355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Нюхтилин » Будущее настоящего прошлого (СИ) » Текст книги (страница 13)
Будущее настоящего прошлого (СИ)
  • Текст добавлен: 24 сентября 2016, 04:12

Текст книги "Будущее настоящего прошлого (СИ)"


Автор книги: Виктор Нюхтилин


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 13 (всего у книги 20 страниц)

Свет

Почему именно свет? Выше мы уже сказали – потому что это всемирное явление. Темноты или отсутствия света (в точном значении этих слов) во вселенной нет. Чтобы это понять, следует более полно и более точно охарактеризовать свет как таковой, поскольку мы обычно «светом» называем лишь видимый свет, так называемый «естественный свет», который воспринимается сетчаткой нашего глаза. На самом же деле воспринимаемый нами свет составляет всего лишь очень и очень небольшую долю всего излучения, существующего в природе. Весь мир пронизан невидимым нам световым излучением и по физическому смыслу никакой темноты и даже тени в мире нет, потому что это невидимое нами излучение проникает повсюду. Вот мы и привели более точный термин для света – излучение. В дальнейшем станет видно, что это не только более точная его характеристика, но и принципиально важная для нашей работы. Этот термин («излучение») очень правильно выражает суть того, что делает свет. Пока на этом остановимся и посмотрим, что это даст нашему методу «зеркального» или «обратного» восприятия действительности, который мы сейчас будем пробовать.

Говоря об излучении, мы всегда предполагаем какой-то его определенный источник. Мы каждый раз знаем, кто или что испускает то или иное излучение. Теперь, если мы это перевернем, то у нас получится (должно получиться), что наоборот свет не излучается, а поглощается источником. То есть получится никуда не пригодная чепуха. Чтобы это преодолеть, следует посмотреть, откуда берется излучение. Когда мы на это посмотрим, то увидим, что излучение всегда там, где совершается какая-то работа и какое-то взаимодействие. Сами по себе источники излучений, как объекты или физические сущности, производят испускание света не потому, что они именно вот такие излучающие, а в силу того, что в них происходят какие-то процессы микромира,связанные с энергетическими затратами или приобретениями. Это для нас уже интереснее, не так ли? Получается, что любое излучение (свет) всегда присутствует только там, где совершается какое-либо физическое взаимодействие или идет какой-то физический процесс именно на атомно-молекулярном или субатомном уровне. Любое излучение – это сумма излучений каждого отдельного электрона. Следовательно, искомый нами физический процесс случайных воздействий будет обязательно и неразрывно связан с испусканием света именно в той зоне материи, которую мы определили ранее в качестве подвергающейся руководящему случайному воздействию извне природы.

Совершенно очевидно, что это как раз то, что нам требуется, поскольку, как мы помним, если бы не случайности, то всё было бы мертвым и обособленным друг от друга, а случайное нарушает стабильность и делает мир живым. Совершенно очевидно, в свою очередь, что в стабильном состоянии атомов или молекул не происходит ничего такого, что нам было бы интересно. Нас особо должны увлекать те моменты жизни микромира, когда там теряются стабильные состояния и совершаются всякие случайные перемены. Это всегда происходит с затратами энергии, затраты же энергии всегда сопровождаются излучением, то есть светом, и, следовательно, мы как минимум не промахнемся мимо своей цели, если будем следить только за картиной излучения (света) в этих процессах.

Вот тут, на этом этапе мы и начнем применять наш познавательный метод и начнем рассматривать процессы зеркально. И что мы здесь обнаружим? Мы обнаружим одновременностьфизических процессов перехода атомов из стабильных состояний с наличием излучений. Как-то так принято говорить всегда в физике, что вот атом меняет свое состояние, «испуская при этом фотон». При этом. Считается, что электрон спрыгнул с уровня куда-то ниже по своей расчетной орбите, и при этом совершил излучение. С этим никто не спорит. Ну, почти никто. Нам же придется посмотреть на это совершенно по-другому, а именно – произошло излучение, и вследствие этогоэлектрон сменил свой энергетический уровень. То есть, у нас – все наоборот согласно нашей методе.

