который удерживает фитопланктон на обычном уровне, является зоопланктон. Мелкие тропические животные быстро развиваются вслед за фитопланктоном и моментально выедают его. Вспышка фитопланктона очень коротка, и его численность быстро возвращается к своему обычному уровню.

«Зеленый суп» на экваторе

Американский исследователь Биб писал, что вода на экваторе из-за обилия планктона имеет консистенцию супа. Конечно, это гипербола, но планктона здесь действительно очень много. Просто кажется необычным внезапное увеличение численности планктона на фоне синих, бедных жизнью вод, простирающихся к северу и югу от экваториальной полосы.

По сравнению с тропическими широтами глубина исчезновения белого диска уменьшается здесь на 10 м, а цвет воды становится голубым.

Причина заметного увеличения планктонного населения на экваторе – подъем глубинных, богатых питательными солями вод. Это так называемая зона экваториальной дивергенции[12]12
  Дивергенция (расхождение) – граница или граничная зона между противоположно направленными течениями внутри циклонических круговоротов.


[Закрыть]
. На картах прозрачности, построенных по данным измерений с помощью точной аппаратуры, океанические зоны дивергенций отчетливо выделяются как полосы пониженной прозрачности.

На экваторе кончается наше «путешествие». Если бы оно продолжалось в Южном полушарии, то мы убедились бы, что и там географическая зональность выражена так же, как и в Северном. Однако наличие в Южном полушарии главного «холодильника» планеты – антарктического континента – и кругового дрейфового течения в поверхностных водах приводит к некоторому смещению зон.

Рис. 18. Изменение прозрачности морской воды на разных широтах

На рис. 18 показано изменение с географической широтой прозрачности воды на поверхности Мирового океана. В глубинной толще явления, связанные с зональностью, наблюдаются в сильно ослабленном виде, да и такого количества природных зон, как на поверхности, выделить не удается. Например, В. Г. Богоров для глубины более 500 м выделяет в Тихом океане три зоны: субарктическую, тропическую, антарктическую.

В глубинных водах уже нет живого фитопланктона[13]13
  В результате сравнительно недавних исследований доказано существование глубоководной флоры. Это прежде всего жгутиковые и синезеленые водоросли (Cyanophyceae), обладающие способностью усваивать растворенное в морской воде органическое вещество без помощи солнечной энергии.


[Закрыть]
. Что касается зоопланктона, то его биомасса с глубиной заметно убывает. Так, в глубочайшей впадине Мирового океана – Марианской – ее значения в тысячу раз ниже, чем в слое 0—500 м. Среди компонентов взвеси, влияющих на прозрачность воды, главную роль играют остатки отмерших фито– и зоопланктонных организмов и различные неорганические частицы. В общей своей массе глубинные воды гораздо прозрачнее поверхностных.

Казалось бы, в океанических глубоководных впадинах должны быть самые прозрачные воды. Согласно же измерениям М. В. Козлянинова в Идзу-Бонинской впадине, воды предельных глубин мутнее, чем поверхностные. Вероятная причина их замутнения – оползни тонких донных осадков с крутых скалистых гребней, окружающих впадину.

В последние годы обнаружили еще одно интереснейшее явление – придонные мутьевые потоки. Таким образом, вблизи океанского дна прозрачность может понижаться за счет взмучивания частиц, слагающих тонкие донные осадки.

«Облака» в океане

Рассматривая географические зоны Северного полушария, мы говорили о скоплении частиц – оптически рассеивающих слоях. В некоторых районах Мирового океана наблюдается не один такой слой, находящийся над температурным скачком, а несколько. Существуют также и слои, выделяющиеся в толще воды своей высокой прозрачностью.

