Текст книги "Охотники за частицами"
Автор книги: Виталий Рыдник
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 2 (всего у книги 17 страниц)
Под бешеным натиском новых идей рушатся основы старой физики, казавшиеся тогда монолитной твердыней. Среди физиков воцаряется растерянность. Уж слишком быстро все рухнуло…
Воспаленному мозгу неискушенных исследователей начинает казаться, что в природе все дозволено. У страха глаза велики, у несдержанного любопытства – еще более. Ошеломленная публика требует каждый день новых сенсаций. Физика вдруг стала модной наукой. И кое-кто из ученых рангом помельче не выдерживает…
За шквалом истинных открытий надвигается устрашающий шквал «псевдооткрытий».
За «икс-лучами», как скромно назвал свое открытие Рентген, разумея под «иксом» еще не познанную природу этих лучей, за радиоактивными лучами – их исследуют в те годы супруги Кюри – на свет нарождается целый сонм других всевозможных «лучей». Чтобы их занумеровать, уже не хватает всех букв алфавита.
Они и невидимы, эти «лучи» – спасительное свойство! – которое страхует их «первооткрывателей» от мгновенного разоблачения. Они и всепроникающи – поди докажи, что это не так. Вот эти «лучи» – чисто «животного» происхождения, а те испускаются только некоторыми минералами. И автор новых «лучей» подносит к вашим глазам целую коллекцию разнообразнейших камней. Они имеют друг с другом лишь то общее, что не имеют ничего общего с мифическими «лучами».
Были и шарлатаны, были и жертвы «научных» галлюцинаций. Последних как-то особенно жалко – как и всех тех, кто заблуждается совершенно добросовестно, чьи «глаза видят то, что хочет видеть ум».
Американский физик Роберт Вуд с усмешкой (немало и горечи в этой усмешке) вспоминает свой визит к французскому коллеге Блондло – «открывателю N-лучей». Блондло усадил Вуда в затемненной комнате, включил источник невидимых лучей и стал объяснять Вуду, что с помощью вот этой призмы он разлагает «N-лучи» в спектр. Вуд вежливо слушал. Затем Блондло стал «водить» Вуда по спектру, называя разные его оттенки. Вуд по-прежнему вежливо поддакивал. Затем «сеанс» окончился. Блондло казался оживленным и очень усталым. Вуд поблагодарил, вежливо распрощался и уехал.
И только потом рассказал своим спутникам о цене этой вежливости. Во время «сеанса» Вуд просто-напросто снял со стола и сунул в карман ту самую призму, с помощью которой Блондло разлагал свои «N-лучи». Так что, во всяком случае, Блондло мог видеть что угодно, но только не спектр своих «лучей».
Сенсации, сенсации! А ведь в то время не одни лишь любители легких сенсаций, но даже и более серьезные ученые не догадывались о том, что физика только-только выбирается из острейшего кризиса, в который вверг ее луч… обыкновенного, каждодневно видимого нами света.
Война научных миров
Ни в одной области физики ученые не поломали в борьбе столько копий, как в вопросе о природе света. Знаменитую поговорку «Ученье свет, а неученье – тьма» в недавние времена можно было перефразировать как «Ученье о свете – тьма».
Нам придется снова ненадолго заглянуть в великую книгу истории. Откроем те ее страницы, которые повествуют о научных подвигах Исаака Ньютона. Мы без труда убедимся в величайшей широте «спектра» его научных интересов.
Кстати, сам спектр – тоже открытие Ньютона. Кроме механики, он немало занимался и оптикой. Казалось, нельзя было пройти при этом мимо такого интересного и в те времена совершенно загадочного вопроса, как вопрос о природе света. Но Ньютон прошел. А вернее, уделил этому вопросу слишком мало внимания. Если учесть масштабы его гения, это равносильно полному пренебрежению. И в этом проявляется характернейшая черта ньютоновской манеры работать. Главное для него – получить результат, а результат пусть объясняют другие. Но все-таки, что не вполне справедливо, корпускулярную теорию света ведут от Ньютона.
