Текст книги "Виток спирали"
Автор книги: Валентин Рич
Жанры:
Детская образовательная литература
,сообщить о нарушении
Текущая страница: 5 (всего у книги 12 страниц)
Часть третья
ОТРИЦАНИЕ
Глава первая,
в которой Дальтон сравнивает по весу атомы разных сортов, а когда число этих сортов начинает быстро расти, Праут и Ньюлендс предпринимают попытки навести среди атомов хоть какой-нибудь порядок
ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
В книгах на русском языке человека по имени Джон Долтон нет. В прошлом веке английские слова писали у нас как придется – вместо Уошингтон получился Вашингтон, вместо Айвенго был Ивангос, а вместо Джон Долтон написали Джон Дальтон.
Так он и остался Дальтоном.
Про Джона Дальтона его современники сообщали немало неприятного. Например: "Его вид и манеры были отталкивающими, голос у него был резкий и сварливый, а походка неуклюжая". Или: "В нем было меньше желания узнать, что сделали другие, чем твердой уверенности в правильности того, что сделал он сам".
Впрочем, и к Аристотелю лично знавшие его люди относились далеко не лучшим образом. В одной из старых, почтенных энциклопедий можно прочесть: "При жизни А. не был любим. Наружность его не отличалась привлекательностью. Он был малого роста, близорук и картав. На губах его играла язвительная улыбка…"
В гениях ли тут дело? Или в людях, которые их окружают?
В 1773 году, когда "Начальный курс химии" Лавуазье вышел во Франции уже вторым изданием, 27-летний провинциальный учитель Джон Дальтон приехал в большой промышленный город Манчестер, где ему досталось место преподавателя математики и физики в новом колледже.
И здесь Дальтон занялся исследованиями.
Три вопроса более других интересовали его.
Первый. Лавуазье установил, что по крайней мере 26 веществ представляют собой элементы – неразложимые простые тела.
Почему они далее не разлагаются?
Второй. Жозеф Луи Пруст, исследуя киноварь из Испании и Японии, поваренную соль из морей, озер и копей, воду из горных ледников и глубоких шахт, а также многие другие сложные вещества из разных мест, доказал, что любая вода в очищенном от примесей виде содержит 11,1 % по весу водорода и 88,9 % кислорода, а любая соль – 39,3 % натрия и 60,7 % хлора, а любая киноварь – 86,2 % ртути и 13,8 % серы. И вообще, что "соединение есть привилегированный продукт, которому природа дала постоянный состав".
Как объяснить это постоянство состава любого сложного тела?
Третий. Еще алхимикам было известно: для того, чтобы превратить в киноварь всю ртуть и всю серу без остатка, нужно ваять их в определенном отношении, а именно: отвесить 86,2 части ртути и 133 части серы. Иначе либо сера, либо ртуть останутся в избытке. Но когда химики от твердых тел и жидкостей перешли к газам, в подобных числах возникла новая особенность. Газы легче было отмерять не в весовых единицах, а в объемных – ведь их собирали в бутыли. И тут-то при переходе от унций к литрам выявились удивительнейшие вещи. Например, если считать по весу, то аммиак состоит из 17,06 части водорода и 82,94 азота. Ничего особенного. А если считать по объему – то из трех объемов водорода и одного объема кислорода. Все числа получались целыми! Или другой пример. Разложили воду, собрали в одной бутыли кислород, в другой водород. И пришлось для кислорода брать бутыль ровно вдвое меньшего размера, чем для водорода.
Откуда взялись эти целые числа?
Ответы, которые нашел Джон Дальтон, оказались ошеломляюще простыми.
Почему далее не разлагаются элементы? Да потому, что они состоят из атомов одного сорта. Атомы же неделимы никакими способами.
Почему постоянен состав сложных веществ? Да потому, что сложное вещество состоит из сложных атомов – молекул, а каждая молекула – это соединение определенного числа атомов одного сорта с определенным числом атомов другого сорта или нескольких других сортов.