Конечно же, физики-ядерщики, специалисты квантовых теорий, да и оптики сейчас с нами будут не соглашаться, но смеем уверить даже их – они не приведут достаточно веских доводов. Все происходит не просто одновременно, но даже одномоментно, это они должны признать. Мы ничего с ног на голову в физической картине не ставим, мы просто меняем местами причинность одномоментно происходящих физических процессов излучения и производимой им работы.

Разнообразные движения или энергетические изменения элементарных частиц просто «в нахалку» трактуются в качестве причин излучения. Хронометрических оснований для этого никаких нет. И не может быть. Потому что, кто там кого сопровождает, излучение какой-то процесс, или данный процесс идет вслед излучением, можно предполагать только через причинные преференции, то есть умственно. Физически же это процесс совместный и единомоментный. Излучение считается «сопровождающим» всего лишь потому, что вот таков взгляд на мир обычного ученого – исследуется некий процесс, он кажется важным и поэтому все остальное считается побочным, и, (главное), этот важный процесс физически регистрируется, исследуется, и человек считает его доминирующим, а поэтому все остальное считается сопровождающим. Это легко увидеть даже на том, как подаются примеры взаимодействий уже в начальной физике. Любой учитель, описывая столкновение двух шаров, исходит из того, что причина столкновения находится в катящемся шаре. Но это не причина столкновения. То, что шар катится, имеет свою причину, но это относится лишь к причинам, порождающим его движение. Столкнутся шары не по этой причине. И даже не по той причине, что некий шар встанет на пути другого шара, так как причина этому находится в том, что кто-то его установил на данную траекторию. Причина в том, что физические тела не могут проходить сквозь друг-друга. Это – истинная причина. Остальные – искусственные. И когда покатится от удара покоящийся шар, то причина тоже не в том, что его толкнул другой шар, а во втором законе Ньютона. И так далее. Причина всегда реализуется только там, где происходит единомоментное взаимодействие. Все остальное – надуманные причины предварительных предпосылок к главной причине. В этом единомоментном взаимодействии просто дико применять хронологию – что сработало раньше: второй закон или непроницаемость физических тел? Никакой хронологии здесь по смыслу процесса нет, ибо все было одномоментно, но учитель физики будет всегда говорить именно о том, что столкновение шаров «приводит» к тому-то и тому-то, то есть сопровождаетсяразличными физическими процессами, имеющими вид таких-то и таких-то физических законов и особенностей. Но нам же должно быть теперь уже понятно, что именно данные физические законы и произвели данное столкновение. Они и были основными причинами. Не будь их шары или прошли бы сквозь друг друга, или просто прислонились бы один к одному.

И, если мы уже такие понятливые, то мы увидим относительно процессов, связанных с излучением, что самое важное в момент подобных взаимодействий – это непосредственно излучение, (испускание фотонов), посредством чего и совершается данное действие, приводящее к изменению стабильного мира. Еще раз акцентируемся на этой мысли – не какой-то процесс сопровождается излучением, а излучение совершает данный процесс.

На этом также пока остановимся, ибо нам надо как-то собирать постоянно вместе всё, что следует из свойств и характеристик света, чтобы всякий раз не вести отдельной локализованной темы, а увязывать разговор в единую комплексную картину.

Теперь посмотрим, может ли излучение производить какое-либо физическое действие, которое мы за ним предполагаем. Несомненно может, поскольку излучение – это и есть непосредственно действие, так как за излучением стоит некая энергетическая затрата, то есть происходит какая-то физическая работа. Любой фотон, поглощаясь частицей вещества, сообщает этой частице какое-либо количество движения. Излучаясь частицей вещества, фотон точно также сообщает ей определенное реактивное движение. То есть фотон может совершать работу. Поскольку любое взаимодействие фотона – это, прежде всего, взаимодействие с электроном, то относительно этой самой маленькой и самой легкой частицы можно с уверенностью сказать – фотон может механически с ней сделать все, что захочет, если он этого захочет. Фотон вполне может осуществлять работу на электроне.

