Текст книги "Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии"
Автор книги: Виктор Бродянский
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 18 страниц)
Глава первая.
ВЕЧНЫЙ ДВИГАТЕЛЬ ПЕРВОГО РОДА: ОТ РАННИХ ПОПЫТОК ДО «ОПЫТНЫХ ОБРАЗЦОВ»
Мартын:
Что такое perpetuum mobile?
Бертольд:
Perpetuum mobile, то есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому… видишь ли, добрый мой Мартын: делать золото – задача заманчивая, открытие, может быть, любопытное – но найти perpetuum mobile… о!..
А. С.Пушкин. «Сцены из рыцарских времен»
1.1. Зарождение идеи
Трудно более кратко и выразительно сказать о значении энергетики для человечества, чем это сделал А.С. Пушкин устами средневекового монаха. Отозвавшись о создании золота как «задаче заманчивой», Бертольд совсем иначе говорит о perpetuum mobile: «Если найду вечное движение, то я не вижу границ творчеству человеческому…» Все, что позже было сказано о роли энергетики, не идет дальше этих замечательных слов.
Может быть и не с такой предельной ясностью, но эта мысль действительно впервые была сформулирована в «рыцарские времена» – в XIII в.
Поистине пророческое высказывание о будущем техники, которое не могло бы возникнуть без понимания значения универсального двигателя, принадлежало средневековому монаху. Это был великий Роджер Бэкон (ок. 1214– 1292), названный современниками doctor mirabilis (удивительный доктор); это, впрочем, не помешало церковникам продержать его почти 20 лет в тюрьме.
Вот что он писал: «Прежде всего я расскажу о чудесных творениях человека и природы, чтобы назвать дальше причины и пути их созидания, в которых нет ничего чудодейственного.
…Ведь можно же создать крупные речные и океанские суда с двигателями и без гребцов, управляемые одним рулевым и передвигающиеся с большей скоростью, чем если бы они были набиты гребцами. Можно создать и колесницу, передвигающуюся с непостижимой быстротой, не впрягая в нее животных. Можно создать и летательные аппараты, внутри которых усядется человек, заставляющий поворотом того или иного прибора искусственные крылья бить по воздуху, как это делают птицы. Можно построить небольшую машину, поднимающую и опускающую чрезвычайно большие грузы, машину огромной пользы……Наряду с этим можно создать и такие машины, с помощью которых человек станет опускаться на дно рек и морей без ущерба для своего здоровья».
Это и прогноз, и призыв: «Ведь можно же!», а не сказочные мечты вроде ковра-самолета или скатерти-самобранки. И главное в этих прогнозах, как отчетливо понимал Бэкон, – это двигатель,без которого самостоятельное движение ни судов, ни колесницы, ни летательных аппаратов невозможно.
Отсюда видно, что Роджер Бэкон был, по-видимому, первым, кто, говоря языком современных терминов, достаточно ясно представлял себе первые три из основных функций техники: энергетическую, технологическую и транспортную, и, более того, необходимость обеспечить первую для развития двух остальных.
Он не упомянул только логическую функцию, необходимую для помощи при умственной деятельности человека. Первый шаг в этом направлении сделал в том же XIII веке его младший современник, другой монах – Раймун Луллий (1235-1316), сконструировавший первую машину для решения логических задач.
При всей гениальности Р. Бэкона [2]2
Интересно сопоставить прогноз Р. Бэкона с прогнозом (сделанным в 1900 г.!) американского ученого-астронома Ньюкома: «Все данные современной науки указывают, что никакие возможные сочетания известных веществ, типов машин и форм энергии не позволят построить аппарат, практически пригодный для длительного полета человека в воздухе». Эта ученая тирада была произнесена за три года до полета братьев Райт!
[Закрыть]и творческих способностях Р. Луллия, они не смогли бы создать ничего подобного, если бы к этому времени не сформировался определенный уровень представлений о дальнейших потребностях и возможностях развития техники, опирающихся на скромные, но достаточно весомые ее успехи. В частности, уже «витало в воздухе» представление о том, что создание универсального двигателя, пригодного для привода машин, возможно.