«Однажды мы плавали над подводной скалой в Средиземном море, – пишет Ж.-И. Кусто. – Вода была настолько мутна, что видимость ограничивалась несколькими ярдами. Двумя саженями ниже нам вдруг попался совсем прозрачный слой. Его сменил пятнадцатифутовый пласт воды молочного оттенка, с видимостью примерно в пять футов: После этого молока до самого дна шла чистая вода. В сумеречной прозрачной толще сновало множество рыб, и туманная пелена над нами напоминала низко нависшие тучи в дождливый день. Часто погружаясь на большую глубину, мы пересекали причудливо, чередующиеся мутные и прозрачные слои…»[14]14
  Ж.-И. Кусто, Ф. Дюма. В мире безмолвия…


[Закрыть]

В феврале-марте 1952 г. научно-исследовательский корабль «Гаусс» производил в южной части Северного моря на протяжении 2100 миль непрерывную, регистрацию прозрачности с помощью фотоэлектрического прозрачномера, врезанного в днище корабля. Одновременно через каждую милю пути брались пробы планктона и взвеси. Редко на записях ход прозрачности был совершенно монотонен. Как правило, однообразие нарушалось единичными всплесками: «Гаусс» пересекал небольшие скопления планктона. Казалось, под килем корабля чистое синее небо с отдельными облачками. Ближе к берегам облачка эти сливались, образуя сплошной покров, подобный облакам стратусам.

В прибрежных районах большое влияние на прозрачность оказывает неорганическая взвесь – частицы терригенного происхождения. Немецкий исследователь Клаус Виртки, регистрируя прозрачность воды в прибрежном районе Балтийского моря и подсчитывая одновременно с помощью микроскопа число минеральных частиц и число клеток фитопланктона в пробах, приходит к выводу, что вблизи берега фитопланктон никак не влияет на величину прозрачности.

Обычно прибрежная полоса довольно узкая. Казалось бы, она должна существенно расшириться вблизи устьев рек, выносящих в море массу частиц. Однако сотрудники Института океанологии установили, что влияние на оптические свойства морских вод таких больших рек, как Нил или Ганг, распространяется в лучшем случае лишь на несколько десятков миль, причем мутные речные воды резко отграничиваются от прозрачных морских. Кроме частиц, выносимых реками, к терригенным частицам относятся эоловые. Тот, кто побывал зимой у берегов Западной Африки, никогда не забудет огромного красного солнечного диска. Причина его необычной окраски в том, что воздух насыщен тонкой красноватой сахарской пылью. Поднятая над пустыней и подхваченная нассатами, она выносится далеко в Атлантический океан. Даже на расстоянии нескольких сот миль от побережья, африканского континента пыльный туман иной раз так плотен, что видимость в нем всего 1,5–2 мили. Довольно далеко в Индийский океан ветер выносит частицы пыли из Аравийской пустыни. Но это аномальные явления. Обычно частицы эолового происхождения оседают в воде в непосредственной близости от берега.

Прибрежная зона, или полоса, составляет около 2–3 % от площади Мирового океана. На остальном огромном пространстве открытых океанов и морей главенствующую роль в ослаблении света играет фитопланктон.

От белого диска к современным прозрачномерам

В истории известны случаи, когда общепризнанным научным достижением становилось то, что сначала считалось курьезом. Так было и со способом визуального наблюдения прозрачности морокой воды, придуманным Коцебу, который опускал на тросе за борт обыкновенные столовые тарелки и следил за глубиной их погружения в разных местах Тихого океана. Наблюдения с помощью стандартного белого диска диаметром 30 см в настоящее время являются частью многих океанографических и гидрографических исследований. В литературе, особенно зарубежной, он нередко фигурирует как диск Секки. В 1866 г. патер Секки вместе с капитаном Чиальди провели многочисленные наблюдения в Средиземном море как с белыми, так и цветными дисками. Несколько позднее швейцарский географ Ф. Форель предложил белый диск именовать диском Секки. Отмечая заслуги Секки в становлении и развитии способа, все же белый диск по праву следовало бы назвать диском Коцебу.

В XIX и в начале XX в. визуальные наблюдения прозрачности морокой воды осуществлялись крайне нерегулярно и лишь лет 40 назад получили достаточно широкий размах, охватив многие районы Мирового океана. Вот ориентировочные данные о наибольшей глубине видимости белого диска.


