355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вадим Корпачев » Целебная фауна » Текст книги (страница 1)
Целебная фауна
  • Текст добавлен: 16 октября 2016, 20:45

Текст книги "Целебная фауна"


Автор книги: Вадим Корпачев


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 1 (всего у книги 13 страниц)

Вадим Валерьевич Корпачев
Целебная фауна

АКАДЕМИЯ НАУК СССР

Рецензенты:

академик АН УССР В. П. КУХАРЬ

доктор биологических наук Ю. В. БЕЗДРОБНЫЙ

Введение

В соответствии с задачами ускорения научно-технического прогресса предусматривается проведение целого ряда организационных мероприятий в области здравоохранения, в том числе интенсификации исследований, направленных на создание новых высокоэффективных безвредных лекарственных средств.

Вероятно, не каждый знает, что около 40% общего количества лекарств представляют препараты из растений, а для лечения некоторых заболеваний, например сердечно-сосудистых, они являются незаменимыми. Наша цель обратить внимание читателей еще на один природный источник лекарственного сырья, который используется очень незначительно и изучен в настоящее время не так полно, как лекарственные растения. Речь пойдет о физиологически активных веществах животного происхождения. Известный советский фармаколог профессор И. И. Брехман справедливо назвал исследования в этой области «целинными». Необходимо отметить, что в настоящее время в мире насчитывается только около 300 000 видов растений, в то время как одних насекомых – 1 000 000 видов, паукообразных – 35 000, брюхоногих моллюсков – 90 000, рыб – 20 000 видов. Превышая растения в числе видов, животные несравненно беднее их числом индивидов, что, вероятно, и объясняет малую изученность фармакологических свойств биологически активных веществ животного происхождения. Растения ближе человеку, так как многие из них применяются в пищу, в то время как разнообразие продуктов животного происхождения относительно ограниченно.

Использование препаратов из различных животных в качестве лекарственных средств еще и сейчас иногда относят к атрибутам знахарства и мистики. Однако за многовековую историю развития научной и традиционной медицины накопился определенный опыт применения лекарств животного происхождения. Многие из древних, казалось бы мистических, рецептов нашли научное подтверждение в наши дни. В аптеках вы можете найти препараты из яда пчел и змей. Препарат из рогов молодого пятнистого оленя, марала и изюбра – пантокрин зарекомендовал себя как великолепное фармакологическое средство, способное конкурировать с женьшенем. Профессор И. И. Брехман доказал, что аналогичными свойствами обладают и панты северного оленя, что сделало возможным рекомендовать новый препарат – рантарин. Животное происхождение имеют и некоторые гормональные препараты, витамины, ферменты, т. е. вещества, которые применяются при заместительной терапии, когда в организме человека их не хватает. Огромная работа по выделению биологически активных соединений из морских животных проводится в СССР доктором фармацевтических наук И. С. Ажгихиным. Преодолевая большие трудности, ему с сотрудниками удалось создать ряд оригинальных лекарственных препаратов.

Значительно шире, чем в европейской медицине, лекарственные средства животного происхождения применяются в странах Востока.

На сегодняшний день удалось выделить многие биологически активные вещества животного происхождения и изучить их химическое строение.

Установлено, что уже на ранних стадиях филогенетического развития некоторые животные вырабатывают яды. Ядовиты продукты метаболизма бактерий, паразитических грибов, инфузорий, секреты экскреторных желез (кожных, слюнных и др.) беспозвоночных и позвоночных и, наконец, инкреты (или гормоны) желез внутренней секреции. Многие животные, кроме ядов, служащих им средством защиты и нападения, выделяют также вещества «общения» (феромоны), которые в малых дозах оказывают влияние на поведение животного.

Однако несмотря на довольно широкое изучение химической структуры биологически активных веществ, их фармакологические исследования с целью создания новых лекарственных средств проводятся в нашей стране эпизодически. По-видимому, одной из причин такого положения является трудность выделения и наработки в необходимых количествах лекарственного сырья животного происхождения. Следует отметить, что никто, конечно, в настоящее время не собирается применять средневековые рецепты, в которых наряду с рациональным зерном много мистических, ненужных, а подчас и вредных рекомендаций. Биологически активные факторы животного происхождения должны служить образцами химических соединений которые после синтеза или получения их путем биотехнологии займут достойное место среди других фармакологических препаратов.