Почему появились целые числа? Да потому, что атомы неделимы и они не могут входить в состав молекул четвертушками или половинками, и значит, молекула воды состоит из двух атомов водорода и одного атома кислорода. А молекула аммиака – из трех атомов водорода и одного атома азота.
Теперь можно было понять и закон сохранения материи при химических превращениях: куда могла материя деваться, если все превращения оказывались лишь переходом одних и тех же атомов от одного вещества к другому?
Но Дальтон не хотел ограничиваться объяснением уже открытых фактов. Только та теория хороша, которая позволяет предсказывать новые. И Дальтон сделал предсказания. Первое относилось к свойствам самих атомов. Раз непременное свойство любого вещества – его масса, вес, значит, это непременное свойство есть у каждого атома. И атомы разного сорта должны иметь разный вес.
Второе предсказание относилось к разным веществам, образованным одними и теми же элементами. Например, углерод с кислородом могут образовать два совершенно разных таза – угарный и углекислый. Азот с кислородом – четыре разных вещества. Было ясно и так, что одни и те же элементы входят в эти вещества в разных пропорциях. Дальтон объявил другое, а именно: что в таких соединениях весовые количества одного элемента, приходящиеся на одно и то же количество другого элемента, будут кратными, то есть будут относиться между собою как целые числа. Потому что в молекуле одного такого соединения может быть только два атома, скажем, углерода вместо одного, или три, или четыре, но уж никак не полтора атома – ведь атом не делится на половинки!
Дальтон сам проверил угарный и углекислый газы. В угарном газе на три весовые части углерода приходится четыре весовые части кислорода, а в углекислом – на те же три части углерода уже восемь частей кислорода. 8:4 = 2. Целое число!
Проверил Дальтон и соединения азота с кислородом. Там тоже получились целые числа.
Впрочем, у газов и раньше, когда имели дело с объемами, получались целые числа. А вот у твердых и жидких тел никаких простых соотношений никто никогда не наблюдал.
Дальтон взял два медных окисла – черный и красный. В черном оказалось по весу 79,9 % меди и 20,1 % кислорода, в красном – 88,8 и 11,2. Теперь надо было высчитать, сколько приходится меди на единицу веса кислорода в том и другом окисле. Дальтон разделил 79,9 на 20,1. Получилось 3,96. Потом разделил 88,8 на 11,2. Получилось 7,92.
Теперь оставалось разделить 7,92 на 3,96. И, конечно, получилось целое число: два. На один атом меди в молекуле черного окисла приходилось два атома меди в молекуле красного. Закон кратных отношений действовал безотказно…
С этого времени химики всего мира могли с карандашом или пером в руках подсчитывать, сколько исходных веществ надо взять, чтобы они нацело, без остатка, превратились в нужное новое вещество.
АТОМНЫЙ ВЕС
Первую таблицу атомных весов двадцати элементов составил сам Дальтон и поместил в книге «Новая система химической философии». Первый том ее вышел в 1808 году. Она именовалась так: «Таблица относительных весов мельчайших частичек газообразных и других тел». Относительных – потому что взвесить атом Дальтон не мог, а мог только попытаться выяснить, на сколько тот или иной атом тяжелей атома водорода.
Кроме относительных весов, в таблице были даны символы для химических элементов. Раньше каждому веществу давали свой символ. И потому своя знаки были не только у золота, ртути или серы, но и у поваренной соли, селитры, уксусной кислоты – вообще у любого, известного химикам вещества. Получалась китайская грамота.
Дальтон же все упростил: элемент обозначался своим символом, а соединение – символами элементов, в него входящих.
Правда, ни предложенные Дальтоном символы, ни обозначения, в его таблице относительные веса долго не продержались. Символы-значки были заменены первыми буквами латинских названий элементов. А относительные веса – другими, более точными числами.