Белое8
Балтийское13
Баренцево18
Черное25
Бенгальский залив45
Индийский50
Тихий52
Саргассово66,5

Как видно, рекордная глубина видимости белого диска отмечается в Саргассовом море. За последние 40 лет было выполнено несколько десятков тысяч измерений с помощью белого диска.

В Институте океанологии результаты этих наблюдений обобщаются для создания детальной карты Мирового океана. На рис. 19 (см. цв. вкл. на стр. 30) изображен лишь предварительный вариант такой карты. Дальнейшее накопление новых данных, безусловно, приведет к ее уточнению.

Рис. 19. Карта относительной прозрачности вод Мирового океана, составленная по данным измерений белым диском (глубина исчезновения диска, м)

Для построения карты было использовано 37 тыс. наблюдений с белым диском (необходимо отметить, что глубина видимости белого диска не является строгой количественной характеристикой прозрачности, хотя в значительной степени и определяется ею).

В оптике моря для глубины видимости белого диска принят термин относительная прозрачность.

О физических причинах, определяющих глубину видимости белого диска в разных водах, мы будем говорить дальше, а сейчас остановимся на измерении абсолютной прозрачности.

Устройство современных прозрачномеров

Путешествуя по географическим зонам Мирового океана, мы говорили о «более или менее прозрачных» водах, о слоях «повышенной и пониженной прозрачности», но нигде не приводили ее количественных оценок. В то же время в гидрооптике существует строгое определение понятия «прозрачность».

Направим на слой воды толщиной в один метр параллельный пучок света так, чтобы он падал перпендикулярно к поверхности этого слоя. Выраженное в процентах отношение светового потока, прошедшего через воду Фz, к величине падающего потока Ф0 называется прозрачностью:

Прозрачность θ однозначно связана с другой физической характеристикой – показателем ослабления.

Мы уже знаем, что при прохождении параллельного пучка света через тонкий слой воды часть фотонов поглотится, а часть рассеется, т. е. изменит направление своего движения. Число поглощенных фотонов равно: ΔNпогл = ϰN0Δz, а число рассеянных: ΔNрас = σN0Δz, где N0 – число падающих фотонов, Δz – толщина слоя, ϰ и σ – соответственно показатели поглощения и […]. Общее число фотонов, потерянных пучком в этом слое, равно сумме поглощенных и рассеянных: ΔNобщ = ΔNпогл + ΔNрас = (ϰ + σ)N0Δz = εN0Δz, где ε = ϰ + σ. Коэффициент пропорциональности ε в этой формуле называется показателем ослабления. Он равен сумме показателей поглощения и рассеяния. Величина показателя ослабления зависит от свойств данной среды и является одной из ее физических характеристик. Значения показателя ослабления, так же как и показателей поглощения и рассеяния, даются обычно в обратных метрах (м-1).

А как изменится световой пучок, пройдя в среде расстояние z? Разобьем это расстояние на совокупность достаточно малых отрезков Δz, в каждом из которых ослабление будет равно εФΔz, где Ф – значение светового потока в начале этого отрезка, а затем просуммируем ослабление на всех этих отрезках. Можно показать, что величина светового потока, прошедшего расстояние z в среде, будет равна: Фz = Ф0∙е-εz, где Ф0 – его первоначальная величина. Основание степени в этой формуле – число е – называют «натуральным», оно широко используется в высшей математике Число это иррациональное, его приближенное значение – 2,72.

Часто предпочитают иметь дело с обычным десятичным основанием. Наша формула и в этом случае сохраняет свой вид: Фz = Ф0∙10-ε'z, но здесь уже другой показатель ослабления; его значение в 2,3 раза меньше показателя ослабления ε (показателя при натуральном основании). Формула Фz = Ф0∙10-ε'z позволяет нагляднее представить себе физический смысл показателя ослабления: ε' – это величина, обратная расстоянию, которое пучок света должен пройти в среде, чтобы ослабиться в 10 раз. Используя полученную формулу, легко найти связь между показателем ослабления и прозрачностью:

И обратно: ε' = – lgθ.