Нагретые тела светятся, испуская крошечные световые «искры» – корпускулы. Ненагретые тела светятся, отражая корпускулы. Попадая в глаз, эти частички и вызывают ощущение света. Корпускулы разных цветов имеют разную массу.
Что же, все это можно сегодня прочитать в школьном учебнике физики под рубрикой «Взгляды Ньютона на природу света». Дальше можно бы привести такой мысленный диалог Ньютона с «нашим корреспондентом»:
– Вы согласны с вышесказанным, уважаемый сэр Айзек?
– Не могу сказать, что не разделяю этого взгляда, досточтимый мой собеседник. Но могу сказать, что я не вполне доверяю этой сомнительной гипотезе.
– А какая же несомненная, уважаемый сэр?
– Я гипотез не строю! Все гипотезы сомнительны, мой друг. Я полагаю, что предпочтение правильной из них отдаст время.
– Вы, простите, уклоняетесь от ответа, сэр Айзек!
– Мой друг, вы правы. Я работаю с данной гипотезой за неимением лучшей, но не требуйте от меня еще, чтобы я признал ее правильной.
«Наш корреспондент» откланивается. На пороге его встречают ученики:
– Ну, что сказал великий учитель?
– Да ничего, ни да ни нет!
– Это его скромность! Он никогда ни во что окончательно не верит!
– Ну, а вы-то? – спрашивает огорченный «корреспондент».
– А для нас световые частички так же ясны, как божий день! Мы горой стоим за эту идею.
И действительно, весь восемнадцатый век стояли горой – грозно и… недвижимо. Во всяком случае, первое утро девятнадцатого века застает эти представления о свете почти в том же младенческом состоянии, что и во времена сэра Айзека.
Пока что и «старый враг» дремлет. Собственно, он на каких-нибудь несколько лет моложе представлений, о которых мы только что говорили. Светом во времена Ньютона занимались не только в Англии. И в 1672 году в Парижскую академию наук поступает «Трактат о свете» голландца Христиана Гюйгенса.
Париж в те годы – центр мира. Парижская академия наук – центр ученого мира. Со всех концов Европы шлют туда свои работы ученые и считают честью для себя, когда эти работы выходят в свет в Париже. Но всяко бывает в этом веселом городе: бывает, что работы годами валяются в шкафах академиков, бывает, что и вовсе пропадают.
Обижаться? Не стоит. И Гюйгенс терпеливо ждет целых восемнадцать лет. Наконец, за пять лет до смерти, он получает свежие оттиски своего «Трактата».
В нем доказывается, что свет – это продольные волны в некоей нематериальной среде, которая впоследствии получит название эфира. Сложные геометрические построения, формулы – вот это уже не ньютоновское «ни да ни нет», а суровое и точное изложение взгляда. Теория кажется убедительной. Она, кроме того, имеет еще преимущество перед своей соперницей в том, что, в отличие от той, правильно решает задачу о преломлении света.
Но сторонников в восемнадцатом веке она почти не находит. Тут числом не возьмешь: тогда, на нашу сегодняшнюю мерку, физиков почти не было!
Первое утро девятнадцатого века видит оживление в стане сторонников волновой теории Гюйгенса. Собственно говоря, все это оживление производит один человек – англичанин Томас Юнг. Без преувеличения сказать, биография одного только Юнга могла бы снять со всех англичан обвинение в чопорности и холодном темпераменте. Циркач, музыкант, математик, языковед, физик – и все это на полном серьезе, на высочайшем уровне и в прямом и переносном смысле.
Да, такой человек может оживить целую науку! Действительно, «на минуточку» заглянув в застывший храм оптики, Юнг сразу же делает крупнейшее открытие – открывает интерференцию света. Оно и определяет крутой поворот в ходе войны обеих теорий.