Пожалуй, нам следует здесь еще раз оговориться, что вопрос, которого мы касаемся – очень узкий, и касается он только того, что происходит на элементарном уровне, когда стабильные состояния атомов и других ассоциаций частиц нарушаются. Надо сказать, что атом чудовищно стабилен. Например, сила притяжения, которая удерживает космические объекты весом в миллионы тонн на скоростях в сотни километров в час (!), считается по классификации энергетических потенциалов не самым сильным взаимодействием. Оно вообще считается слабым. А какое самое сильное? А самое сильное то, которое содержит части атомного ядра вместе. Оно так и называется – «Сильное взаимодействие».

При таких невероятных силах, и ядро, и сам атом, должны быть исключительно стабильными, а вся наша природа должна быть уравновешена в подобном состоянии намертво и никаких изменений ни в веществе, ни в связях между атомами или молекулами быть не должно. Мир при таких силах внутри и вокруг атомного ядра должен быть просто распределен по обособленным, неизменным и невзаимодействующим атомам. Но природа находится в постоянном изменении, где вещество вступает в разнообразные взаимодействия, благодаря чему наш мир, собственно, и существует в этом живом виде – в движении и в различных превращениях своих состояний. Что заставляет мир выходить из сцепленного мертвого паралича? Как очень частный случай, например, – радиоактивный распад атома, когда атом становится совершенно другим. Как происходит распад? Самопроизвольно. Внешних причин распаду атома нет. Атом сам совершает по самокоманде в какой-то нужный ему самому момент распад и превращение. Случайное? Несомненно. Это абсолютно случайный процесс, который выводит мир из состояния стагнации. Таким образом, это тоже тот процесс, который нас интересует. Данный процесс всегда сопровождается излучением, то есть работой фотонов.

Более общий вид случайного процесса изменения стабильных состояний, (выходящий уже за пределы ядра в его окрестности) – ионизация. Это скромное на вид явление, когда в оболочке атомного ядра становится электронов или больше или меньше, является поистине чудодейственным для природы и вершит в ней все видоизменения веществ. Заряд электрона (или всех электронов атома) противоположен и равен заряду ядра, поэтому атом имеет нейтральный заряд, и не может ни притягиваться, ни отталкиваться другими атомами. Нейтральные атомы могут жить только по соседству, не объединяя подворий и наблюдая друг друга только издалека. Именно ионизация непосредственно обеспечивает возможности межатомных связей и взаимоотношений, потому что как только электрон в составе атома убывает или прибывает, у атома соответственно появляется или положительный или отрицательный заряд. Без ионизации не существовало бы никаких вещей, существовал бы только мир атомов, ничего не знающих друг о друге и не способных соединяться вместе и создавать химические элементы (молекулы). Как происходит ионизация? Например, выбиванием электрона с его места на атомной орбите фотоном, попавшим в пределы атома во время своего полета по своим делам (также совершенно случайный процесс). Это главный вид ионизации – ударная ионизация. При этом у нейтрального атома с потерей электрона появляется заряд, и он начинает взаимодействовать с другим атомом противоположного заряда. Помимо данного способа есть еще почти неисчислимое количество разных вариантов ионизации. Но, во-первых, эта, ударная ионизация, наиболее массовая, а, во-вторых, остальные многочисленные виды ионизации для различных агрегатных состояний веществ, несмотря на то, что мы их здесь не перечисляем (нет надобности), происходят совершенно по тем же причинам, а именно – без всяких причин,абсолютно случайно и безо всякой видимой системы физических предпосылок. При этом все процессы случайной ионизации обязательно сопровождаются излучением фотонов.

Помимо ионизации на микрофизическом уровне происходит еще один процесс, который мы объединим одним названием – переходы молекул, атомов и или атомных ядер из одного состояния в другое. Здесь также все происходит случайно, самопроизвольно и беспричинно, причем, (что следует отметить обязательно) – данный физический факт микромира напрямую признан одним из механизмов возникновения излучений. То есть мы и здесь можем говорить о том, что свет присутствует в качестве деятельного и обязательного компонента перемен. И здесь повторим, что было раньше – мы теперь предполагаем, что не какой-то механизм является причиной возникновения излучений, а наоборот.