Закон ослабления светового пучка в зависимости от расстояния, пройденного им в среде, был открыт Пьером Бугером. Значение его огромно, оно выходит далеко за рамки фотометрии. Закону Бугера подчиняется ослабление любого прямого потока энергии, будь это рентгеновы или гамма-лучи, электроны, нейтроны или какие-нибудь другие частицы. Тщательные исследования, проведенные академиком С. И. Вавиловым, показали, что закон Бугера справедлив в очень широких пределах изменения интенсивности света от 10-14 до 105 джоуль/сек∙м2 (т. е. примерно в 1020 раз). Отступления от этого закона удается наблюдать лишь в веществах с очень большими длительностями возбужденных состояний молекул (например, в урановых стеклах), или при необычайно высоких мощностях светового пучка[15]15
  Получение таких пучков стало возможно с появлением лазеров. Изучать явления подобного рода – задача специального раздела оптики – нелинейной оптики.


[Закрыть]
.

Суть закона Бугера заключается в следующем: ослабление света на пути, составленном из нескольких конечных отрезков, равно не сумме, а произведению ослаблений на каждом из этих отрезков (в формуле Бугера этот факт подчеркивается тем, что оптическая длина пути, т. е. произведение показателя ослабления ε на длину отрезка z, находится в показателе степени).

Принцип действия современных прозрачномеров основан на использовании закона Бугера. В этих приборах измеряется световой поток, прошедший через слой воды определенной толщины (l). Сопоставляя значение этого светового потока с величиной падающего, легко найти показатель ослабления:

Ф = Ф010-ε'l, откуда:

Прозрачномеры делятся на две основные группы: приборы, измеряющие прозрачность непосредственно в море (приборы in situ), и приборы для измерения прозрачности в пробах воды на борту корабля или в стационарной лаборатории.

Приборы, входящие в первую группу, предназначены для вертикального зондирования в толще океана или для непрерывной регистрации прозрачности на заданном горизонте во время хода корабля. Первую модель подводного прозрачномера создал в 1922 г. Н. Н. Калитин. Он использовал фотоэлементы с внешним фотоэффектом. Спустя 10 лет, когда появились фотоэлементы с запирающим слоем, в частности селеновые, Г. Петтерссон разработал фотоэлектрический прозрачномер, получивший широкое распространение в океанографических исследованиях. Прозрачномер Петтерссона представлял собой герметическую камеру, в которой помещался источник света – лампочка и приемный фотоэлемент, а также прикрепленное на расстоянии одного метра зеркало. Свет от лампочки, пройдя через линзу, в виде слабо расходящегося пучка выходил в воду и попадал на зеркало, укрепленное на расстоянии одного метра от камеры. Отраженный от зеркала свет возвращался на фотоэлемент.

Петтерссоновский прозрачномер конструктивно был улучшен И. Йозефом. В его измерителе прозрачности имеются две герметичные камеры. В одной из них помещается коллимированный источник света – лампа накаливания с линзой и диафрагмой – и контрольный фотоэлемент. Во второй камере находились конденсорная линза и диафрагма, препятствующая попаданию дневного света на установленный в этой камере приемный фотоэлемент. Между линзой и диафрагмой помещался диск с цветными светофильтрами. Обе камеры жестко соединялись между собой трубой с прорезями, в которую свободно входила морская вода.

Создаваемые в дальнейшем у нас и за рубежом прозрачномеры принципиально не отличались от упомянутых приборов (лишь вместо фотоэлементов стали использоваться фотоумножители). Внешний вид и оптическая схема одного фотоэлектрического прозрачномера (ФПР) представлены на рис. 20 и 21. Конструкция этого прибора и его последующих модификаций разрабатывалась под руководством А. К. Карелина.