Через двадцать лет – после трудов французской «могучей кучки» в составе Этьена Малю, Доминика Араго и, наконец, Огюстена Френеля – о корпускулярной «ньютоновской» теории света никто и не вспоминает. Разгром ее кажется полным и окончательным.
Вплоть до сокровенных тонкостей поведения света – все объяснила волновая теория. А спустя тридцать лет Джемс Максвелл, наконец, выясняет, что за волны – свет. Оказывается – электромагнитные.
Сомнительная победа
«Тебя погубят твои же дети» – эти знаменитые слова древнего предостережения можно начертать у дверей любой новой научной теории.
Да, это так. Научная теория переживает робкое детство и могучую юность, когда теория словно шутя расправляется с труднейшими задачами, недоступными для ее предшественниц. Со временем к ней приходит и зрелость, когда теория словно разливается вширь, охватывая новые, ею же предсказанные явления, устанавливая контакты с другими областями науки. Это время ее торжества, время наивысшего расцвета… Затем подкрадывается старость – в непрерывных сражениях с новыми фактами, открытыми благодаря самой же теории, но которые она бессильна объяснить.
Тогда наступает, на первый взгляд, застой в теории. Ее верные приверженцы выбиваются из сил, пытаясь как-то оживить ее. Другие бессильно опускают руки и уходят в другие области науки, где положение не кажется таким безнадежным.
Но остаются еще и третьи. В тиши кабинетов они вынашивают дерзкие идеи, которые уже никак не лезут в тесные рамки старой теории. Неприметные вначале, эти идеи в один действительно прекрасный день рушат стены того же дома, в котором они родились. Вот когда наука делает прыжок вперед!
Так случилось и с учением о свете в конце прошлого века. После первых внушительных побед волновой теории оптика быстро вышла на широкую практическую дорогу. И – совершенно закономерно – за решением вопроса о природе света на повестку дня стал вопрос: а как, собственно говоря, возникает сам свет?
– Стоило ли ломать голову! – воскликнет неискушенный читатель: нагрей любое тело, и оно начнет светиться.
Правильно. Это видно и без особых умственных усилий. Но все же, почему нагретые тела испускают свет?
Наш неискушенный критик, кажется, задумался. Ну ничего, пускай думает – это полезно. Десятки теоретиков думали над этим с виду простым вопросом десятки лет.
Трудностей здесь было сразу несколько. Во-первых, что испускает свет при нагревании тел? Очевидно, то, из чего они состоят, – атомы. Свет – это электромагнитные волны (что доказал Максвелл). А электромагнитные волны испускает любой электрический заряд при своем движении (Максвелл это установил «на бумаге», а Герц – в своих знаменитых опытах).
То, что атом в целом электрически нейтрален, физиков уже не смущает. Коль скоро были произнесены слова «атом в целом», то это уже доказывает, что ученые додумались до «атома не в целом». Действительно, уже кончается девятнадцатый век, идея электрона носится в воздухе и только ждет своего воплощения в открытии Томсона.
Можно перескочить через кой-какие нерешенные «мелочи» и сразу заявить: электромагнитные волны испускаются электронами, движущимися в атомах. Чем сильнее нагрето тело, тем интенсивнее это движение, тем более яркий свет вырывается из атомов.
Все? Нет, не все. Электромагнитные волны уносят с собой энергию. Откуда они ее берут? От электрона, конечно. Поэтому, излучая волны, электрон вынужден замедлять свое движение.
Теперь второе обстоятельство. В электромагнитном излучении зарядов должны, как непреложно доказывает теория, присутствовать волны всевозможных частот. Как говорят физики, спектр этого излучения должен быть непрерывным.
Если бы вы «нацелили» свой радиоприемник на такой электрон, то не было бы необходимости в его настройке: электрон был бы слышен на всех волнах. А пустив электронное излучение на призму, вы должны были бы получить сплошную цветную полосу на экране.