Наша книга расскажет о том, какова роль животного мира в создании уже известных лекарственных средств и как основываясь на рекомендациях врачей старого времени, получивших прямое или косвенное подтверждение в современных научных исследованиях, можно разумно использовать современную фауну для нужд медицины. При этом автор далек от стремления сколько-нибудь полно осветить такую большую тему, а лишь предпринимает попытку привлечь внимание читателя к данной проблеме.

Аптека Нептуна

Божественен, природа, твой язык,

И кто бы ни считал себя поэтом,

Пожизненно он твой лишь ученик,

Пусть ни на миг не усомнится в этом.

Расул Гамзатов

Водная среда издавна манит людей своими богатствами. Человек часто не осознает огромных ее размеров. Если не учитывать воду, содержащуюся в атмосфере, в земной коре, а также в снегах и ледниках, на гидросферу Земли приходится примерно 1320 000 000 км³, из которых 220 000 км³ приходятся на озера и реки, а остальное – на Мировой океан. Океан покрывает почти 71% земной поверхности, и «жилого» пространства в нем в 3000 раз больше, чем на суше. Самые глубоководные впадины океана уходят на 11000 м в глубину, в то время как средняя высота континентов – меньше 1000 м

Если большинство животных, населяющих сушу, живут на ее поверхности, то в океане, как теперь доказано, жизнь существует в самых разнообразных и бесчисленных формах, начиная с поверхности воды до дна глубочайших впадин

Человечество давно стремилось изучить и научиться использовать водные богатства, и в частности в направлении создания новых лекарственных препаратов. Еще древние греки рекомендовали золу, полученную от сжигания «морских коньков», как средство от облысения, а золу морских крабов – для лечения укушенных бешеной собакой. Египетский папирус, относящийся примерно к 1500 г. до н. э., содержит более 800 указаний о лечении разных болезней, в том числе и о лечении отравлений мясом морских животных. В IV в. до п. э. ядовитых скорпеновых рыб описал Аристотель, которого, по-видимому, можно считать первым зоологом западного мира. Диоскорид, греческий врач, состоявший при римской армии в I в. н. э., коллекционировал ядовитых животных, обитающих в европейских водах. Плиний Старший в своей «Естественной истории» приписывал совершенно невероятные способности морским котам, утверждая, что они способны «сгубить дерево» и разъесть своими колючками латы. Он считал также, что если сжечь хвост морского кота и пепел настоять на уксусе, то полученной смесью можно лечить головные боли. Беременным женщинам Плиний рекомендовал носить на животе амулеты из колючек морского кота, чтобы обеспечить себе легкие роды, причем колючки для амулетов следовало срезать у живого морского кота, которого затем надо было отпустить в море. Врач древнего Востока Авиценна (Ибн Сина) в своем «Каноне врачебной науки» приписывает «мурене, угрю, акуле и икре морских рыб свойства повышать половое чувство»

В русской народной медицине применялся порошок косточек, находящихся в голове рыб: окуня, карпа, нельмы – при каменной болезни и как мочегонное; щуки – при затруднительных родах и каменной болезни. Пан Сум в книге «Источник здравия» указывал, что камбала увеличивает плодородие, а ее печень «помогает от свербежа». Хотя эти рекомендации и не имели под собой научной основы, они показывают, что человек издавна искал медикаменты в животных, обитающих в водной среде

В наше время биологически активными веществами органического происхождения занимаются экологи, биохимики и фармакологи. И все же эта область знаний так мало исследована, что даже основные свойства биотоксинов морских животных еще не описаны. Один из зачинателей этой области – доктор Брюс У. Холстед, директор Института по изучению жизни на Земле (Колтоп, Калифорния), в составленном по заданию правительства США (в конце 60-х годов) трехтомном руководстве под названием «Ядовитые и ядообразующие морские животные нашей планеты» заявил: «Фармакологические и химические аспекты морских ядов по большей части не исследованы, и этот факт является прискорбным свидетельством низкого уровня наших знаний в данной области», В 60-х годах нашего века из ядовитых веществ, поставляемых морскими животными, удалось получить несколько действенных лекарственных препаратов. Это позволило некоторым ученым, занимающимся биологией моря, объявить наступление новой эры в фармакологии – эры лекарств из морского сырья

