Текст книги "Любителям фантастики — ошибки в книгах и фильмах"
Автор книги: Василий Купцов
сообщить о нарушении
Текущая страница: 1 (всего у книги 3 страниц)
Василий Купцов
Любителям фантастики – ошибки в книгах и фильмах
«Правила игры»
К эксперименту может присоединиться любой желающий. При этом следует помнить, что целью эксперимента является написание статьи, предназначенной для читателей, а не создание полигона для споров между авторами. Потому – поменьше выискивания неточностей в уже написанном тексте, побольше – нового текста, новых фактов, интересных мыслей, заключений. Если же Вы не согласны с написанным, посмотрите сначала – неверно ли оспариваемое заключение в целом, или Вы просто нашли вариант-исключение. В последнем случае можете дополнить статью в надлежащим месте своей поправкой типа: «все сказанное верно, кроме специально оговоренных автором случаев…». Главное правило: нельзя менять чужой текст, можно только добавлять свой! Каждый отвечает за свой текст. Посчитает нужным – исправит.
Предусматриваются две формы работы:
Новый участник, скачав текущий вариант статьи, самостоятельно вносит в нее изменения, не забывая проставлять начало и конец своих вставок. Готовый вариант присылается ведущему проекта для постановки в сеть.
Ведущему проекта пересылается в письме текст вставки, с указанием – в какое именно место это нужно встроить.
Для новых соавторов – не забывайте при этом указать имя и фамилию!
Обсуждения можно проводить в Откровенном разговоре на сайте Никитина или в любом другом месте по договоренности.
Василий Купцов
Любителям фантастики – ошибки в книгах и фильмах – версия 07/03/2001
Ипатов:
Чтобы произведение было фантастическим, в нем должна присутствовать как минимум одна деталь, которую читатель с уверенностью сочтет нереальной в нашем мире. Такой деталью может быть носферату или русалка – дотошный классификатор поместит произведение на полку с табличкой «фэнтези»; ей может быть разумный робот или звездолет – вот и полка «научная фантастика» не пуста; может ей быть и общественное явление вроде всемирного заговора рыжих монголов или бесплатной раздачи еды всем желающим – полагаю, табличка будет «социальная фантастика». Для полноты картины следует еще упомянуть «альтернативную историю» как основанную на весьма яркой и совершенно нереальной детали категорию произведений. Конечно, ярлыки на полках авторам не указ, и мы в любую минуту можем встретить ни страницах очередной книги гоблина, раздающего прямо со своего звездолета бесплатную колбасу по случаю не избрания NN президентом на второй срок… Автор всегда прав. Он хозяин своего мира, и никто не волен запретить ему откалывать там любые коленца без оглядки на классификаторов.
Автор всегда прав. Но иногда автор смешон, а порой жалок, и причиной этого, что должно быть особенно обидно, могут являться те самые нереальные детали, что совсем не всегда играют в произведении заметную роль. Целью этой статьи является анализ подобных ошибок. Мы не пытаемся ограничить авторов в свободе изобретения нереальностей. Мы пытаемся показать, сколь осторожным надо быть там, где реальное соприкасается с нереальным.
На момент написания этой версии статьи мы сосредоточили внимание на нереальных деталях из русла «научной фантастики». Естественные науки особенно безжалостны к пренебрегающим их законами. Специальное замечание для упускающих из виду факт, по ряду причин не включенный в общеобразовательную программу: любой закон состоит из трех частей. Верхушка айсберга – словесное выражение закона, его формулировка (вода кипит при 100 градусах по Цельсию). Вторая, менее заметная, часть – область действия закона (какая именно вода, при каком именно давлении). И третья, почти ускользающая от внимания, часть – предел точности закона в области его действия (при какой температуре закипит одна молекула воды? абсурд!). Когда появляется новый закон, его новизна может относиться к любой из трех частей старого – но независимо от того, более ли он точен, более широк или (бывает и такое) только предлагает новую формулировку, он никогда не нарушает старого. Эйнштейн, да простят нам банальность, не опровергал Ньютона своим релятивизмом – яблоко у обоих падает одинаково. Придумывая новые законы, явления и принципы для своего мира, стоит помнить, что оставленное в этом мире реальным продолжает подчиняться всем законам реального мира… А в любом фантастическом произведении большинство упоминаемого реально. Двери служат для перехода из одного места в другое, килограмм железа весит столько же, сколько килограмм пуха, а человек состоит в основном из воды.