– Солнце за меня! – воскликнете вы и будете правы. Солнце, действительно, «выдает» практически именно такой спектр. Но не единственный же оно источник света на свете. И лампочка за меня! – тоже верно.
Но намочите в соленой воде тряпочку, высушите и подожгите ее. Чем не источник света?
А посмотрите на его свет сквозь призму. Вам долго придется искать взглядом в полнейшей темноте, пока вы не натолкнетесь на узенькую желтую линию. Вместо непрерывного спектра – сплошной провал, и на нем одна-единственная линия! То есть электромагнитные волны от тряпочки, вымоченной в соли, имеют одну-единственную частоту.
Я нарочно привел такой старинный пример, чуть ли не вековой давности. Сегодня подобные примеры бросаются вам в глаза на каждом шагу. Взять хотя бы неоновые вывески, в которых, кстати говоря, светятся не только неон, но и аргон, криптон и другие газы.
Что-то здесь тоже не видать непрерывного «всецветного» спектра! Подвел электрон! А вернее, подвела теория. Выходит, есть и такие непредусмотренные ею условия, при которых получается, как говорят, линейчатый спектр. Что же это за условия? Физики той поры только беспомощно разводят руками.
Согласно кривой Рэлея – Джинса интенсивность излучения в области коротких волн должна неограниченно возрастать. Кривая Вина – Голицына, напротив, плохо ведет себя в области длинных волн. Пунктирная кривая показывает, как удачно Планк «сшил» оба эти закона. Эта кривая отлично оправдывается на опыте.
Что ж, пойдемте дальше. Физика в те годы весьма усердно изучает свечение при нагревании тел. Оно так и называется «тепловым излучением». Уже известный нам Людвиг Больцман и австрийский физик Иозеф Стефан находят точное математическое выражение словам «чем горячее тело, тем оно ярче светится». А другой австриец Вильгельм Вин и – независимо от него – выдающийся русский физик Борис Борисович Голицын тем временем открывают закон, по которому изменяется цвет свечения тел при их нагревании.
После чего два английских физика – лорд Рэлей и Джемс Джинс – делают попытку объединить эти два закона в один.
Этот объединенный закон должен описать, как изменяется яркость свечения нагретых тел, если «пробежаться» по их спектру.
Но «пробежаться» не удалось. Разразилась катастрофа…
Понятное дело, катастрофа в теории… Она так и получила название «ультрафиолетовой катастрофы». Пока мы путешествовали где-то в области радиоволн и инфракрасных волн, все шло нормально. Пробежали и видимый спектр, удалились в фиолетовую область и тут заметили, что бежать становится все труднее. Вместо спуска, как подсказывает здравый смысл, перед нами – гора, да и какая! Чем дальше залезаешь в ультрафиолет, тем она круче.
И оставили путешественники попытки забраться на эту гору. А физики-теоретики оставили всякую попытку понять, откуда взялась эта гора. Нет, не может быть, чтобы по мере увеличения частоты света его яркость бешено росла! Если бы это было так, мир был бы залит чудовищными потоками ультрафиолетовых, рентгеновских и гамма-излучений!
Закон Рэлея – Джинса рухнул. И потянул за собой в пропасть всю теорию излучения, всю старую теорию света. Если теория с железной логикой приводит к абсурдному закону – это крах всей теории.
Хватит с вас хотя бы этих двух трудностей? Наверное, хватит. Теперь надо подумать, как из них выбраться…
Рождение «количества»
Большинству ученых вторая трудность кажется серьезнее. Среди них – сорокалетний профессор Берлинского университета Макс Планк. Сорок лет – это может показаться много. Иной ученый уже от двадцати до тридцати «выложится до дна» и в остальные годы будет лишь счастливо пожинать плоды своей яркой вспышки. Планк к тому времени – довольно известный ученый, автор солидных трудов по теплофизике, механике и во многих других областях. «Глубокий ученый, прекрасный человек», – с уважением отзываются о нем коллеги. Но не более. Великим или гениальным его никто не называет, а в сорок лет уже нет надежды, что назовут. Да и не нужно это Планку. «Улыбка истины – дороже всех наград!»