Потребность в таком двигателе была естественной для ремесленного производства тесного средневекового города, где не хватало рабочих рук.
Ответом на эту потребность и были попытки создания perpetuum mobile, первые проекты которого появились в том же XIII в., в котором жил и работал Р. Бэкон. Теперь, в XX в., легко критиковать ошибки изобретателей XIII в. Современному школьнику, который «проходил» закон сохранения энергии, очевидно, что путь, на который вступили тогда изобретатели универсального двигателя, был ложным. Однако судить на этом основании с высокомерием и даже с иронией (так бывает) о трудах мастеров и изобретателей «мрачного средневековья» нельзя.
В.И. Ленин писал «Исторические заслуги судятся не по тому, что не далиисторические деятели сравнительно с современными требованиями, а по тому, что они далисравнительно со своими предшественниками» [1.1]. С этих позиций смелая попытка оторваться от «биологической» и «ветро-водяной» энергетики представляет огромный шаг вперед. Работа средневековых изобретателей perpetuum mobile была необходимым этапом проб и ошибок, на базе которых постепенно выкристаллизовался закон сохранения энергии (а затем все те необходимые научные и технические результаты, которые он помог получить).
У самых гениальных мыслителей, ученых и инженеров античного мира, даже таких, как Архимед (ок. 287-212 до н. э.), нет и намека на идею об универсальном двигателе. Не двинулся в этом направлении и такой инженер, как Герон Александрийский (ок. 1 в.), несмотря на то, что он знал намного больше, чем средневековые мыслители. Даже движущая сила нагретого воздуха и водяного пара была ему хорошо известна. Его «эолопил» (рис. 1.1) – прообраз реактивной паровой турбины – был только интересной игрушкой, так же как и устройство, открывавшее двери храма (рис. 1.2). Мысль о том, чтобы приспособить его к делу – использовать как двигатель для машин, даже не возникала. Это и понятно: была дешевая рабочая сила многочисленных рабов, домашних животных, наконец, воды и ветра.
Вспомним, что в Римской империи на одного рабовладельца приходилось в среднем 10 рабов (а у некоторых патрициев их было даже до 1000), Если принять мощность каждого раба за 0,1 кВт, то (даже не считая работу животных) «энерговооруженность» среднего римлянина превышала 1 кВт, и богатого патриция – 10 кВт. Это примерно соответствует современному уровню!
Почему идея создания универсального двигателя, как и первые его проекты в виде ppm, появилась именно в XIII в.?
Это, конечно, не случайность, а результат, исторически обусловленный ходом развития производительных сил средневекового общества; XIII в. занимает в нем особое место. Именно в это время уже в достаточной мере проявились преимущества развитого феодального общества перед рабовладельческим.
Рост городов [3]3
В Германии в течение XIII в. было основано около 400 городов; аналогичный процесс шел и в других странах Европы. В домонгольской Руси было так много городов, что скандинавы называли ее «Гардарик» – страна городов.
[Закрыть]приводил к созданию крупных городских общин с самостоятельным управлением. Бюргерство, поддерживаемое королевской властью, укреплялось в борьбе с феодалами, и влияние его росло. Труд свободного ремесленника, практическое мастерство (art) стали, в отличие от античных времен, занятием, достойным уважения. Объединявшие ремесленников профессиональные корпорации – цехи были достаточно сильны, чтобы отстаивать интересы своих многочисленных членов. В Париже, например, по данным податной переписи 1291 г. было 4159 цеховых мастеров. В этих условиях мастера были заинтересованы в развитии техники и технологии своей области.
Рис. 1.1. «Эолопил Герона»
Рис. 1.2. Тепловой привод Герона для открывания дверей храма
Количественный и качественный рост ремесленного производства и торговли привел к тому, что средневековая Европа стала собирать и осваивать технические новинки и изобретения со всех стран: из Византии, арабских владений, Индии и даже Китая. Грамотность перестала быть только привилегией монахов – она широко распространяется среди городского населения (вспомним хотя бы средневековый Новгород). Наиболее «весомо и зримо» технический прогресс проявился в XIII в. в архитектуре и строительстве. Стремящаяся вверх каркасная ажурная готика требовала высокого инженерного искусства.