Содержание:
Физика
Глыба справа – поворачивай налево!
Энергетическое оружие
Скорость
О мгновенных перемещениях.
Собственную бабушку топориком…
Еще о перемещениях во времени
Красное смещение, фиолетовое смещение
Лилипуты и великаны.
Химия
О горении
Пожар в космосе
Биология
Злые инопланетные микробы.
О биологическом оружии.
О страшных ядовитых тварях.
О мутациях.
Человек-невидимка.
Психология
Достоверность «исторических» деталей
О сексе с «Аэлитами».
А я с Альдебарана!
Физика
Василий Купцов:
Мы не будем вспоминать хрестоматийных примеров типа: Сколько слонов надо было посадить сверху на жюльверновский Наутилус, что бы он наконец погрузился бы под воду? Другими словами, мы не будем проверять с помощью арифметики фантастические конструкции, в этой сфере уже немало поработали другие авторы. Да и вообще, фантастика «технических достижений» отходит все дальше от современного читателя, становясь все менее интересной из-за того, что сама жизнь становится в техническом плане все фантастичней. Мы попробуем заняться ошибками качественного характера.
Ипатов:
Самая тяжелая ошибка авторов при описании «супертехнологий» – невнимание к следствиям. Если автор сказал, что астероид пролетел так близко от Земли, что задел верхушку Эвереста, и полетел себе дальше, он еще не сморозил чушь. Возможен такой астероид. Но описывая это с точки зрения наблюдателя, как «что-то просвистело в небе», автор совершенно не отдает себе отчета в том, каковы должны быть параметры этого астероида, чтобы описанный полет мог произойти именно так; а параметры эти означают катаклизм таких масштабов, что человек, находящийся на поверхности планеты в ее части, обращенной к трассе этого астероида, умрет быстрее, что сможет что-то заметить. Этот пример чудовищной ошибки намеренно очевиден; однако, забывая о том, что любое описание нереального механизма (хотя бы и такой мелочи, как самозавязывающиеся шнурки) порождает лавину следствий, автор рискует начать противоречить сам себе, окрашивая свой мир в цвета комедии абсурда.
Глыба справа – поворачивай налево!
Василий Купцов:
Моя любимая цитата из «Аэлиты» А. Н. Толстого. Не будем слишком требовательны к великому писателю, но запомним сие как яркий пример несоответствия возможностей человека и созданных им вещей описываемой ситуации. Смотреть фильм с боем в космосе весьма занимательно, снимать его, пользуясь компьютерной графикой, в принципе несложно, но вот если представить это в натуре – получается наша любимая глыба справа. Особенно это касается лихих разворотов космических кораблей. Вспомним для начала формулу центробежной силы, теперь скорость и радиус поворота боевой космической единицы. Что мы имеем – мокрое место вместо героя-астронавта. А уж ручное управление на таких скоростях, да еще с такими перегрузками, представляется еще более фантастическим.
Ипатов:
Казалось бы, давным-давно изобретена писателями-фантастами индульгенция на случай встречи с читателем, отличающим вес от массы: управление гравитацией и прочие поглотители инерции. Не обязательно даже говорить о них, читатель сам поймет, что ходить по кабине двухместной шлюпки во время ее инерционного полета можно только в зоне действия искусственной гравитации. Важно не рыть себе яму ни прямо упоминая отсутствие подобных устройств («бульбульцы наотрез отказываются продать секрет, а наши ученые пока бессильны»), ни увлекаясь слишком детальным описанием («да этот истребитель просто банка с простейшим реактивным движком, двумя пушками и баллоном воздуха для пилота»). Лучшим выходом было бы, наверное, вовсе не использовать в тексте «крутые развороты» или «маневры уклонения» от выстрелов из лучевого оружия… Но куда без них?