И вот эта-то «улыбка» пока ускользает от него. Есть два закона, хороший каждый в своем «царстве», – закон Вина, отлично работающий в области коротких волн, и злосчастный закон Рэлея – Джинса, как раз никуда не годный в этой области. Но зато виновский закон плох там, где все-таки рэлеевский закон как будто бы вполне приемлем – в «царстве» длинных волн.
Планк после долгих раздумий выбирает, как ему кажется, путь наименьшего сопротивления: пытается каким-либо образом «сшить» оба упомянутых закона. В математике такая портновская операция называется интерполяцией.
Интерполяционную формулу и ищет Планк. Наконец она появляется на свет – плод долгих и трудоемких расчетов. Остается проверить ее на опыте. Проверка производится – и груда расчетов летит в корзину! Не подошла формула!
Тем временем коллеги Планка – спектроскописты – производят новое тщательное измерение спектра теплового излучения. В октябре 1900 года Планк узнает об этом результате. И начинаются «героические две недели».
Бывает так: вдруг все, чем жил до сих пор, отодвигается на задний план, перед глазами день и ночь стоит заветная задача, сутки за сутками сливаются в один бесконечный день, метущийся в вихре мыслей. Растет бумажная груда, уже не знаешь, где начало, где конец, где основное, где второстепенное. Накал мысли достигает такой яркости, что кажется, еще минута – голова разлетится на куски. И вдруг наступает тишина…
Прозрение. Пришло прозрение. И уже не нужно лихорадочно рыться в груде бумаг, ловить ускользающие мысли. И вообще ничего не нужно. Мысли выстроились стройными рядами, как на параде. И все так удивительно, так потрясающе просто! Но в душу уже снова закрадывается беспокойство. Надо докладывать. Как преподнести открытие? Ведь прозрение пока осенило лишь его одного.
Надо признаться, основания для беспокойства у Планка есть. Очень радостно, просто замечательно, как результаты измерений тютелька в тютельку укладываются на новую кривую. И формула не выглядит громоздкой и отвратительно неуклюжей – почти верное свидетельство ее безошибочности!
Но… но в ее основе лежит предположение, подрывающее основы из основ старой физики. Той физики, в стенах которой вырос Планк и которой он сам отдал немало сил.
Это предположение о квантах энергии.
Классическая физика со времен Ньютона считает, что любая энергия, какое бы происхождение она ни имела, приобретается ли она, отдается ли телами – она непрерывна. Она расходуется, переносится, приобретается так же ровно и бесперебойно, как вытекает вода из крана.
Кажется даже смешным утверждать обратное. Еще никто не видел, чтобы свеча то вспыхивала, то гасла, излучая световую энергию, чтобы камень, летящий в пропасть, дергался, рывками набирая скорость и энергию.
Планк уже убежден, что так оно, в сущности, и есть. Но убедить в этом других – пусть даже только физиков! Что ни говори, а Планк беспокоится не зря.
От кванта до фотона
19 октября 1900 года Планк сделал сообщение о своем открытии – квантах энергии – на заседании Берлинского физического общества. Ученые – народ вежливый, доклад Планка был встречен с «некоторым интересом». Планк на большее и не рассчитывал. Он еще сам не понимал колоссального значения своей работы.
А назавтра начинаются опять будни. Надо снова не торопясь пройти торным уже путем рассуждений и обосновать – попытаться обосновать – новую формулу. Но очень скоро Планк убеждается в том, что формула не желает обосновываться. Ей нет места в старой доброй почве классической физики.
Теперь уже не спеша проходят год за годом. Формулой Планка интересуются экспериментаторы, охотно пользуются ею в своих исследованиях теплового излучения. Но ни Планк, ни кто-либо другой не пытаются расширить поле деятельности планковских квантов.