К XIII в. относится и открытие первых университетов (Кембридж – 1209, Падуя – 1222, Неаполь – 1224, Саламанка – 1227 г.), только Оксфорд был основан еще в 1167 г.
Список технических изобретений этого времени (как европейских, так и ввезенных извне и получивших распространение) достаточно солиден. Это усовершенствованный компас (в виде иглы), порох, бумага (ХП-ХШ вв.), механические часы, очки, стеклянные зеркала, литье чугуна, шлюзы на каналах, ахтерштевень (вертикальная стойка руля) и бушприт на мирских судах и даже соление сельди (XIII в.). В последующем все эти изобретения совершенствовались и распространялись. Это дало основание Д. Берналу сделать вывод о том, что «технические изменения происходили на протяжении всего средневековья, и они действительно представляют собой его наиболее значительный вклад в научную цивилизацию будущего» [1.9].
Как ни странно, находятся историки техники, разделяющие давно опровергнутые представления о средних веках как о «мрачном провале» истории человечества. Один из них написал так: «Мы можем смело опустить следующие полторы тысячи лет. Шестнадцатый век начал с того, на чем остановился первый» [1.16].
Мы не будем настолько «смелыми» и продолжим поучительное изучение средневековой техники, обратившись после обзора общей картины к той ее части, которая относится к perpetuum mobile.
1.2. Первые проекты механических, магнитных и гидравлических ppm
Сейчас трудно установить точно, когда, кем и где был предложен самый первый проект ppm. Есть данные о том, что в трактате великого индийского математика и астронома Бхаскара Ачарья (1114-1185 гг.) «Сиддханта Сиромани» (ок. 1150 г.) есть упоминание о ppm. Об этом же говорится в сочинении араба Фахра ад-дин-Ридваи бен Мохаммеда (ок. 1200 г.).
В Европе первые известия о ppm связаны с именем одного из выдающихся людей XIII в. – Виллара д'Оннекура – французского архитектора и инженера.
Как и большинство деятелей того времени, он занимался и интересовался многими делами; строительством соборов, созданием грузоподъемных сооружений, пилы с водяным приводом, военной стенобитной машины и даже… дрессировкой львов. Он оставил дошедшую до наших дней «Книгу рисунков» – альбом с записями и чертежами (ок. 1235-1240 г.), которая хранится в Парижской Национальной библиотеке. Для нас представляет интерес прежде всего то обстоятельство, что в этом альбоме приведены рисунок и описание первого из достоверно известных проектов perpetuum mobile.
Оригинальный чертеж автора показан на рис. 13а.Текст, относящийся к этому чертежу, гласит: «С некоторого времени мастера спорят, как можно было бы заставить колесо вращаться само собой. Эгого можно достигнугь посредством нечетного числа молоточков или ртути следующим образом» (следует рисунок).
Рис. 1.3. Вечный двигатель Виллара д'Оннекура: а – оригинальный рисунок; б – модель
Д'Оннекур не пишет, сам он придумал двигатель или заимствовал эту идею у другого мастера. Да это и не так важно. Главное – существо дела. Обратим прежде всего внимание на то, что автор совершенно не сомневается, что заставить колесо вращаться само собой можно. Вопрос только в том, какэто сделать! В тексте говорится о двух вариантах ppm – с молоточками и с ртутью. Начнем с первого. Из текста в сочетании с рисунком идею изобретения можно понять. Поскольку число молоточков на ободе колеса нечетное, всегда с одной стороны их будет больше, чем с другой. В данном случае слева будет четыремолоточка, а справа – три.Следовательно, левая сторона колеса будет тяжелее правой и колесо, естественно, повернется по направлению против часовой стрелки. Тогда следующий молоточек повернется в том же направлении и перекинется на левую сторону, снова обеспечивая ее перевес. Таким образом колесо будет постоянно вращаться.