Энергетическое оружие
Василий Купцов:
Чего стоят лазерные лучи в фильмах! Сам я, и не раз, наблюдал, как луч устремляется к цели, подобно струе воды из шланга. Это при скорости 300 000 километров в секунду? Да и луч в пустоте, вообще говоря, не виден вовсе, ведь лучи видны в воздухе благодаря наличию в нем пыли. Так что никаких вспышек лазеров во время «звездных войн» быть не может. Скажем так – попал в цель – цель вспыхивает. А не попал – вообще ничего… Этот сгусток световой энергии понесется дальше, пока не встретит на своем пути какой-нибудь объект, поглощающий свет. Планету, к примеру. Хотите еще одну гипотезу о Тунгусском метеорите. Это просто кто-то где-то когда-то промахнулся в «битве галактик»…
Кстати, в подобных фильмах еще и звуки взрывов раздаются! Это в безвоздушном-то пространстве – как услышишь, ведь воздуха-то, который звук передает, нет. А если бы и был – расстояния не маленькие, если там планету какую взрывают, само собой, издалека, так через сколько лет взрыв бы услыхали? Кстати, нет сноски и на то, что должна происходить задержка между тем, что видим, и тем, когда это произошло. Скажем, расстояние до Луны как раз около 300000 км (меняется), это и есть секунда для света. Таким образом, если мы «выстрелили» лазером в какой-нибудь кратер на Луне, то вспышку на нем увидим лишь через 2 секунды – туда и обратно.
Владимир Журавлев:
Исторически лучевое оружие в фантастике исходит из произведений двух великих – Г.Уэллса (Война миров) и А.Толстого (Гипреболоид инженера Гарина). Причем по своим тактико-техническим характеристикам оружие это очень сильно различается. Достаточно сравнить сцены морских боев в этих книгах: бой марсианского боевого треножника с броненосцем и бой Гарина с эскадрой Антанты. Тепловой луч марсиан опаляет, раскаляет, поджигает. Но не в силах справиться с броней судна начала века. По сути только быстрота марсианской машины и решила исход боя: погибли оба. Не будь броненосец столь неповоротлив, у марсианина не было бы никаких шансов. Совсем иначе у Толстого: тонкий, как вязальная игла, луч режет метровой толщины броневые плиты, людей, стены фабрик. Бой закончился в несколько минут полным потоплением эскадры без какого либо урона для острова Гарина. Следует отметить, что практически все лучевое оружие в современных книгах и фильмах является потомком именно гиперболоида, а не теплового луча марсиан. Магия книги столь велика, что современные американские Гарины на полном серьезе начали разработку лучевого космического оружия. Такая история с полной Фетяской уже была в 60-х. Но это о другом немного. А вот как обстоит дело на самом деле? Процессы взаимодействия мощного светового потока с веществом хорошо изучены сегодня. Увы, действительность нисколько не напоминает книгу Толстого, зато Уэллс оказался, как всегда, гениально прозорливым. Сказанное ниже относится к лазерам в видимом и близком к нему диапазоне.