Широкой публике было обещано, что биологические вещества, добываемые из морских животных, послужат основой для чудодейственных лекарств, как когда-то специфические микроорганизмы послужили материалом для создания антибиотиков. Но обещания оказались преждевременными, ибо в большинстве случаев на создание какого-то одного лекарства уходило несколько десятилетий. Всякий раз, когда экспериментаторы обнаруживали в морском животном какое-то интересное вещество, приходилось вылавливать большое количество таких животных. Отловив их, необходимо было экстрагировать интересующее ученых вещество, выяснить его биологическую активность, очищая его, проводить анализ химического состава, опознавая каждый его компонент. Для того чтобы с успехом использовать вещество, его часто приходится синтезировать в форме, несколько отличной от естественной. Если и после этого препарат продолжает представлять какой-то интерес для человечества, его еще долго приходится испытывать. Разработка лекарств подобным образом – длительный и дорогостоящий процесс. По-видимому, все перечисленные трудности и отразились на ходе исследований в этой области

Первая Конференция фармакологов (занимавшихся лекарственными препаратами, изготовляемыми из морского сырья) состоялась в 1967 г. в университете Род-Айленда. Ее участники были полны энтузиазма. В газетных сообщениях о работе Конференции говорилось о великих открытиях, которые позволят «победить рак» и до которых осталось якобы несколько шагов. Но уже через 5 лет, на Второй Конференции, былого энтузиазма не чувствовалось. Отмечалось, что интерес ко всем этим исследованиям ослаб. Было объявлено, что морские исследования прекращены, потому что уже открыто достаточное количество сырья – теперь необходимо как следует изучить его. Наиболее оптимистично прозвучали слова сопредседателя Конференции Эдварда Миллера, который подчеркнул, что море, очевидно, станет поставлять не лекарственное сырье, а лишь образцы биологически активных соединений, вырабатываемых животными, а ученые, проанализировав эти вещества и проведя с ними ряд экспериментов, будут уже на этой основе синтезировать новые лекарственные препараты

Несмотря на все трудности в создании лекарственных препаратов из морских животных, на сегодняшний день накопился интересный научный материал и получены оригинальные фармакологические вещества. В Советском Союзе изучением биологически активных веществ морских животных занимаются в Институте эволюционной физиологии и биохимии АН СССР, во ВНИИ технологии кровезаменителей и гормональных препаратов Министерства медицинской и микробиологической промышленности СССР, в Тихоокеанском научно-исследовательском институте рыбного хозяйства и океанографии Министерства рыбного хозяйства СССР и Тихоокеанском институте биоорганической химии ДВО АН СССР

Было замечено, что морские животные меньше страдают от инфекции, чем сухопутные. Возник вопрос: не вырабатывают ли некоторые обитатели моря вещества, убивающие болезнетворные бактерии? И действительно, вода вокруг колоний губок остается чистой, даже несмотря на то, что многие губки умирают. Кроме того, несколько десятилетий назад было установлено, что некоторые водные животные умирают, если в воде, в которой они находятся, растворить химические вещества, экстрагированные из губок. Действие веществ, выделяемых различными губками, было испытано на болезнетворных микроорганизмах, выращенных в лабораторных условиях. Эти вещества убивали большую часть микробов. Наиболее эффективными оказались вещества, выделяемые субтропической «краснобородой» губкой: они оказывали губительное действие даже на туберкулезные палочки. Аналогичные свойства обнаружили исследователи у планктона (мельчайших водных организмов). Удалось получить два препарата – водный и жирорастворимый. Первый применяли в виде ингаляций носоглотки и дыхательных путей, а второй – для смазывания слизистых оболочек. В обоих случаях был выявлен лечебный эффект

Из различных видов губок были получены и другие физиологически активные вещества. Губки – самые загадочные существа. Они столь примитивно организованы, что до начала XIX в. считались растениями. У них нет органов чувств, а взрослые особи лишены еще и способности передвигаться. Они не имеют ротового отверстия. Прием пищи осуществляется путем процеживания морской воды через каналы и лабиринты, которыми испещрены их тела. Губка бессмертна и неуязвима. Ее можно протереть сквозь сито и частицы ее потом снова соберутся в новый жизнеспособный организм. В 1950 г. выяснились уникальные свойства одного из видов карибской губки. Ее нуклеиновые кислоты содержат не рибозу, которая является ключевым ингредиентом почти всех нуклеиновых кислот, а арабинозу. На основе данных по изучению нуклеиновых кислот этой губки синтезировано несколько соединений, содержащих вместо рибозы арабинозу