Итак, мы видим интересную картину – весь наш неслучайный мир существует в своем разнообразии и в своих живых связях вообще только благодаря случайным процессам! Вот он, тот самый случай, который творит вокруг нас все не случайное! Причем во всех этих процессах участвуют фотоны, то есть свет. Похоже, мы попали на правильный путь, когда выбрали свет.

Теперь немного вернемся назад и вспомним, какие проблемы породило несоответствие размеров фотона размерам элементарных частиц для возможности наблюдения за квантовым миром. Мы говорили, что фотон совсем как громила, который врывается в отдел фарфора и фаянса, бьет там битой всё, что есть, в мелкие кусочки, причем вместе с прилавками, а потом зовет наблюдателя полюбоваться дизайном выкладки товара на полках. В итоге наблюдатель придумывает уничтоженный дизайн сам, по своему вкусу. Сейчас нас интересует другая сторона этого явления – повсеместность данного погрома. Дело в том, что весь невидимый нами свет, охватывающий все уголки вселенной – это те же самые фотоны-погромщики, только с разной длиной волны. Радиоволны, инфракрасные волны, тепловые излучения, ультрафиолет, рентген-лучи, радиоактивное излучение – всё это потоки фотонов, постоянно пронизывающие весь мир во всех направлениях. Это природные излучения. А физики постоянно «заглядывают» в квантовый мир, пуская туда различные направленные излучения, и, соответственно, производя там определенные погромы уже не природного, а рукотворного характера.

Благодаря данному факту даже родился тезис «Наблюдатель создает вселенную». Здесь подразумевается, что не всё так просто теперь в микромире, потому что наблюдатель (ученый-естествоиспытатель) с той или иной целью совершает в него проникновения своими сигналами, которые производят там определенные физические воздействия, и никто теперь уже не может говорить о том, что микромир существует сам по себе и только по условиям своих внутренних процессов. Теперь в этих процессах своими погромами участвует наблюдатель! Кроме того (по версии сторонников данного тезиса), никто теперь не может говорить о том, что данные вмешательства наблюдателей в зону процессов микромира не могли бы порождать «серьезных последствий» для его основы! То есть, сам того не подозревая, человек как бы уже начинает творить новую вселенную вокруг себя, вмешиваясь во взаимоотношения физических первооснов окружающего мира своим активным наблюдением.

Может быть, здесь стоит напомнить о том, что, как и у любой спекуляции, у данной спекуляции есть также некая здоровая ценность, которая, будучи втянутой в систему спекулятивных аргументов, извращается и приобретает мнимое значение. Такая ценность есть, и это непосредственно сам тезис о создании наблюдателем вселенной, который выдвинул Вернер Гейзенберг. Однако Гейзенберг ничего никогда не говорил о том, что создается действительно физическая вселенная. Вернер Гейзенберг провозгласил данный тезис, когда с ироничным удивлением объявил ученому миру, что теперь наблюдатель (ученый) создает вселенную (ее математическую модель) совершенно в соответствии с платоновским методом математизации идей.Он просто раскрыл ученым глаза на то, что с приходом квантовой и ядерной физики, ученые, объявляющие себя сторонниками «линии Демокрита», то есть материалистами, на самом деле, незаметно для себя, давно уже перешли на «линию Платона», то есть на те идеалистические позиции, исходя из которых Платон предлагал считать атомы геометрически правильными телами, поскольку это дало бы возможность сначала геометризовать, а потом и математизировать картину природы. Чем мы занимаемся сейчас? – спрашивал Гейзенберг – разве не тем, что предлагал Платон? То есть, разве не идеалистической математизацией физического мира? Мы (говорил Гейзенберг) именно это и делаем, причем абсолютно в лучших традициях идеалистического пифагорейства и платонизма – создаем математические идеалистические модели мира из своей головы. Вот таким образом понимался им тезис «наблюдатель создает вселенную».