Так проходит пять лет. И в широко известном немецком журнале «Физическое обозрение» появляется небольшая статья никому раньше не известного автора. В этой статье сотрудник швейцарского патентного бюро Альберт Эйнштейн пытается объяснить совершенно необъяснимые свойства интереснейшего физического эффекта. Открытие этого эффекта связано опять же с именем Генриха Герца. А его исследование – с именем Филиппа Ленарда.
…Наверное, многие из вас прочли замечательную книгу Митчелла Уилсона «Жизнь во мгле». Помните одного из самых мрачных персонажей книги – профессора Ригана? Так вот, Риган – это портрет Ленарда, «пересаженного» на американскую почву. Талантливый исследователь, зараженный и в конце концов погубленный микробом неутолимого тщеславия.
Да это же драма шекспировского масштаба! Всего лишь за два года до открытия Рентгена Ленард, изучая «лучистую субстанцию», выпускает ее через тонкое металлическое окошко из разрядной трубки. И что же: она сохраняет свое действие в воздухе. Ленард получил первые рентгеновы лучи – но он не догадался об этом! Он думал, что в воздух выходят те же лучи, что и бегущие в трубке, – то есть электроны.
И лишь когда Рентген делает действительное открытие, Ленард спохватывается. Теперь он понял, мимо чего прошел. Теперь можно втихомолку локти кусать.
Ленард поступает иначе. Он начинает кричать на всех научных перекрестках о том, что первооткрытие знаменитых лучей принадлежит именно ему. Но физики не поддерживают его домогательств. Они согласны со старейшиной английских физиков Габриелем Стоксом, который ворчливо заметил, что «Ленард, быть может, открыл рентгеновы лучи в своем мозгу, тогда как Рентген направил их в кости других людей».
Так родилось озлобление. Ленард работает, но в душе он затаил ненависть ко всему научному миру. Пройдут долгие годы, и это подспудно тлевшее низменное чувство вдруг вспыхнет ярким пламенем. Вместе с гитлеровскими выродками Ленард будет рьяно изгонять из Германии «проклятую еврейскую теорию относительности» вместе с ее автором. И за измену науке, измену человечеству он получит свои иудины тридцать сребреников: гитлеровская «академия наук» торжественно переименует рентгеновы лучи в «лучи Ленарда». Что ж, Ленард достиг, чего хотел.
Он умер в 1947 году, когда советские люди уже забили осиновый кол в могилу «арийского духа» и похоронили мрачнейшую пору в истории человечества. Умер, непрощенный и забытый современниками.
Но история науки не забыла Ленарда. Она помнит, что важнейшими сведениями о фотоэффекте физика обязана ему.
Генрих Герц открыл, что ток в разрядной трубке усиливается, если освещать катод ультрафиолетовым светом. Двенадцать лет спустя, на самом пороге нового века, Ленард выясняет, что катод при таком освещении выбрасывает электроны. А еще спустя три года он обнаруживает сразу два поразительных свойства нового явления.
Оказалось, что электроны вылетают из катода лишь до тех пор, пока частота света не перейдет некоторый предел. После этого явление мгновенно исчезает – словно ножом отрезали. А если оно существует, то увеличение освещения увеличивает только число электронов, вовсе не меняя их энергию.
Оба эти свойства в корне противоречили тому, что предсказывала волновая теория света. В самом деле, не все ли равно, какая энергия поступает в металл вместе со световой волной? Раз она поступает, она должна приобретаться электронами. Она должна приводить к их вылету из металла. А чем больше эта энергия, тем большей должна быть и энергия электронов.
Между тем на опыте ничего даже близко похожего!
Кто же ответит на этот вопрос? А это зависит от того, кто первый не только воспримет новые представления Планка, но и усвоит их. Им оказался Эйнштейн.