Тем не менее в главном Дальтон оказался прав – у каждого элемента был только ему одному присущий атомный вес – число, показывающее, во сколько раз атом такого-то элемента тяжелее, чем атом водорода, или, впоследствии, чем одна шестнадцатая часть атома кислорода.
Точное определение этих чисел стало в принципе возможным после того, как появился закон Авогадро.
Амедео Авогадро, профессор Туринского университета в Италии, задумался над химическими реакциями, в которых из одних газообразных веществ получаются другие газообразные вещества. Например, над тем, как разлагается аммиак. Если полностью разложить один кубический дюйм аммиака, то из него получится ровно столько же азота и ровно три кубических дюйма водорода. Или, например, над тем, как получается углекислый газ. Если соединить кубический дюйм угарного газа с кубическим дюймом кислорода, то получится не два кубических дюйма углекислоты, а только один.
Что бы это могло значить? Почему более сложный газ всегда занимает ровно такой же объем, как один из исходных, и притом тот, которого было меньше?
Авогадро рассуждал примерно так.
Молекула сложного вещества образовалась из атомов простых веществ или молекул менее сложных веществ. Например, молекула аммиака состоит из атомов азота и водорода. Значит, в ней не может не быть хотя бы одной частицы азота. Значит, число полученных молекул аммиака не может быть больше числа атомов азота.
Но и сложные частицы аммиака, и простые частицы азота занимают один и тот же объем. Почему? Проще всего это можно было объяснить следующим: при одной и той же температуре и давлении в равных объемах находится одинаковое число частиц любого газа. Хоть легчайшего водорода, хоть тяжелой углекислоты.
Из этого обнаруженного Авогадро закона, которому подчиняется жизнь газов, оказалось возможным определить относительный атомный вес любого элемента. Надо только выделить его в виде газа или пара, собрать в сосуд, взвесить и сравнить его вес с весом другого такого же сосуда с водородом. Ведь от того, будете вы делить вес одного атома кислорода на вес одного атома водорода или же вес миллиарда атомов кислорода на вес миллиарда атомов водорода – результат измениться не может.
Так была определены атомные веса многих элементов, и все они оказались разными.
Легче водорода не нашлось ни одного элемента.
А наиболее тяжелым оказался висмут.
На самом деле еще тяжелей был уран, но правильно определить атомный вес урана долго не удавалось…
Когда исследователя находили какой-нибудь, новый элемент, то его атомный вес обязательно оказывался не таким, как у ранее известных.
Все же другие свойства атомов не были так индивидуальны. Цвет, вкус, запах, металлический блеск, растворимость, горючесть, способность образовывать кислоты, или, наоборот, щелочи – не были особым признаком. Этими свойствами обладали – пусть в развой мере – многие элементы, атомы многих сортов.
СКОЛЬКО ИХ?
В таблице Лавуазье, составленной в 1789 году, было двадцать шесть элементов. После того как Лавуазье объяснил, что такое простое тело и что такое – сложное, перечень известных химикам элементов стал расти с невиданной быстротой.
В том же 1789 году появились уран и цирконий, в 1791 – титан, в 1794 – иттрий, в 1797 – хром. Первый же год нового, XIX века ознаменовался открытием ниобия, второй – тантала, третий – церия и палладия, четвертый – родия, осмия, иридия. Затем после двухлетнего перерыва наступил черед калия, натрия, бария, стронция, магния, кальция и бора – все они были открыты великим охотником за элементами англичанином Хемфри Дэви. Второе десятилетие XIX века дало человечеству хлор, йод, литий, кадмий, селен. Третье – кремний, бром, алюминий, торий. Четвертое и пятое – маленькая передышка: всего три новых элемента – ванадий, лантан и рутений. А потом снова лавина: 1860 – цезий, 1861 – рубидий, 1862 – таллий, 1863-индий, 1868 – гелий…
Через восемьдесят лет, прошедших после появления таблицы Лавуазье с ее 26 элементами, люди знали уже более 60 сортов атомов. Среди новых элементов были такие активные, как калий, горящий даже в воде. И такие стойкие, как осмий или иридий, не боящиеся самых сильных кислот. Был легчайший металл алюминий и более тяжелые, чем свинец, – торий и уран.