Сейчас этот тезис через факты лабораторных проникновений вдруг уже переносится в микромир непосредственно физически, и теперь ставится не просто задача какой-то оценки масштабов последствий подобного вмешательства, но напрямую ставится цель (чего уж там скромничать!) научиться воздействовать на микромир таким образом, чтобы действительно творить нужный человеку физический мир прямо через сами его основы. Причем задача сначала ставится локальная – например, наваять из молекул и атомов райский остров в океане с идеальным климатом, и начать там жить. А далее – видно будет. Заманчиво. Но, к сожалению, придется сообщить сторонникам данной идеи одно пренеприятнейшее известие – воздействия, аналогичные тем, которые изредка производят наблюдатели на экспериментальных установках, ежесекундно производятся фотонами во всех уголках вселенной в каждый самый короткий момент ее существования.Что здесь можно говорить о тех самых серьезных последствиях? Весь наш мир, как очевидно, это и есть – то самое «серьезное последствие» погромного действия фотонов на микромир.

Свет не просто существует в мире, он заполняет собойвесь мир. Каждый вид излучения имеет свой спектр, который четко фиксируется, но переходы между этими спектрами просто смазаны. Границ нет. Свет существует сплошным единым излучением с разными характеристиками в своих составных частях, и все эти потоки света бомбардируют и атомы, и отдельные элементарные частицы постоянно и очень жестко. Совсем точь в точь, как в лабораторных опытах. То есть весь микромир находится в состоянии непрерывного избиения фотонами, в состоянии полного погрома и беспорядка. Этот красивый мотоциклист постоянно врезается в эту прогуливающуюся толпу, причем не один, а целыми дивизиями. Однако – мир упорядочен и удивительным для данных обстоятельств образом стабилен и прогнозируемо распознаваем. Что же постоянно корректирует это беспорядочное и хаотичное воздействие фотонов и других элементарных частиц, что собирает этот расколоченный фарфор в изящные изделия и выставляет их каждое на свое место? Как это вообще может быть возможным? Это может быть возможным только в том случае, если именно данная бомбардировка как раз и создает и обеспечивает этот порядок.Постоянное сталкивание элементарных частиц с фотонами – это даже не постоянно действующий повсеместный эпизод, это непосредственно форма существования микромира. Если бы фотоны своими ударами не формировали этого порядка, то массовым воздействием подобного рода (а по некоторым подсчетам масса фотонов от всего вещества вселенной составляет около 80 %) они бы просто разрушали вообще любой порядок, который даже эпизодически мог бы создаваться.

Вот теперь, сознательно запнувшись ранее на понятии «работа фотонов», мы вернемся к нему и посмотрим на данное понятие несколько расширенно. Здесь нам становится совершенно очевидным, что подобная «работа», охватывающая весь мир и выводящая микромир из замкнутого и мертвого состояния в режим способности к взаимодействиям, не может пониматься, как только тупо механическая. Весь мир является как бы некоей лабораторией, в которой некий Наблюдатель извне мира проводит операции по организации материи излучением. Такая работа должна пониматься как организационная, корректирующая, созидательная и организующая. То есть – подчиненная определенному плану, определенной информации. Вопрос источника информации мы пока опустим, и разберемся в том, как может всё это сопрягаться в один конгломерат: информация и свет? Ведь, если мы предполагаем, что фотоны (свет) это инструмент практической реализации некоего информационного задания, то фотон должен и понимать информацию, и содержать ее в себе. Почему? Потому что Наблюдатель находится извне мира, а фотон в мире. И если фотон эту информацию от потустороннего Наблюдателя получает, то работать по ней, как по инструкции, он должен в зоне мира уже самостоятельно! Реально ли это?

Вообще-то споров о том, что свет является поставщиком информации, быть не должно. Все знают, что основную долю информации нашему мозгу поставляет именно свет, когда он поглощается зрительными нервами глаза. Но это не ответ на наш вопрос, потому что зрительное снятие информации из света – это момент сиюминутный и вполне механический в своей простой основе, когда волны света отражаются от предметов и попадают нам в зрачок. Смысл этого научного знания велик, и заслуга эта принадлежит арабским оптикам, которые в средние века пришли именно к данному выводу – какие-то лучи от предметов попадают в глаз и создают там картинку. До средневековых арабов еще с античных времен твердо считалось, что, наоборот, из глаз идут лучи, которые ощупывают предметы и передают информацию человеку. Арабы здесь отметились более чем просто развитием оптики, они дали понятие о свете как о носителе информации. Но все равно свет здесь не столько хранит информацию или понимает ее, сколько просто переносит, если быть точным в требованиях к сути процесса. Поэтому вопрос в другом – может ли свет не только передавать текущую информацию, но и хранить ее вне видимого источника этой информации, то есть вне объекта, отражающего данный свет?