Идея колеса с грузами или тяжелой жидкостью, неравномерно распределенными по окружности колеса, оказалась очень живучей. Она разрабатывалась в самых различных вариантах многими изобретателями в течение почти шести веков и породила целый ряд механических ppm.
Анализ этих двигателей мы проведем позже и рассмотрим их совместно, с общей позиции.
Обратимся ко второй, не менее интересной идее ppm, возникшей тоже в XIII в. и также породившей большую серию изобретений. Речь идет о магнитномppm, предложенном Петром Пилигримом из Мерикура [4]4
Иногда его называют Петром Перегрином или по месту рождения Пьером де Мерикуром.
[Закрыть]в 1269 г. В отличие от практика-инженера д'Оннекура Петр Пилигрим все же был больше «теоретиком», хотя занимался и экспериментами; поэтому его проект ppm, показанный на рис. 1.4, выглядит скорее как принципиальная схема, чем как чертеж.
Рис. 1.4. Магнитный ppm Пьера де Мерикура
По мнению Петра, таинственные силы заставляющие магнит притягивать железо, родственны тем, которые заставляют небесные тела двигаться по круговым орбитам вокруг Земли [5]5
Напомним, что в то время господствовала геоцентрическая система мира Птолемея.
[Закрыть]. Следовательно, если дать магниту возможность двигаться по кругу и не мешать ему, то он при соответствующей конструкции реализует эту возможность. Насколько можно судить по схеме, двигатель состоит из двух частей – подвижной в неподвижной. Подвижная часть – это стержень, на одном (внешнем) конце которого закреплен магнит, а другой (внутренний) насажен на неподвижную центральную ось (axis). Таким образом, стержень может двигаться по окружности подобно стрелке часов. Неподвижная часть представляет собой два кольца – наружное аи внутреннее b, между которыми находится магнитный материал с внутренней поверхностью в форме косых зубцов. На подвижном магните, установленном на стержне, написано «северный полюс» (pol. septentrionalis), на магнитном кольце – «южный полюс» (pol. meridianus). Отметим, кстати, что Перегрин первый установил два вида магнитного взаимодействия – притяжение и отталкивание и ввел обозначения полюсов магнита – северный и южный.
Автор, по-видимому, полагал (точно понять это из описания нельзя), что магнит, установленный на стержне, будет поочередно притягиваться к зубцам магнитов, установленных в кольцевой части, и таким образом совершать непрерывное движение по окружности.
Несмотря на явную неработоспособность такого устройства, сама идеи воспользоваться магнитными силами для создания двигателя была совершенно новой и очень интересной. Она породила в дальнейшем целое семейство магнитных ppm. В конечном счете не нужно забывать, что и современный электродвигатель работает на магнитном взаимодействии статора и ротора.
Несколько позже появились и ppm третьего вида – гидравлические. Идеи, положенные в их основу, не были столь новыми; они опирались на опыт античных водоподъемных сооружений и средневековых водяных мельниц.
1.3. Механические ppm
Все механические ppm средневековья (и многие более поздних времен) основаны на одной и той же идее, идущей от д'Оннекура: создании постоянного неравновесия сил тяжести на колесе или другом постоянно движущемся под их действием устройстве.Это неравновесие должно вращать колесо двигателя, а от него приводить в действие машину, выполняющую полезную работу.
Все такие двигатели можно разделить на две группы, отличающиеся видом груза – рабочего тела, К первой группе относятся те, в которых используются грузы из твердого материала (назовем их условно «твердотельными»), ко второй – те, в которых грузом служат жидкости (назовем их «жидкостными»). Количество разных вариантов ppm в обеих группах огромно. Описывать их здесь нет смысла, так как это уже сделано многими авторами [2.1-2.6].
Мы ограничимся лишь несколькими образцами, на примере которых можно проследить их эволюцию и ход дискуссий о возможности получения работы.