Свет «работает» в фотоэффекте не как волны, показывает он. Свет ведет себя здесь как потоки частиц. Ударила такая частица по электрону, передала ему свою энергию – и вылетел он из металла. Но вылетел лишь в том случае, если ему передана достаточная энергия. Каждая световая частица несет с собой планковский квант энергии! Мал квант – нет фотоэффекта. А энергия кванта просто пропорциональна его частоте.
Чем сильнее свет, тем больше в нем квантов. А чем больше квантов, тем больше они могут выбить электронов, конечно, при условии, что у каждого из квантов хватит на это энергии. Ведь каждый квант света «ударяет» только по одному электрону.
Так… торжествующая победа волновой теории света над своей «корпускулярной» соперницей оказалась сомнительной. Проходит век, и та снова поднимает голову. Фотоэффект, который бессильны вызвать волны, вызывают частицы. Кажется, опять разгорится вековая война обеих теорий.
Нет, этого не произойдет. Оттого, что обнаружен фотоэффект, не перестали существовать интерференция, дифракция, поляризация света, а их никакими частицами не объяснишь. Свет – это и волны и частицы одновременно!
Но как это может быть, как это себе представить?! А представить это действительно трудно. Не один десяток лет физики двадцатого века вживались в это представление. С «частицей-волной» света – спустя двадцать лет из уст американского физика Гильберта Льюиса она получит название «фотона» – в науку вошла первая двуликая сущность. Время показало, что такой двуликости не избежать ни одному предмету нашего мира. Но об этом разговор еще впереди.
Казалось бы, фотоны могли и не ждать до 1905 года. Еще за двадцать лет до того Аристарх Аполлонович Белопольский, замечательный русский астроном, заметил, что хвосты у комет можно объяснить отталкиванием кометного вещества солнечными лучами.
Световое давление! Его действительно открывает и измеряет несколько лет спустя – не в бескрайних космических просторах, а в тесных стенах скромной лаборатории – столь же скромный Петр Николаевич Лебедев.
Град фотонов, бомбардирующих поставленную на их пути поверхность! «Застревая» в ней, отражаясь от нее, фотоны передают телу то количество движения, которым они обладали «в полете». Пусть очень слабеньким будет этот град, пусть Лебедеву для обнаружения его потребуется потрясающая по своей чувствительности аппаратура, – давление света прямо указывает на существование фотонов. Так же, как давление газа на стенки сосуда было за много лет до того объяснено существованием молекул, их ударами о стенки.
Все это так. Но волны тоже переносят с собой количество движения. Тоже отдают его телам, на которые «натыкаются» при своем распространении. И формула этого давления, которую теоретики вывели для света – электромагнитных волн, – отлично согласуется с первыми же опытами Лебедева.
Да, к сожалению, давление света – это одно из тех немногих явлений, где результаты расчета что с помощью электромагнитных волн, что с помощью фотонов – абсолютно одинаковы. Потому-то фотону и пришлось ждать еще несколько лет, пока не применили мысль о нем к другому, более «удобному» для его открытия явлению. Если уж говорить более точно, то была открыта не новая частица. Открыто было новое важнейшее свойство света.
Почему же в обыденной жизни никто из нас не замечал отдельных квантов света? Прежде всего, конечно, потому, что каждый из них несет с собой чрезвычайно малую порцию энергии. Но даже и не в этом главное, а в том, что они слишком быстро следуют друг за другом. Обычная двадцатисвечовая лампочка испускает в каждую секунду неисчислимые их полчища – 60 миллиардов миллиардов!
Не то что глаз, никакой самый быстродействующий автомат не сосчитает их все поодиночке. А на глаз пенять нечего: с очень неважной быстротой срабатывания (на том и основана иллюзия непрерывности смены кадров в кино) он соединяет неимоверно высокую чувствительность.
Много лет спустя замечательный физик Сергей Иванович Вавилов провел очень поучительный опыт. Он посадил в темную комнату человека, выждал, пока глаза его привыкнут к темноте, а затем включил очень слабенький источник света. Такой слабенький, что по сравнению с ним светлячок показался бы солнцем! Этот источник давал считанные кванты света в секунду. И что же? Глаз сосчитал их почти поодиночке!