Реальное световое (инфракрасное) излучение поглощается веществом (за исключением прозрачных веществ) в поверхностном слое. При этом значительная часть излучения может просто отразиться. Не будем рассматривать зеркальную броню, возьмем обычную. Поглотивший энергию слой (от нескольких атомных слоев у металла до пары сантиметров у живого тела) испаряется, нагревается, превращается в плазму. После чего поступление энергии на еще не испарившуюся часть твердого вещества прекращается. Плазма, сама по себе ярко светящаяся, является черным телом. То есть непрозрачна и поглощает луч лазера сама, нагреваясь от этого и излучая эту энергию во все стороны. При этом прорезаемому телу достается самая малость. Конечно плазма довольно быстро рассеется и луч опять попадет на твердую поверхность, опять испарит и т. д. Но можно видеть, что процесс этот не мгновенный, а занимает определенное время. Не такое уж большое, но достаточно большое, если иметь ввиду время вспышки импульсного лазера. Или необходимость удерживать луч в одной точке при стрельбе с некоторой дистанции лазером непрерывного действия. Даже и в лучших условиях разрез не будет таким узким и аккуратным, как описал Толстой, а будет безобразной канавой с шириной примерно равной глубине, с оплавленными или обугленными краями. И при этом львиная доля энергии луча уйдет не на собственно разрушение объекта, подлежащего уничтожению, а на нагрев образующейся в этом процессе приповерхностной плазмы. Интересно, что чтобы прорезать лазером человеческое тело или броню той же толщины требуется примерно одинаковая энергия луча. Есть и еще один недостаток у лучевого оружия. Как следует из сказанного выше, луч должен быть весьма мощным. Но большинство как-то забывает, что между электрическим током в высоковольтных проводах и светом только одна разница: у света частота выше. И если при высоком напряжении возникает пробой на высоковольтной линии (молния), то такой же электрический пробой воздуха возникает и при высокой плотности светового потока. Чересчур мощный луч просто не достигнет противника, вся его энергия пойдет в пробой и образование плазмы на конце вашего лазерного пистолета. Вместо противника вы подстрелите себя. Ну и дифракционное рассеяние. Дальность действия тонкого луча (с вязальную спицу) весьма ограничена. Не больше, чем у винтовки снайперской. Чем толще луч, тем больше будет дистанция, на которой он рассеется, резко снизив плотность энергии и убойную мощь. Но для космических дистанций – тысячи километров – потребуется начальный диаметр луча в метры. Так что дуэль космолетов на лазерах тоже возможна лишь на небольшой дистанции.
Следует ли из этого, что человека вообще нельзя убить лазерным лучом? Конечно нет. Убить можно, но потребуется довольно большая энергия. Ничтожная доля этой энергии, вложенная в быстро движущийся твердый предмет, произвела бы куда больший эффект. Пуля проникает куда глубже в тело и обладает куда лучшими бронебойными свойствами по сравнению с лазерным лучом. Что выбрать, решайте сами.
Но возможно лучевое оружие основано на иных лучах, не видимой или инфракрасной области. Попробую вкратце охарактеризовать возможные варианты. Плазменное оружие. Незамагниченная плазма мало чем отличается от огнемета или газовой горелки. Рассеется очень быстро как в атмосфере, так и в вакууме. Дальность действия – метры. А вот плазменный сгусток с вмороженным магнитным полем может оказаться довольно устойчивым. Тем не менее стрелять им в атмосфере – все равно что пробивать бетонную стену из бронебойной пушки, заряженной подушками. А вот в вакууме такой сгусток способен улететь на тысячи километров. Если только нет магнитного поля. Так что плазменные орудия космических линкоров будут весьма эффективны в межпланетном пространстве, но откажут вблизи планет. Именно плазменные орудия пробовали изобретать американцы в 60-×. Вполне безуспешно.
СВЧ оружие
Луч хорошо распространяется в атмосфере и поглощается человеческим телом. Причем глубина проникновения в тело 10–20 см. Можно зажарить человека изнутри. Но для фокусировки такого луча потребуется довольно большой рефлектор – десятки сантиметров. В качестве оружия получается очень неудобно. Да и защита есть – одежда из металлической сетки.
Рентгеновский лазер. Проникает глубоко в тело (в зависимости от энергии), может проникать внутрь брони, взрывая ее изнутри. Но вот беда: это излучение поглощается атмосферой. Дистанция в 100 метров дает примерно такое же поглощение, как человеческое тело. Повышая энергию квантов, можно увеличить проникающую способность. Но тогда они и тело пройдут насквозь, не зацепившись. Противник может и получит смертельную дозу, помрет от острой лучевой болезни через неделю. Но до этого может кокнуть вас из обычного винтореза. Есть и еще недостаток: рассеяние рентгена на атомах воздуха. Стреляя в другого, вы и сами получите приличную дозу облучения. А таскать свинцовый скафандр ради защиты от своего же оружия: Зато в космосе вполне применим в боях космических линкоров. У него и дифракционное рассеяние малое, то есть вполне дальнобойный.