Начнем с твердотельных двигателей. Примерами могут служить три варианта ppm, разработанные в разное время и в разных местах. Итальянский инженер Мариано ди Жакопо из Сиены (недалеко от Флоренции) в рукописи, датируемой 1438 г., описал двигатель, повторяющий по существу идею д'Оннекура, однако здесь дана уже четкая конструктивная проработка (рис. 1.5). Грузы, представляющие собой толстые прямоугольные пластины, закреплены так, что могут откидываться только в одну сторону. Число их нечетно; поэтому слева при любом положении колеса всегда будет больше пластин, чем справа (в данном случае 6 против 5). Это и должно вызвать непрерывное вращение колеса в направлении против часовой стрелки.
Рис. 1.5. Двигатель Мариано ди Жакопо
Англичанин Эдуард Соммерсет, тоже разработавший механический ppm в виде колеса с твердыми грузами и в 1620 г. построивший его, принадлежал, в отличие от своих предшественников, к самым аристократическим кругам общества. Он носил титул маркиза Вустерширского и был придворным короля Карла I. Это не мешало ему серьезно заниматься механикой и разными техническими проектами. Эксперимент по созданию двигателя был поставлен с размахом. Мастера изготовили колесо диаметром 14 футов (около 4 м); по его периметру были размещены 14 грузов по 50 фунтов (около 25 кг) каждый. Испытание машины в лондонском Тауэре прошло с блеском и вызвало восторг у присутствующих, среди которых были такие авторитеты, как сам король, герцог Ричмондский и герцог Гамильтон, К сожалению, чертежи этого ppm до нас не дошли, так же как и технический отчет об этом испытании; поэтому установить, как оно проходило по существу, нельзя. Известно только, что в дальнейшем маркиз этим двигателем больше не занимался, а перешел к другим проектам.
Александро Капра из Кремоны (Италия) описал еще один вариант ppm в виде колеса с грузами. Из рис. 1.6 видно, что двигатель представлял собой колесо с 18 расположенными по окружности равными грузами. Каждый рычаг, на котором закреплен груз, снабжен опорной деталью, установленной под углом 90° к рычагу. Поэтому грузы на левой стороне колеса, находящиеся по горизонтали на большем расстоянии от оси, чем справа, должны всегда поворачивать его по часовой стрелке и заставлять непрерывно вращаться.
Рис. 1.6. Двигатель Александро Капра
Заманчивая идея использовать силу тяжести для создания простого и надежного двигателя оказалась чрезвычайно живучей. Может показаться невероятным, но она не потеряла привлекательности для изобретателей и благополучно дожила до XX века. Как пример, можно привести такой «двигатель, использующий силу тяжести», запатентованный во Франции в 1972 г. неким Ж. Леландэ (патент № 2.102.884, класс F 03, 3/00). Его изобретение не только по идее, но и по конструкции точно повторяет «двигатель» Александре Капра, показанный на рис. 1.6. Разница состоит только в том, что грузы представляют собой не шары, а прямоугольные бруски, и подвешены не прямо к колесу, а на висящей на нем цепи.
В официальном описании изобретения сказано «двигатель вырабатывает энергию… снимаемую с его оси без всякого расхода топлива или толчка извне… Автоматическая система «цепь-грузы» надета на зубчатое колесо, вращающееся в подшипнике»… Описание заканчивается так. «Энергия, вырабатываемая патентуемым двигателем, может заменить дорогостоящую энергию, вырабатываемую сложными двигателями, использующими дорогое топливо, энергию тепловых и атомных электростанций, гидростанций». Из этого описания видно сразу, что изобретение сделано в наше просвещенное время, а не в каком-то мрачном средневековье, когда электростанций вообще не было!
Однако для дальнейшего разбора таких «гравитационных двигателей» нужно вернуться к старым временам и вспомнить машины с жидкими грузами.
Жидкостные механические двигатели (с жидкими грузами) принципиально ничем не отличаются от описанных твердотельных. Разница состоит только в том, что вместо перемещающихся относительно колеса грузов используется жидкость, переливающаяся при его вращении так, чтобы ее центр тяжести перемещался в нужном направлении.