Так была получена цитозинарабиноза. Механизм ее воздействия на клетки человеческой крови, пораженные лейкемией, заключается в том, что рибозу этих клеток она заменяет арабинозой и, задерживая тем самым их рост, в конце концов убивает раковые клетки. Этот препарат оказался эффективным в довольно большом числе случаев и, хотя результаты экспериментов пока далеки от идеала, послужил основой для создания более эффективных препаратов. После десяти лет исследований цитозинарабиноза была разрешена федеральным правительством США для массового производства. В СССР это соединение применяется под названием «цитарабин»

Невозможно не вспомнить о пресноводной губке, которая продается у нас в аптеках. Это бодяга. В живом состоянии она имеет вид желто-буроватой или оливково-зеленоватой слизистой массы. Бодяга достигает 40 см в длину и плотно обрастает находящиеся в воде предметы и стволы деревьев, которые служат ей опорой. Живет она в реках, прудах и болотах. С давних времен ее высушивают и употребляют в виде порошка, жидкостей и мазей, вызывающих сильное механическое раздражение кожи, при ревматических и неврологических болях. Применяли ее также в качестве румян, что в конечном итоге приводило к непоправимому поражению кожных покровов. Свое лекарственное действие она оказывает главным образом благодаря входящим в ее состав кремневым иглам, связанным между собой органическим веществом – спонгином, или спонгинином. В состав бодяги входят также фосфорнокислые и углекислые соли извести и ряд органических веществ

О целебных свойствах морских губок Халихондрия маорийская давно известно аборигенам Новой Зеландии, которые применяли их для лечения ран. В журнале «Science» (1979. № 4422) сообщалось, что в этих губках было обнаружено большое количество фтора – до 11,5% от сухой массы. Они обладают повышенной способностью к его накоплению. Было установлено, что терапевтическая активность обусловлена содержанием давно известного фторсиликата натрия Na 2SiF 6, который снижает местную воспалительную реакцию. Заживляющий эффект халихондрий, приложенных к ране, выражается в том, что рана не воспаляется. Однако это средство вряд ли найдет применение в научной медицине, так как фторсиликат натрия является токсичным соединением – внутрибрюшинное его введение мышам вызывает судороги

Поставщиками лекарственных препаратов могут быть также некоторые рыбы

Доктор Давид Иенсен (Лаборатория при Большом нью-йоркском аквариуме) долгое время занимался изучением тихоокеанской миксины. Это уникальное в своем роде животное имеет четыре сердца, каждое из которых работает в своем ритме и обслуживает только определенный орган: одно – хвост, другое – печень, третье – мышцы и четвертое – голову. Миксина интересна тем, что не имеет глаз и ориентируется при помощи радара. У нее настолько эластичный хребет, что она способна завязываться узлом, а во время опасности выделяет такое количество слизи, что вода вокруг становится похожей на холодец, через который не может проникнуть враг. После длительных исследований удалось выделить пептид, который заставляет пульсировать сердце миксины. Он был назван эптатетрином. Его не удалось обнаружить больше ни у каких других морских животных. При испытании препарата на слабо бьющихся сердцах лягушки наблюдалась нормализация пульсаций. Введение эптатетрина в вену собаке с сердечной недостаточностью улучшало кровообращение и приводило к норме давление крови, а также нормализовало биохимические процессы в мышце при экспериментальной стенокардии. Химическое строение пептида миксины еще окончательно не установлено. Это вещество является перспективным для лечения сердечно-сосудистых заболеваний

Наиболее изученными, на наш взгляд, в химическом, биохимическом и фармакологическом плане являются биотоксины из некоторых рыб семейства Tetraodontidae (иглобрюхие). Известно около 40 разновидностей этих рыб. У разных народов они называются по-разному. Английские названия – надутая, шаровидная, набухшая, рыба-баллон – связаны с тем, что, если рыбу потревожить, она раздувает свои воздушные мешки, которые имеются в полости ее тела, и, увеличиваясь в объеме, отпугивает врагов. На Гавайских островах этих рыб называют маки-маки, в Испании – ботете, а в Японии – фугу. Последнее название наиболее популярно в мировой литературе