Интересные образцы фотоэлектрических прозрачномеров сконструированы Г. Г. Неуйминым и А. Н. Парамоновым. Один из них (МИФП-3) позволяет осуществлять зондирование прозрачности до глубины 2000 м. Если все перечисленные выше прозрачномеры соединялись с лабораторией на борту судна с помощью кабеля, то в МИФП-3 используется телеметрическая или акустическая связь.

Рис. 20. Внешний вид фотоэлектрического прозрачномера ФПР


Рис. 21. Оптическая схема измерителя прозрачности

1 – лампа; 2 – зеркало; 3, 7, 12, 14 – линзы; 4, 8, 11, 13 – диафрагмы; 5 – теплозащитное стекло; 6 – опорный фотоэлемент; 9, 10 – защитные иллюминаторы; 15 – измерительный фотоэлемент; 16 – светофильтры

Неуймин разработал также прозрачномер, в котором можно менять длину пути света в воде, или, как говорят, измерительную базу. В этом прозрачномере использован принцип многократного отражения светового луча от системы из трех сферических зеркал одинакового радиуса и кривизны.

Наряду с вертикальным зондированием прозрачности представляет интерес и ее регистрация во время движения корабля. Один из первых вариантов такого прибора создан И. Йозефом в 1946 г. Прибор буксировался за кормой корабля на металлическом тросе и соединялся с лабораторией кабелем. Недостаток же этого метода измерения состоял в том, что прибор «рыскал» и не находился постоянно на заданной глубине.

К. Полевицкий сконструировал буксируемый прозрачномер, жестко связанный с кораблем специальной штангой. В 1952 г. Йозеф для непрерывной регистрации прозрачности использовал шахту в трюме корабля «Гаусс». В нее он поместил простейший прозрачномер. Через отверстие в днище корабля в шахту непрерывно поступала морская вода. С помощью такого устройства Йозеф осуществил обширные исследования в Атлантическом океане и Северном море.

Зондирующие буксируемые прозрачномеры позволяют исследовать прозрачность в естественных условиях. Приборы, входящие во вторую группу, дают возможность получить представление о прозрачности лишь в отдельных точках, но благодаря им можно измерить прозрачность в батометрических пробах, взятых практически с любых глубин. Преимущество лабораторных приборов также и в том, что они проще и надежнее в эксплуатации, под контролем непрерывно находится работа всех элементов прибора.

Японские исследователи для определения прозрачности морской воды разработали специальный объективный фотометр-прозрачномер с измерительной кюветой длиной всего 15 см. Источником света в нем служит лампа накаливания, а приемником– фотоумножитель. Прозрачность воды вычисляется из отношений фототоков при прохождении света через пробу воды и воздух.

Рис. 22. Схема прибора СГН-57, используемого в качестве прозрачномера

1 – осветитель; 2 – кювета с водой; 3 – зеркало; 4 – окуляр

В исследованиях американского ученого В. Барта применялся кварцевый спектрофотометр со специальной кюветой длиной 50 см. В нем вода сравнивалась со стандартом (дважды дистиллированной водой).

Упомянутые приборы, особенно японский прозрачномер, имеют малую измерительную базу, которая не позволяет с высокой точностью проводить измерения в водах высокой прозрачности.

В течение последних лет советские исследователи применяют стандартный прибор СГН-57. На рис. 22 представлена оптическая схема СГН-57, используемого в качестве прозрачномера. Узкий пучок света от лампы 1 проходит через слой воды, залитой в кювету прибора 2, и, отразившись от сферического зеркала 3, возвращается в окуляр 4. Наблюдатель, выравнивая яркость фотометрических полей измерительной и сравнительной ветвей прибора, фиксирует определенный отсчет на специальном барабане с делениями. Так как СГН-57 проходит предварительную градуировку, то по этому отсчету можно получить величину прозрачности.

Прозрачность морской воды – важнейшая оптическая характеристика. Приборы и методы ее измерения непрерывно совершенствуются.


    Ваша оценка произведения:

Популярные книги за неделю