Сколько элементов еще предстоит открыть? И какими окажутся их свойства? И вообще – от чего эти свойства зависят, по какому закону от элемента к элементу изменяются?
На эти вопросы не мог ответить никто.
Только что упорядоченный Лавуазье и Дальтоном мир элементов снова постепенно превращался в хаос, за которым отдельные мыслители тщетно стремились угадать систему.
Английский врач Уильям Праут выступил с идеей, которую сегодня нельзя не назвать пророческой. Вес любого атома кратен весу атома водорода потому, что все атомы состоят из атомов водорода; именно водород и есть та первичная материя, из которой затем постепенно образовались и все остальные элементы…
Но эта крайне привлекательная мысль не подтвердилась. Точные измерения показали, что атомные веса более тяжелых элементов не делятся нацело, без остатка, на атомный вес водорода.
Другой англичанин Джон Ньюлендс предложил расположить все сорта атомов в порядке возрастания атомных весов и посмотреть, не обнаружится ли при этом какая-нибудь закономерность в изменении других свойств элементов.
В 1866 году он высказал свою идею в Лондоне. Но присутствовавшие на докладе ученые подняли его на смех; один физик даже спросил: а не пробовал ли достопочтенный докладчик расположить элементы не по атомным весам, а по алфавиту?
И Ньюлендс отступил.
Не достигли успеха и другие попытки обнаружить закономерную систему элементов, предпринятые французом Александром де Шанкуртуа, немцем Лотаром Мейером, англичанином Уильямом Одлингом.
Но если общий чертеж системы элементов до конца 60-х годов XIX века оставался неизвестным, то кое-какие его детали все же постепенно прояснялись. Более всего это относилась к установлению сходства между отдельными элементами и даже группами элементов.
Пожалуй, наиболее важный шаг в этой области сделал немецкий химик Иоганн Деберейнер. Он установил, что существуют группы элементов, сходные не только по химическим, но и по некоторым физическим свойствам. Например, литий-калий-натрий. Или магний-кальций-стронций. Или фосфор-мышьяк-сурьма. Или фтор-хлор-бром. Такие группы Деберейнер назвал триадами. А установленная им закономерность – "закон триад" – гласила: атомный вес среднего члена триады есть среднее арифметическое атомных весов ее крайних членов. Таким же средним был у средних элементов триад и удельный вес окисей.
Казалось бы, что могло помешать распространению "закона триад" и на несходственные по своим химическим свойствам и даже на все вообще элементы?
Но парадоксальная по тому времени мысль о "сходстве несходного", если и возникала, то ее тут же отбрасывали, или остерегались обнародовать, или, как в случае с Ньюлендсом, не могли доказать.
Кроме того, препятствием для ее утверждения была путаница с атомными весами: атомные веса многих элементов были определены неверно. И главным образом потому, что большинство исследователей первой половины XIX века не представляли себе как следует различие между двумя видами частиц вещества – атомами и молекулами. И не понимали, что закон кратных отношений Дальтона относится к атомам, а закон Авогадро – к молекулам. Поэтому при определении атомного веса того или иного элемента нередко получали ошибочный результат. Например, зная, что в воде на 1 весовую часть водорода приходится 8 весовых частей кислорода и полагая, что соотношение атомов элементов здесь один к одному, можно было принять атомный вес кислорода за 8. А рассуждая так же о перекиси водорода, можно было принять его за 16.
Только в 40-х годах XIX века французский химик Шарль Жерар пришел к выводу, что атом есть наименьшее количество элемента, входящее в состав молекулы его соединений. И что молекула есть наименьшее количество вещества, вступающее в химические реакции и занимающее в газообразном состоянии одинаковый объем для всех веществ.