Все такие двигатели в разных видах развивали идею уже упоминавшегося индийца Бхаскара (1150 г.). По описанию можно представить лишь принципиальную схему двигателя [2.6] так, как она показана на рис. 1.7. На окружности колеса под определенным углом к его радиусам закреплены на равных расстояниях замкнутые трубки, заполненные тяжелой жидкостью – ртутью. В зависимости от положения колеса жидкость переливается либо во внешнюю, либо во внутреннюю часть каждой трубки, создавая таким образом разницу веса правой и левой частей колеса.
Не вдаваясь в подробности [6]6
Историки отмечают, что древнеиндийские ученые, как правило, не прибегали к подробным доказательствам, рассчитывая, по-видимому, на достаточно сообразительного читателя. Они просто давали схему и писали: «Смотри».
[Закрыть], Бхаскара пишет: «…наполненное таким образом колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно само по себе вращается».
Рис. 1.7. Принципиальная схема двигателя Бхаскара
Все последующие проекты механических ppm как с жидкими, так и с твердыми грузами в сущности повторяли ту же идею: создать так или иначе постоянный перевесодной стороны колеса над другой и тем заставить его непрерывно вращаться. Можно было вместо одного колеса использовать несколько связанных между собой колес, как в проекте Вильгельма Шретера (1664 г.); можно было сделать грузы в виде перекатывающихся шаров или роликов или тяжелого ремня. Все они и множество других проектов описаны в литературе [2.3-2.6].
Была даже идея заставить колесо катиться, сделав его в виде барабана, разделенного вертикальной перегородкой (рис. 1.8). По обе ее стороны должны были быть залиты две жидкости разной плотности (например, вода и ртуть). Автор этой идеи Клеменс Септимус был учеником Галилея (правда, ничем не прославившимся). Описание этого двигателя помещено в книге известного физика Джиованни Альфонсо Борелли (1608—1679 гг.), члена Флорентийской академии [7]7
Флорентийская академия (Академия дель Чименто – «академия опытов») была одним из первых научных обществ, возникших в XVII в. в Европе. Ее основателями были Е. Торричелли и его ученик В.Вивиани, продолжавшие традиции Галилея. Ее иностранным членом состоял Р. Бойль.
[Закрыть]. Любопытно, что в комментариях Борелли доказывал неработоспособность этого двигателя. Он считал, что нет никаких причин, чтобы барабан Септимуса катился; если бы он и сдвинулся, то достиг бы положения равновесия и остановился. Основанием для такого утверждения служила мысль о том, что сила тяжести, действующая одинаково на все части устройства, не может стать причиной постоянного нарушенияравновесия. Сила тяжести не может производить работу, передаваемую какой-либо машине, которая ее использует.
Очевидно, что Борелли уже хорошо понимал, что силы тяготения не могут производить работу, если тело находится на горизонтальной плоскости и его центр тяжести не опускается.
Средневековая идея применения для создания двигателя сил тяжести, которую отвергал еще Борелли, не исчезла со временем; она дожила до XX в. и была использована в самом передовом направлении техники – для космических полетов. Правда, это произошло в фантастическом романе Г. Уэллса «Первые люди на Луне» (1901 г.). Его герой Кэйвор изобрел необычайный материал – «кэйворит», сделанный из «сложного сплава металлов и какого-то нового элемента – кажется, гелия». Этот материал был непроницаем для тяготения. «Какие чудеса, какой переворот во всем!» – восклицает другой герой книги – Бэдфорд. «Например, для поднятия тяжести, даже самой громадной, достаточно было бы подложить под нее лист нового вещества и ее можно было бы поднять соломинкой».
Нетрудно представить себе, что самое обыкновенное колесо, даже без хитрых грузов, стало бы само вращаться со страшной скоростью, если бы под одну его половину положить лист «кэйворита». Половина его, сохранившая вес, всегда перетягивала бы другую, ставшую невесомой; средневековая идея ppm была бы легко реализована.