Сведения о рыбе фугу имеются еще в далеком прошлом. Среди изображений на гробнице египетского фараона пятой династии Ти (2500 лет до н. э.) был обнаружу рисунок рыбы, в которой сейчас признают фугу. Примерно в это же время о ее яде писали восточные философы. Об отравлениях мясом рыбы-собаки (которую называли и так) упоминает первая известная нам китайская книга по медицине «Книга трав», созданная между 2838 и 2698 гг. до н. э. Японцам фугу известна очень давно. Европейцы заинтересовались токсичными рыбами в XVII в., когда на Восток устремились полчища купцов и торговцев. Энгельберт Кэмфер, врач голландского представительства в Японии в конце XVII в., писал, что некоторые виды иглобрюхих рыб представляют смертельную опасность для всякого, кто надумает их отведать, и тем не менее японцы их едят, выбрасывая лишь голову, внутренности и кости, тщательно промывая оставшееся мясо. Согласно сообщениям голландского врача, воинам в Японии запрещалось есть эту рыбу и, если японский воин умирал от отравления иглобрюхой рыбой, его сын, который в кастовой системе, существовавшей в Японии того времени, должен был унаследовать привилегии отца, терял все права на отцовский титул. Один из видов иглобрюхих был (по сведениям Кэмфера) столь ядовит, что никаким промыванием не удавалось сделать его мясо безвредным, и японцы, решившие покончить с собой, часто выбирали эту рыбу в качестве отравляющего средства. В некоторых китайских провинциях торговля иглобрюхими рыбами каралась судом

Немало пострадал от ядовитых рыб экипаж капитана Джеймса Кука во время его второго кругосветного путешествия в 1774 г. Когда шлюп капитана причалил к одному из островов Новой Каледонии, корабельный писарь выменял у туземца неизвестную рыбу, и Кук попросил приготовить ее на ужин. К ужину были приглашены два натуралиста – отец и сын Фостеры, которые занялись описанием и зарисовкой рыбы. В связи с тем, что это заняло много времени и было поздно, капитан и гостя едва прикоснулись к поданной икре и печени рыбы. Позднее Кук записал в своем журнале: «В 4 часа утра мы почувствовали страшную слабость, потеряли осязание. Я почти совсем перестал отличать тяжелые предметы от легких: кружка с квартой воды и перо казались мне одинаково тяжелыми. Утром один из офицеров, евший накануне внутренности, был найден мертвым» (Химия и жизнь. 1968. № 8). С 1888 по 1909 г. в Японии зарегистрировано 3106, а с 1956 по 1958 г. – 715 отравлений рыбой фугу. Сейчас в некоторых префектурах Японии поварам, занимающимся приготовлением этой рыбы, требуется специальное разрешение. В Японии есть специальные рестораны, куда гурманы стремятся попасть именно для того, чтобы отведать яств, приготовляемых из этих рыб и подаваемых с особым шиком. Блюда эти называются «фугу» и считаются тонкими деликатесами. Повара, получившие специальную подготовку и имеющие особые лицензии, приготовляют фугу разными способами, иногда украшая блюдо ломтиками плавника, вырезанного в форме цветка или летящей птицы. Поклонники фугу утверждают, что на вкус это блюдо напоминает цыпленка. Однако привлекает фугу не только вкусом: поев фугу, человек ощущает тепло во всем теле, некоторое возбуждение и странное покалывание в языке и губах, сопровождающееся легким онемением. Многие японцы едят фугу регулярно (среди состоятельных людей это своего рода хобби) и, по-видимому, испытывают при этом легкую эйфорию. Возможно, наркотическое действие фугу и является причиной того, что мода на это блюдо не проходит, хотя отравления наблюдаются часто. Кроме того, знатоки утверждают, что небольшое количество печени фугу, которая более ядовита, чем мясо, придает некоторым блюдам особенно пикантный аромат, и ради этого пренебрегают опасностью