Так в жизнь вошла вторая частица, рядом с которой люди жили веками, даже не подозревая о ее существовании. Частица света – фотон.
И не только света. Из фотонов состоят и радиоволны, и инфракрасные лучи, и ультрафиолетовые, и рентгеновы, и гамма-лучи. Все то, что называется электромагнитными волнами, может быть с равным основанием названо фотонами.
Понятно, что свою двуликую природу фотоны проявляют в разных явлениях. В одних они волны, в других – частицы. Отдать предпочтение какой-либо из «сторон медали» нет никаких оснований. Нет оснований и не будет.
Солнце атомного мира
Атом «в целом» электрически нейтрален. Атом «в нецелом» выбрасывает электроны. И не только электроны. Магнит, поднесенный к радиоактивному препарату, расщепляет вылетающие из него частицы на три пучка. Одни магнитный ветер сбивает вправо, другие – влево, третьи – оставляет без влияния. Мы уже догадываемся, что частицы в одном луче несут на себе отрицательный заряд, в другом – положительный, в третьем нет никакого заряда.
Об этом догадался шестьдесят лет назад и молодой ученик почтенного профессора Томсона. Он только недавно работает в тихой кембриджской лаборатории – этот молодой новозеландец. Он покинул далекую идиллическую страну на краю света, страну тучных пастбищ и голых гор, склоны которых залиты окаменевшими потоками лавы и окутаны паром гейзеров. Он переплыл моря и океаны, чтобы «приземлиться» в старинном английском городке и заняться физикой.
Сегодня такой поступок не вызвал бы никаких особых эмоций. Но в начале века, когда физиков, занимавшихся атомом, было куда меньше, чем хотя бы электронов в атоме урана, – над ним и склонился молодой Эрнест Резерфорд, – что ж, в те годы это было подвигом.
Подвиг в ожидании научных подвигов! Они не заставляют себя долго ждать. Первый из них – «разбор по косточкам» радиоактивного излучения. Несколько лет напряженной работы – и в 1903 году Резерфорд может сообщить ученому миру, что альфа-лучи – это потоки дважды заряженных положительным электричеством частиц, по массе очень близких к атомам гелия, а бета-лучи – это потоки незадолго до того открытых электронов. Гамма-лучи, как определяет Мари Кюри, сходны с рентгеновыми лучами.
Секрет происхождения гамма-лучей будет ждать окончательной разгадки еще добрых два десятка лет. Лишь в 1926 году немецкая исследовательница Луиза Майтнер докажет, что это – электромагнитное излучение, возникающее после радиоактивных превращений.
То, что из атома урана выбрасываются положительные частицы, Резерфорда не удивляет. Еще не нашлось в природе такого повара, который мог бы состряпать атом из одних лишь электронов. Они же мгновенно разлетятся в разные стороны, распихиваемые могучими силами взаимного отталкивания.
Значит, в атоме должен обязательно найтись такой положительный цемент, чтобы он мог связать воедино враждующие электроны. Как выглядит атом в таком случае? Наподобие пирога, полагает Томсон. Электроны – словно изюмины, увязшие в клейком тесте пирога. Похоже на пудинг – излюбленное блюдо англичан. Что ж, может быть и так – Резерфорд до поры до времени не сомневается в такой «картине». Правда, он часто обсуждает с коллегами и другие модели атома.
В 1909 году он вместе со своими учениками Эрнстом Марсденом и Гансом Гейгером ставит на пути радиоактивных излучений небольшие листочки металла. Установка предельно проста: ампулка с радием, тонкий металлический листочек, да еще экран – стеклянная пластинка, покрытая слоем цинковой обманки. Как выяснил Крукс, такой экран светится каждый раз, когда на него попадает заряженная частица.