Корпускулярное оружие. Тут больше всего казусов. Только что у Васильева (Черная эстафета) прочитал, как земной крейсер прострелил корабль из нейтронной пушки. Экипаж умер мгновенно. Через пару дней исследователи входят внутрь, потом даже едят оставшийся на корабле паек: Ребята, нейтроны не являются ионизирующим излучением. Они сами по себе не вызывают лучевой болезни и прочих неприятных вещей. Они лишь делают радиоактивными атомы тела. Потому корабль, обстрелянный нейтронной пушкой такой мощности, что экипаж умер сразу, стал бы настолько радиоактивен, что еще тысячу лет внутрь нельзя было бы войти. Собственно на этом можно закончить с нейтронами. Махонькое но. Нейтроны в свободном виде живут 15 минут, а потом распадаются. Что ограничивает дальность выстрела в космических баталиях. А взорвать урановый реактор вражеского корабля, обстреливая его из нейтронной пушки, невозможно. Ну не дадут внешние нейтроны цепной реакции, а без этого какой взрыв?
Потоки заряженных частиц – ионные и электронные пушки и пистолеты. Почти бесполезны в атмосфере. Слишком сильно трутся они о воздух, теряя энергию. А если придать им высокую энергию для преодоления воздушного щита, то и в теле они нужных разрушений не произведут. Здесь правда есть любопытная возможность: теоретически можно рассчитать начальную энергию частиц так, что они затормозятся в воздухе и полностью застрянут в теле мишени. Но слишком хлопотно: нужно точно замерить дистанцию, учесть химический состав: Да и бесполезное рассеяние энергии по пути слишком велико. И тоже придется носить свинцовый скафандр для защиты от собственных выстрелов. Вот в космосе получше будет. Но только не вблизи планет с магнитными полями. Кстати, против таких штучек применимы магнитные щиты, отклоняющие заряженные частицы в сторону.
И последнее: источники нейтральных атомов высокой энергии. В атмосфере не применимы, как и заряженные частицы. А в космосе вполне. Не хуже рентгеновских лазеров.
Что осталось? На поверхности планет, в атмосфере, пулевое оружие по эффективности превосходит любые виды лучевого, корпускулярного и плазменного. А в космосе, в вакууме, рентгеновские лазеры и атомные пушки (инжекторы нейтральных атомов высоких энергий) вполне применимы в космических боях. Имеют даже определенное преимущество: малая отдача и высокая скорость, облегчающая прицеливание. Но в атмосфере теряют эффективность.
Михаил Гриненко:
Кто скушал энергию?
Типичная ситуация: идет космическое сражение. Звездолеты с включенными защитными полями палят друг в дружку из лазерного и прочего энергетического оружия. После нескольких попаданий в корабль генераторы защитного поля разряжаются и тогда кораблю хана. Защитные поля кораблей поглощают кучу энергии извне (лазеры) и еще некоторое количество с самого корабля (генераторы/аккумуляторы). Так куда же вся эта энергия уходит? То же относится и к телепортации.
Скорость
Василий Купцов:
Если уж пошел разговор о том, что не скоро сказка сказывается, то уж о том, что не скоро скорость достигается, я не могу не сказать. К сожалению, прошли времена, когда фантасты что-то считали. Скажем, сколько времени надо разгоняться с предельно допустимым ускорением (предельным для человеческого организма, испытывающим перегрузку), чтобы достичь скорости света. Если при этом создается 1G, то чуть меньше года. А если кто и помнит, то уж наверняка забывает, что надо еще и затормозиться! То есть еще год. Ладно, так, «по Циалковскому», в фантастике уже давно никто не летает, придумали разные конвертеры пространства и так далее. Но, извините, даже просто разогнать космический корабль в процессе боя (в космических фильмах все время воюют) – это все равно какое-то время, ограниченное все тем же предельно допустимым для человеческого организма ускорением, или, как следствие, перегрузкой.
Виктор Стопков:
Еще о красном смещении.
Помимо эффекта Доплера действует еще один эффект – релятивистское замедление времени. Излучающие свет атомы подобны крошечным часам, и когда они быстро движутся (или когда мы быстро движемся по отношению к ним – это одно и то же), эти часы замедляют ход. Соответственно спектр излучения сдвигается в красную область. Причем независимо от направления движения, то есть это работает и для приближающихся объектов, и для удаляющихся.