Обычно отравления различными видами рыб семейства иглобрюхих происходят в результате съеденной человеком икры, молок или печени. Явления интоксикации возникают через 15 – 30 мин после еды. Один из первых симптомов отравления – покалывание и онемение во рту, похожие на ощущения, которые испытывают японские любители фугу. Если доза яда достаточна велика, это ощущение быстро распространяется по всему телу. В начале отравления у больных обычно отмечается резкое раздражение желудка и соответствующих нервов, вследствие чего появляется тошнота, а затем рвота. В тяжелых случаях очень быстро наступает паралич нижних конечностей, затем группы дыхательной мускулатуры и, наконец, верхних конечностей. Наиболее опасным для жизни больного является паралич диафрагмы. Пострадавший чувствует общую слабость, немеют руки. Кровяное давление понижается, пульс становится слабым и учащенным, Смерть наступает вследствие остановки дыхания, поскольку мышцы, обеспечивающие дыхательный акт, не получают соответствующих нервных импульсов. В легких случаях выздоровление наступает через несколько часов без последствий

Много веков назад в Японии и Китае порошок из рыбы фугу в смеси с другими ингредиентами животного происхождения применяли как обезболивающее средство. Больные быстро поправлялись, становились бодрыми и жизнерадостными

Профессор И. Ажгихин приводит описание рецепта из рыбы фугу, по которому готовили лекарства древние лекари: внутренности рыбы замачивали в течение недели в уксусе, затем их разминали до сметанообразной консистенции, смешивали с медом и мукой. Из полученной массы лепили шарики и назначали больным проказой, расстройствами психики, применяли при болезнях сердца, кашле, головных болях

Свойства яда рыб семейства иглобрюхих начали изучать начиная с конца прошлого столетия. Яд получали путем экстрагирования измельченной икры и последующей ее очистки. Полученные препараты испытывали на лабораторных животных

В 1894 г. Иошизуми Тохара из Токио выделил из яда фугу тетродонин и тетродоновую кислоту, а в 1910 г.– тетродотоксин – действующее начало яда. Сейчас известно, что даже в наиболее тщательно приготовленных препаратах японского исследователя содержалось только 2% чистого яда. И только в 1950 г. японским ученым Акиро Иокоо из Иокогамского университета и Киосуке Тсуде из Токио удалось наконец получить чистую кристаллическую форму тетродотоксина. В отличие от прочих рыбных ядов тетродотоксин не относится к белковым веществам. Он представляет собой соединение аминопергидрохиназолина с гуанидиновой группой. Интересно отметить, что для изучения структуры тетродотоксина пришлось переработать одну яичниковую фугу и получить из нее 10 г чистого вещества. В 1972 г. японскими учеными был произведен синтез тетродотоксина, подтвердивший правильность его структуры:

В чистом виде он представляет собой белый аморфный порошок нейтральной реакции, легко растворимый воде, в водном растворе глицерина и в физиологическом растворе. Почти не разрушается желудочным соком и желчью. Удовлетворительно выдерживает температуру по +40°. Значительно лучше переносит низкие температуры до – 20...30°. Разрушается едкой щелочью, концентрированными кислотами, хлором, йодом и солями тяжелых металлов. Механизм действия тетродотоксина на нервную ткань заключается в том, что он прекращает передачу нервного импульса, блокируя движение ионов натрия сквозь оболочку нервных клеток, в то время как ионы калия по-прежнему проникают сквозь нее. Свое специфическое действие тетродотоксин осуществляет за счет входящей в него гуанидиновой группировки, способной «закупоривать» поры оболочки нервного окончания, через которые должен проникать в клетку натрий. По активности блокирования нервного окончания (аксона) тетродотоксин в 160 000 раз активнее кокаина, а по ядовитому действию в 10 раз превосходит кураре

Благодаря своей способности избирательно блокировать передачу нервного импульса тетродотоксин может стать превосходным обезболивающим средством. В Японии уже сейчас продают тетродотоксин в малых концентрациях в качестве болеутоляющего средства

На этот препарат еще в неочищенном виде был выдан в 1913 г. американский патент. Однако результаты его применения оказались не вполне убедительными, потому что, введенный в определенное место, он не локализуется в нем, а проникает в другие ткани. Может быть, в будущем формула этого яда послужит моделью для создания новых высокоэффективных анестезирующих средств. Наиболее эффективным оказалось совместное применение тетродотоксина (1 – 3 мкг/мл) с уже известными анестетиками. Это дает возможность значительно усилить обезболивающее действие (патент США № 1970905)