Кэйвор и Бэдфорд использовали «кэйворит» для полета на луну. Такой же материал под названием «лунит» был применен коротышками – героями известного романа-сказки Н. Носова «Незнайка на луне», чтобы улететь с луны на землю. Но коротышки пошли еще дальше – нашли другой материал – «антилунит», нейтрализовавший действие первого!
Рис. 1.8. Катящийся вечный двигатель, описанный Д. Борелли
Д. Борелли не был первым, кто отвергал уже в то время возможность создания механического ppm, основанного на использовании сил тяжести. Его позиция отражала более общую тенденцию. Пока изобретатели механических ppm ломали головы над очередными вариантами своих машин, постепенно развивалась механика (и не без их помощи – оттачивала свои положения в дискуссиях с ними). Она вырабатывала новые представления, которые шли дальше античной механики и позволяли количественно точно определить результат одновременного действия на тело нескольких сил. Тем самым новая наука подрывала «под корень» идейную базу механических ppm. Действительно, если выработано четкое правило, как подсчитать результат действия сил, прилагаемых к колесу (или колесам) ppm, то всегда легко определить, будет колесо в равновесии или нет. В первом случае двигатель работать не сможет. Если же, напротив, будет доказано, что неравновесие будет существовать постоянно, то ppm «может жить». Дело, таким образом, сводилось к установлению соответствующего закона механики (точнее, ее раздела – статики).
Первый шаг в этом направлении сделал, по-видимому, великий Леонардо да Винчи (1452-1519 гг.). В рукописи 1515 г. он ввел понятие, которое теперь называется в механике «статическим моментом силы». Со времен Архимеда был известен закон, который определял условия равновесия прямого рычага. Он составлял содержание VI теоремы Архимеда из сочинения по механике: «Два соизмеримых груза находятся в равновесии, если они обратно пропорциональны плечам, на которые эти грузы подвешены». Другими словами (рис. 1.9, а), если силу тяжести (т. е. силу, с которой грузы притягиваются к земле) изобразить в виде отрезков Аи Всоответствующих направлений и длины, то условие равновесия будет таким: А: В= Ob: Оа, или, что то же самое (следует из свойств пропорции), А ∙ Оа= В ∙ Ob.
Рис. 1.9. Схема, иллюстрирующая развитие Леонардо да Винчи VI теоремы Архимеда: а – прямой рычаг; б – ломаный рычаг
Таким образом, условие равновесия рычага может быть выражено и так: «Произведения веса каждого груза на длину того плеча рычага, на котором он подвешен, должны быть равны».
При всей его важности закон рычага Архимеда не мог быть использован для анализа равновесия любого колеса механического ppm, работающего с твердыми или жидкими грузами. Дело в том, что для такого анализа нужно было уметь определять равновесие и для случая, когда сила веса груза направлена не под прямым угломк рычагу, как у Архимеда, а под любым углом– острым или тупым. Действительно, стоит посмотреть на рис. 1.3 или 1.6, чтобы увидеть, что сила тяжести направлена под самыми разными углами к соответствующим радиусам колеса. Выделим для примера два груза: один (В)расположен выше оси колеса, а другой (А)ниже (рис. 1.9, б).Как решить задачу в этом, более общем случае?
Леонардо нашел такое решение, он показал его на двух примерах (соответствующие рисунки из его рукописи показаны на рис. 1.10). Относящийся к левому рисунку текст предельно ясен: «Пусть AT– рычаг, вращающийся вокруг точки А.Груз Оподвешен в точке Т.Сила А уравновешивает груз О.Проведем линии: АВперпендикулярно ВОи АСперпендикулярно СТ.Я называю ATдействительным рычагом, АВ и АС– «потенциальным рычагом». Существует пропорция N: О= АВ: АС».