С этого времени стало теоретически возможным правильное определение атомных весов. Но во-первых, не все ученые сразу согласились с Жераром. А во-вторых, для претворения теоретической возможности в реальность нужно было преодолеть немало технических препятствий.
И лишь к концу 50-х годов, когда итальянский ученый Станислао Канницаро изобрел способ определения атомного веса металлов по плотности их паров и теплоемкости, все химики наконец согласились с жераровскими представлениями об атоме и молекуле.
Об этом удалось договориться на Международном химическом конгрессе; он состоялся в сентябре 1860 года в немецком городе Карлсруэ. После этого можно было правильно определить атомный вес всех без исключения элементов. Хотя, конечно, для этой работы потребовалось немало времени.
…Чтобы навести порядок во все увеличивающемся нагромождении химических элементов и снабдить человечество картой атомов, нужен был гений. Возможно, не меньший, чем Чарлз Дарвин, который разобрался в хаосе растительного и животною мира.
И никто из маститых участников конгресса в Карлсруэ не подозревал, что этот научный подвиг совершит находившийся в одном зале с ними двадцатишестилетний русский химик Дмитрий Иванович Менделеев.
Глава вторая,
в которой многое происходит не так, как полагается
СОВЕТ ИЗ ПЕТЕРБУРГА
В 1859 году немецкие ученые Густав Кирхгоф и Роберт Бунзен обнаружили новое, до того не известное свойство атомов: если раскалить какое-нибудь вещество и заставить его светиться, а потом пропустить этот свет через стеклянную призму, то можно обнаружить, что спектр у него будет не такой, как у другого вещества. В спектре натрия, например, самой яркой будет желтая полоска, а в спектре магния – зеленая.
Когда Кирхгоф и Бунзен обнаружили эти удивительные особенности атомов разного сорта, они построили специальный прибор спектроскоп, который позволял получить спектр мельчайшей крупицы вещества. И принялись испытывать в этом приборе самые разные минералы. И вот в одном минерале, в спектре которого светилась ярко-голубая полоска, они открыли новый элемент цезий ("небесно-голубой"), а в другом минерале – в его спектре светилась багровая полоска – новый элемент рубидии ("красный").
Спектроскоп был принят на вооружение десятками исследователей во многих странах. И вскоре были открыты еще два новых элемента.
Один из них был назван таллием ("таллюс" – это молодая зеленая ветвь), а другой индием (индиго – самая красивая синяя краска); в спектре первого ученые увидели характерную только для этого элемента ярко-зеленую полоску, в спектре второго – ярко-синюю.
После таллия и индия пришло время гелия…
Из всех ученых, занявшихся спектральным анализом, наибольший успех выпал на долю французского химика Поля Лекока де Буабодрана – ему посчастливилось обнаружить три новых элемента.
Самую широкую известность получило его первое открытие. И не потому, что первый открытый Буабодраном элемент, названный в честь родины первооткрывателя галлием, оказался более распространенным и важным для техники, чем впоследствии обнаруженные им самарий и диспрозий. Нет, открытие галлия произвело громадное впечатление на весь ученый мир совсем по другой причине…
Можно представить себе радость исследователя, когда он, раскалив кусочек довольно обычного минерала, увидел в его спектре совсем необычную, ранее никому и никогда не встречавшуюся фиолетовую линию и уже через день, многократно повторив эксперимент и сравнив полученный спектр со спектрами известных элементов, смог написать французскому академику Вюрцу:
"Позавчера, 27 августа 1875 года, между двумя и четырьмя часами ночи, я обнаружил новый элемент в минерале цинковая обманка из рудника Пьерфитт в Пиренеях…"
Можно представить испытанное исследователем удовлетворение, когда после года упорной, кропотливой работы ему удалось выделить несколько тысячных долей грамма этого нового элемента и определить некоторые его свойства, в том числе атомный вес, который оказался близким к 69, и плотность, которая оказалась равна 4,7.