Даже не касаясь никаких физических аспектов возможности хранения информации светом, отнесемся к данной гипотезе положительно, потому что для этого есть несомненные физические же основания. Представим себе звезду, которая излучает свет. Этот свет попадает в телескоп и астроном из этого света извлекает информацию о данной звезде. Проще говоря – он ее видит. Вроде бы ничего таинственного. Но теперь представим себе более парадоксальный случай, не столь редкий, кстати, для астрономии. А именно: звезда родилась, прожила свой век и погасла. Через невообразимое количество времени свет от давно угасшей звезды попадает в телескоп того же астронома, и тот видит ту же самую информацию о звезде, которой нет в природе уже миллионы и миллионы лет. Он сможет даже увидеть на ней последние исторические события. То есть, свет, отрезанный от своего источника, шел какое-то непредставимое для человека время через просторы вселенной сам по себе, отдельным массивом, пересекал парсеки и световые годы, неся в самом себе информацию об угасшей звезде. Хранил он информацию или нет? Несомненно – хранил. Что бы там не происходило на его пути, какие бы воздействия он не испытывал, а информацию он донес. Мы знаем, что при этом он обязательно подвергался действию различных внешних излучений, обтекал какие-то физические объекты, проходил через гравитационные поля, испытывал сильнейшие возмущения других полей галактического масштаба, но информация в нем не разрушилась. Следовательно, свет может сохранять и переносить информацию.

Отсюда перейдем еще к одной, пожалуй, самой удивительной способности света – его лучи, накладываясь один на другой, или пересекаясь между собой, никак не воздействуют друг на друга и не смешиваются. То есть – не взаимодействуют! Любой свет – это поток элементарных частиц, а по всем законам физики элементарные частицы должны между собой взаимодействовать, если их траектории пересекаются. Но только не в случае со светом! Каждый пучок света живет закрыто, сам по себе, и, встречаясь, эти пучки просто проходят сквозь друг друга, не нарушая… чего? Естественно, той информации, которую эти пучки содержат. То есть – свет несет информацию файлами! Закрытыми пакетами информации, обособленными через свои взаимно-отсылочные связи! Следовательно, он не только переносит, но и как-то понимаетинформацию, поскольку разделяет ее в себе от любой чужой и не дает в обиду.

Именно благодаря данной особенности света, мы, взглянув в окно, получаем информацию о мире пообъектно. От каждого объекта, от самого маленького и до самого большого, отражается свой пучок света и сразу же начинает сталкиваться с другими пучками. Прежде, чем что-то попало бы в наш глаз, фотоны пересекающихся пучков должны были бы просто перемешаться и представлять из себя невероятную мазню непросматриваемых фрагментов окружения. Но мы видим дерево, гаражи, подъехавшее такси, отдельных людей и т. д. Лучи света от каждого из этих объектов идут в наш глаз, пересекаясь, накладываясь и смешиваясь позиционно в пространстве под разными углами и в полной свободе, но каждая информация по каждому объекту сохраняется в неприкосновенности. Следовательно, информация в составе света – это неструктурное расположение его частиц, это что-то надстоящеенад этими частицами, устраняющее помехи. Тайна этого свойства наукой не разгадана, и нам это тоже не под силу, но вывод можно сделать определенный – свет хранит и передает информацию именно файловым способом, где информация собирается и охраняется модусом какой-то программы, которая обеспечивает подобную цельную группировку неискажаемых ничем сведений. Итак, свет может хранить и понимать информацию, и что нам помешает предположить в данном случае, что он может данную информацию использовать в своей работе, когда он организует микромир, если Кто-то или что-то его этой информацией наделяет?