Правда, этот эффект действует слабее, чем эффект Доплера, пока скорость не слишком велика. Но по мере приближения к скорости света он становится все заметнее. Так, при скорости 0,995с всего лишь в секторе 50° из 360° будет наблюдаться фиолетовое смещение, а в остальных 310° – красное.
И есть еще один любопытный феномен. Представьте, что вы сидите в автомобиле на обочине дороги, и льет дождь. Капли дождя будут попадать на лобовое и заднее стекло примерно одинаково часто, не так ли? А вот если вы разгонитесь до 90 км/ч, то заднее стекло будет практически сухое (если не ветра и не заливает с крыши). Примерно так же для пассажира космического корабля все звезды будут постепенно переползать в носовой иллюминатор по мере роста скорости. Так что при скорости близкой к скорости света, куда бы вы ни летели, наше Солнце будет почти прямо по курсу. Там же, правда, будут и все остальные звезды и галактики, так что разглядеть именно Солнце будет затруднительно.
Данные взяты из книги «Космические рубежи теории относительности», Эрик Кауфман.
О движении при скорости < с.
Встречаются совершенно уморительные ляпы, когда авторы НФ пытаются как-то обыграть в книгах эффекты теории относительности. Например, в книге «Каллисто», автор Георгий Мартынов (если я не ошибаюсь – читал ее еще школьником), подробно рассказывается, как именно растет масса движущегося тела по мере роста скорости. Ясное дело, растет, об этом и в школьных учебниках пишут. Ну и расписывается, как тяжело несчастным космонавтам брести по коридорам звездолета (да, этот пассаж тогда же навсегда врезался в память). Ха, да ведь теория Эйнштейна на том и построена, что не существует никакой абсолютной скорости. Да, внешний наблюдатель заметил бы замедление времени на корабле, и сокращение размеров всех тел (по вектору движения), и увеличение массы смог бы почувствовать на собственной шкуре – например, если бы со звездолета уронили гайку ему на голову, то она ударила бы гораздо энергичнее, чем по теории Ньютона.
Однако же сами космонавты ничего подобного за собой бы не заметили. А если бы и заметили, то одним этим легко опровергли бы теорию относительности – ведь этим бы они доказали существование выделенной системы отсчета. Странно, что Мартынов не догадался обыграть еще релятивистское сокращение размеров!
О полете в космосе.
В одной книге Алекса Орлова описываются различные типы боевых космических кораблей будущего. В числе прочих тактико-технических характеристик упоминается, что вот для корабля данного класса максимальная скорость составляет столько-то километров в секунду, а для другого (более мощного) – скажем, вдвое больше. То есть автор полагает, что данный корабль может разогнаться, например, до 70 км/с, а больше – уже никак. Ха! Вы представьте себе картинку – пилот жмет на газ целый час, полная тяга, а скорость не возрастает! Черт, да что же мешает лететь? (Плохому танцору все время что-то мешает.) Ну будь это автомобиль – ясное дело, сопротивление воздуха, и прочие потери на трение. А в вакууме?
Досадная оговорка встретилась даже у Станислава Лема, в одном из рассказов о пилоте Пирксе – «Патруль». По ходу дела «… Пиркс дал задний ход, применяя тормозные дюзы как ускорительные. Такие вещи полагается уметь делать, это элементарный пилотаж. Сначала было минус 1 g, потом минус 1,6, минус 2. Задним ходом ракета шла не так идеально, как на обычной тяге. Нос чуточку качался – все-таки тормоза приспособлены для торможения, а не для ускорения ракеты».
По поводу последних двух фраз – а в чем разница между торможение и разгоном, если движение происходит в вакууме? Явно же ракета тормозит не за счет трения, а как е й положено – выбросом раскаленного газа (или пучка ионов, да хотя бы и фотонов) вперед, по направлению движения – через носовые дюзы, по-видимому. В таком случае совершенно безразлично, гасит ли она скорость с 200 км/с до 0, или разгоняется задним ходом с 0 до минус 200 км/с – абсолютной скорости вообще не существует, и двигаться можно лишь относительно чего-либо.