Труднее представить, что почувствовал Буабодран, когда узнал, что петербургский профессор Дмитрий Менделеев, не имевший ни малейшей крупицы галлия, тем не менее позволил себе не только оспаривать правильность найденной им, Буабодраном, плотности нового элемента, не только называть иное, по его мнению, более правильное число – 5,9, но еще и давать советы. Он рекомендовал получше очистить препарат от натрия и тогда уже определять плотность.
В наше время подобный совет не мог бы ни поразить, ни даже удивить. Сейчас химику предугадать то или иное свойство еще не открытого элемента не намного сложнее, чем пассажиру поезда или самолета предугадать время своего прибытия из одного города в другой.
А в те времена многие серьезные ученые к возможности подобных предсказаний относились весьма скептически. Когда, например, знаменитый Бунзен узнал о том, что Менделеев предсказал существование нескольких новых элементов с определенными свойствами, он сказал: "Дайте мне биржевые ведомости, и я берусь на их основе предсказать вам все, что угодно".
Не надо из-за этого считать Роберта Бунзена консерватором в науке. Он им не был. Просто у него в памяти сохранялось немалое число догадок, высказанных по поводу еще не открытых элементов и впоследствии не подтвердившихся. И он, как в большинство исследователей, предпочитал обширному болоту предсказаний, пусть узкую, но верную тропку экспериментов.
Знал Буабодран про высказывание Бунзена о биржевых ведомостях или не знал, не известно. Но вряд ли сам он, уже немолодой, 36-летний экспериментатор, придерживался иных взглядов на возможности теории. Тем не менее он не мог, ознакомившись с одним из менделеевских предсказаний, не заметить редкостного совпадения найденных из опыта свойств галлия с предсказанными свойствами гипотетического "экаалюминия". Совпадал их атомный вес. Совпадая метод обнаружения. Совпадали реакции их соединений с соединениями других элементов. Не совпадала только плотность.
И Лекок де Буабодран решил последовать совету, полученному из далекой России. Он тщательно очистил галлий от примеси натрия и заново измерил плотность нового элемента.
Петербургский профессор, в глаза не видевший галлия, оказался прав: плотность оказалась 5,9, а не 4,7.
ХОЧЕШЬ ВЕРЬ – ХОЧЕШЬ ПРОВЕРЬ
Издавна принято гордостью семьи считать первенца, старшего сына. Именно его объявляли, как правило, наследником монарха. И в палату лордов, и в боярскую думу вступал старший в роде. И неделимые отцовские поместья тоже доставались ему. И только сказки почему-то всегда держали сторону младшего…
Что касается истории науки, то тут дело обстояло тоже не совсем так, как в высшем обществе. Кавендиш, например, был не первым, а вторым сыном герцога Девонширского. Роберт Бойль – не первым, а седьмым сыном графа Корка. Про Джона Дальтона точно известно, что у него был старший брат…
27 января 1834 года в городе Тобольске, в семье директора городской гимназии Ивана Павловича Менделеева и жены его Марьи Дмитриевны родился семнадцатый ребенок, нареченный в честь деда Дмитрием.
Детство его прошло в тридцати верстах от города, в деревне Аремзянке. Там он впервые увидел чудеса: на маленьком заводике самый обыкновенный песок превращался в прозрачное стекло.
Когда Дмитрий Иванович окончил Тобольскую гимназию, отца уже не было в живых. Мать отвезла младшего сына в Петербург и там исхлопотала ему возможность на казенный счет учиться в педагогическом институте. Пока учился – много болел. Врачи решили – чахотка и приговорили его к ранней смерти.
По окончании института Менделеев уехал в Крым. На юге ему посчастливилось встретиться с знаменитым медиком Николаем Ивановичем Пироговым. Тот осмотрел юношу и сказал: «Проживешь до ста лет, нет у тебя никакого туберкулеза!»
Менделеев поверил Пирогову, вскоре вернулся в Петербург и прожил в тамошнем нелегком климате, правда, не до ста, а до семидесяти трех лет – всегда в непрестанной работе.