Способность тетродотоксина блокировать нервные сигналы нашла применение в научных исследованиях: яд используют для изучения принципов работы нервной системы

И еще одно событие связано с ядом рыбы фугу, В 60-х годах американские и японские токсикологи пришли к выводу, что тетродотоксин идентичен с ядом, выделенным из американского тритона, несмотря на то что эти животные принадлежат к разным классам. Это открытие, возможно, поможет лучше понять эволюционную связь между земноводными и рыбами

Вещество, подобное тетродотоксину, было выделено сотрудниками ВНИРО из глубоководной рыбы большеголова. Наибольшие его количества были обнаружены в печени, жире, нервной ткани, плавниках и жабрах. Назвали его гоплостатином. Оно вызывает возбуждение центральной нервной системы, увеличивает двигательную активность, повышает сократительную способности мышечной ткани. Из другой глубоководной рыбы Атлантики – кубохвоста – выделено биологически активное вещество куботоксин

Каждый год океан раскрывает все новые и новые тайны

Учеными был обнаружен интересный биологический эффект – если у некоторых акул пытаться вызвать развитие онкологического заболевания, то эта попытка заканчивается неудачно (New Scientist. 1981. Т. 90, № 1249. С. 836). Такое свойство было обнаружено у акулы-молота. Если ей привить раковую опухоль или ввести в наследственный аппарат вирус рака, то заболевание не развивается. В дальнейшем было доказано, что выделенные из тканей рыбы вещества тормозят развитие злокачественных образований, а иногда и полностью излечивают их

Противоопухолевые вещества, выделенные из акулы-молота, относятся к высокомолекулярным гликопротеинам. Их назвали сфирностатинами 1 и 2. Они состоят из большого числа аминокислотных остатков (274 и 380 соответственно). Минимальная доза, угнетающая рост опухолей, для сфирностатинов составляет 13 мг/кг. Такие вещества были обнаружены в определенных тканях и органах других акул

Необходимо отметить, что изучением противораковых свойств препаратов, приготовленных из печени акулы, уже давно занимается советский ученый А. Г. Гачечиладзе. Еще в 1965 г. он защитил кандидатскую диссертацию, которая была посвящена потенциальным возможностям управления клеточным делением. В 1968 г. А. Г. Гачечиладзе приготовил из печени черноморской акулы катран препарат катрэкс. История испытания препарата неоднократно описывалась в печати («Медицинская газета» – 14 октября 1987 г. и 27 января 1988 г.; журнал «Смена» -1987 г. № 15). Согласно гипотезе автора, рост опухолей возможно блокировать без повреждения нормальных тканей с помощью протеолитических ферментов, которыми богата печень катрана. Проведенные исследования показали, что при воздействии созданным препаратом на организм происходит рассасывание экспериментальных опухолей у животных. А. Г. Гачечиладзе проверял новое средство на себе – он сделал 60 инъекций катрэкса. Никаких побочных явлений обнаружено не было. Испытания на больных людях подтвердили высокую эффективность препарата. Катрэкс проходит испытание в восьми ведущих; научно-исследовательских онкологических учреждениях страны. Установлены клинические условия применения нового препарата, его показания, терапевтические возможности, слабые и сильные стороны. Какова дальнейшая судьба катрэкса – покажет время

В настоящее время установлено, что рыбы могут являться источником получения новых физиологически активных веществ. Например, давно известно, что из чешуи рыб можно определенным образом извлекать особое вещество гуанин, которое смешивают с лаком и получают жемчужный пат. Им покрывают стеклянные шарики при изготовлении искусственного жемчуга. Гуанин является составной частью нуклеиновых кислот, на что обратил внимание еще в начале 50-х годов известный фармаколог профессор Н. В. Лазарев. Он исследовал возможность применения гуанина для лечения некоторых заболеваний крови. Однако гуанин обладал большим количеством нежелательных свойств. Тогда Н. В. Лазарев начал исследовать другие продукты распада нуклеиновых кислот, в результате чего был создан препарат пентоксил – эффективное средство для лечения заболеваний крови и для химиотерапии злокачественных опухолей


    Ваша оценка произведения:

Популярные книги за неделю