Теперь посмотрим, что это за информация. Вспомним, что свет – это излучение, а излучение – это кванты. А кванты, как все знают – это наименьшая порция излучения, наименьшая энергия, и, следовательно, наименьшее возможное действие. Любое внешнее воздействие на квантовом срезе происшествий может свершиться только при строго определенном значении энергии.Другое «какое угодное» воздействие, то есть просто как таковое, не будет здесь осуществляться, поскольку в этих случаях необходимы однозначные параметры тех энергий, которые могут поглощаться. Если гвоздь можно забить ударом в 15 килограммов, то его можно забить и ударом в 150 килограммов. Но в квантовом мире квантовый гвоздь можно забить только ударом в 15 кг, а удара в 150 кг он даже не почувствует. Необходимы строго выверенные параметры энергии для осуществления взаимодействия.

Данные же строго выверенные параметры всегда кратны определенному количеству квантов, то есть, проще говоря, величина энергии, необходимая для взаимодействий в каждом случае микромира, набирается из каких-то наименьших квантов. У света – квантовая природа. Следовательно, свет может переносить не просто рабочую информацию, он может переносить ее в строго дозированном для каждого необходимого случая виде. Он может набирать необходимое и нужное действие из этих квантов наименьшего действия. Если нужно 15 кг, то свет может набрать ровно 15 квантовых килограммов из своих минимальных единиц энергии (квантов). Как мы знаем, теория информации, как таковая, также предусматривает необходимую минимальную единицу информации (бит), поскольку любой объем информации не может быть бесконечно делимым. Всегда есть некий квант информации, из которого собирается вся остальная наборка сведений. В данном случае свет, как обладатель в своем составе подобной минимальной формы информации, (кванта минимального действия), вполне укладывается в понятие «информационный носитель». Мы этому рады.

Если вспомнить здесь великое открытие Мопертюи о том, что в природе всегда для каждого необходимого взаимодействия применяется минимально необходимое количество энергии, то, как раз именно свет это прекрасно демонстрирует своими возможностями. Квант – минимум энергии, и самое минимальное действие. Чем большая насыщенность у света, тем больше в нем квантов и, соответственно, энергии, и тем большее действие может быть им произведено. Если свет знает, где и сколько нужно ему затратить энергии, он может из своих квантов собрать ровно минимально необходимый для этого потенциал. Для квантовой природы света это всего лишь дело техники, процесс простого сложения минимальных сил, имеющихся в его распоряжении. Свет с этим легко мог бы справиться и действительно всегда мог бы в рассматриваемых нами взаимодействиях соответствовать закону Мопертюи. Естественно, что он для этого должен быть «умным», чтобы уметь избирать наименьшее необходимое усилие. То есть, фотонами должна руководить какая-то информация, которая знает, какой нужен в каждом случае энергетический уровень.

Однако, фотон сам по себе – это не только частица, но и волна. И поэтому его энергетический уровень (квантовый набор) определяется не его массой, скоростью или зарядом, которого у фотона (как у частицы) вообще нет. Энергию он получает совсем от другого – от своей волны.

Именно волновая природа фотона определяет то, с каким усилием будет производить свое механическое действие фотон как частица. Энергия фотона (его рабочее квантовое усилие) строго пропорциональна частоте, то есть, пропорциональна волновой составляющейсвета. Таким образом, получается, что частота (волновая природа фотона) определяет уровень усилия для совершения работы, а частица (корпускулярная природа фотона) эту работу исполняет в полном соответствии с тем, что задала волна. Зачем мы это повторили еще раз? Чтобы понять окончательно, что «умная» часть фотона находится в его волне. А зачем мы это поняли? Затем, чтобы уяснить, что информация всей работы фотона должна находиться в его волновой составляющей. То есть волна – это ум фотона, это то, чем он понимает.

Определившись, таким образом, с вопросом, где именно хранится информация (в волне), мы получаем очень интересную картину света – волновая природа света знает, куда надо придти и с каким усилием осуществить воздействие, а фотон слушается волну, направляясь туда, куда она приведет, и совершает там работу как частица. Здесь мы подошли к тому моменту, о котором говорили выше как об этапе, который требует определенной смелости для выхода за границы «потрогать и увидеть». Однако здесь нам для подобного шага уже легко набраться смелости, поскольку волновая природавещества в трактовке самой физики, давно уже совершила этот выход за те пределы, которые сама же физика так свято охраняет.


    Ваша оценка произведения:

Популярные книги за неделю