Позже его часто называли гением. "Какой там гений, – говорил он. – Трудился всю жизнь, вот и стал гений!"
Трудился всю жизнь. Спускался в угольные шахты. Поднимался на воздушном шаре. Исследовал нефтяные промыслы Кавказа и Америки, Хлопотал об открытии северного морского пути. Учил студентов. Писал книги. Выводил на чистую воду лжеученых…
Но главным делом жизни Менделеева стал открытый им закон природы: периодический закон химических элементов.
…Про открытие законов природы сложено немало легенд. Про Архимеда, который с криком «Эврика!» выскочил из ванны, обнаружив, что погруженное в воду тело теряет в весе ровно столько, сколько весит вытесненная им вода. И про Ньютона, открывшего закон всемирного тяготения, глядя на падающее яблоко. И про Демокрита, предсказавшего атомы.
О великом открытии Менделеева тоже существуют разные рассказы.
Один из них называется:
Интервью
Репортер газеты «Петербургский листок»:
– Как вам пришла в голову, Дмитрий Иванович, ваша периодическая система?
Менделеев:
– О-о! Господи!.. Да ведь не так, как у вас, батенька! Не пятак за строчку!.. Не так, как вы! Я над ней, может быть, двадцать пять лет думал, а вы считаете: сидел – и вдруг, пятак за строчку, пятак за строчку, готово! Не так-с! Ну-с, все? У меня времени нет…
Другой рассказ – он известен со слов друга Менделеева, чешского химика Браунера – называется:
Картонки
«Когда я начал писать мой учебник, я чувствовал, что мне необходима система, которая позволила бы мне распределить химические элементы. Я нашел, что все существующие системы являются искусственными, а потому непригодны для моей цели; я же добивался установления естественной системы. С этой целью я написал на маленьких кусочках картона знаки элементов и их атомные веса, после чего я начал группировать их различными способами соответственно их сходству. Но этот способ не удовлетворял меня до тех пор, пока я не расположил картонки одну после другой соответственно возрастанию атомных весов…»
Третий рассказ, проведенный в воспоминаниях геолога Александра Александровича Иностранцева, называется:
Во сне
"Как-то я зашел к Д. И. Менделееву по какому-то делу и застал его в превосходном настроении духа; он даже шутил, что было крайней редкостью. Это было вскоре после его знаменитого открытии закона периодичности элементов. Я, воспользовавшись этим благодушным настроением Дмитрия Ивановича, обратился к нему с вопросом, что натолкнуло его на знаменитое открытие. На это он сообщил, что уже давно подозревал известную связь элементов между собою и что много и долго думал об этом. В течение последних месяцев Дмитрий Иванович перепортил массу бумаги с целью отыскать в виде таблицы эту законность, но ничего не удавалось. В последнее время он усиленно снова занялся вопросом и по его рассказу был даже близок к этому, но окончательно все-таки ничего не выходило. Перед самым открытием закона Дмитрий Иванович провозился над искомою таблицею целую ночь до утра, и все же ничего не вышло; он с досады бросил работу и, томимый желанием выспаться, тут же в рабочем кабинете, повалился на диван и крепко заснул.
Во сне увидел вполне ясно ту таблицу, которая позднее была напечатана.
Даже во сне радость его была настолько сильна, что он сейчас же проснулся и быстро набросал эту таблицу на первом клочке бумаги, валявшемся у него на конторке. Сделал на нем всего одно исправление и отправил в типографию. Возможно, что этот клочок бумаги сохранился и до настоящего времени. Менделеев нередко пользовался для заметок неиспользованными полулистками почтовой бумаги от полученных им записок".
Итак, по первой версии Менделеев открывал свой закон в течение двадцати пяти лет, по второй – открыл его довольно быстро, когда начал писать учебник, по третьей – вообще не открыл, а просто увидел его во сне.
А как было на самом деле?