Рис. 1.10. Рисунки Леонардо да Винчи, относящиеся к равновесию рычага
Очевидно, что это соотношение может быть переписано так: О ∙ АВ= N∙ АС.Другими словами, для равновесия ломаного рычага нужно, чтобы произведения сил на соответствующие «потенциальные рычаги» были равны. Эти «потенциальные рычаги» есть не что иное, как проекциирычага ATна соответствующие оси, перпендикулярные направлению сил, т.е., говоря посовременному, на «плечо силы». Условие равновесия состоит в равенстве статических моментов сил,т.е. произведений сил на проекции плечей рычага на оси, перпендикулярные направлению этих сил.
Аналогичное соотношение было выведено Леонардо для случая, показанного на правом рисунке. Здесь F: М= АС: AM.Из него тоже вытекает равенство моментов сил: F ∙ AM = М ∙ АС.
Вернемся к примеру, показанному на рис. 1.9, б.Пользуясь условием Леонардо, получаем, что равновесие наступит при соблюдении равенства А∙ а’O= В∙ b’О.Для проверки возможностей любого механического ppm нужно сложить все моменты сил (грузов), расположенных справа от оси О, и то же проделать с грузами, расположенными слева. Первые стремятся повернуть колесо по часовой стрелке, вторые – против. Если общая сумма моментов будет равна нулю (так как их знаки противоположны), то колесо не двинется – наступит равновесие.
Таким путем легко показать, что несмотря на все ухищрения, сумма моментов сил у всех механических ppm равна нулю. Леонардо понимал это очень четко. Стоит только вспомнить слова из одной его записи по поводу ppm: «Искатели вечного движения, какое количество пустейших замыслов пустили вы в мир!»
К сожалению, записи Леонардо остались неизвестными ни его современникам, ни ближайшим потомкам. Только с конца XVIII в. началась планомерная расшифровка его тетрадей.
Задачу создания теории, позволяющей научно подойти к анализу механических ppm и ответить на вопрос об их работоспособности, решил англичанин Джон Уилкинс, епископ Честерский (1599-1658 гг.). Его работа была вполне самостоятельна, поскольку ему не были известны результаты Леонардо, полученные более чем на столетие раньше.
Уилкинс опубликовал свою теорию в книге «Математическая магия», вышедшей в 1648 г. на английском (а не на латинском!) языке. В ней совершенно четко говорится о статическом моменте силы – одном из основополагающих понятий статики.
Изобретатели механических ppm с грузами, основываясь на известном архимедовом законе рычага, полагали, что чем дальше от центра колеса находится груз, тем он сильнее должен поворачивать колесо. Это правило действительно верно, но только для горизонтальногорычага (именно его рассматривал Архимед). Распространять его на все грузы, независимо от их расположения на окружности колеса, неверно. Уилкинс наглядно это показал. Ход его мыслей легко проследить с помощью рис. 1.11, на котором изображена схема колеса с центром в точке А.Горизонтальный диаметр DCколеса разделен на 10 равных частей, и через соответствующие точки проведены концентрические окружности с центром в точке А.В разных точках окружностей расположены одинаковые по весу грузы, характер движения которых надо определить. Если грузы расположены на горизонтальном диаметре, задача решается просто – на основе правила Архимеда. Например, груз в 1 фунт в точке Суравновесит 5 фунтов в В,поскольку плечо АСв 5 раз длиннее плеча А В.Уилкинс отмечает, что это соотношение останется в силе, даже если груз будет в точке Еили F,лишь бы они были на той же вертикали, что и С.Другая ситуация возникнет, когда грузы будут находиться не на горизонтальном диаметре, а выше или ниже его, как, например, грузы G, Нили I, К.Уилкинс правильно понял, что в этом случае сила, с которой они будут стремиться вращать колесо в соответствующую сторону, будет другой. Очевидно, что грузы I, Квообще в этом отношении бесполезны, а грузы Gи Нпотеряют часть своей силы. Чтобы определить действие каждого из них, нужно умножить его вес на длину того отрезка горизонтального диаметра, который находится между точкой Аи вертикальной линией, проходящей через точку привеса груза. Для грузов Gили Нэто будет точка М.