Текст книги "Информация как основа жизни"
Автор книги: В. Корогодин
Соавторы: В. Корогодина
сообщить о нарушении
Текущая страница: 7 (всего у книги 17 страниц)
Только существование устройств, осуществляющих перевод информации с одних систем записи на другие, позволяет использовать для передачи, хранения и реализации информации разные носители. Возникновение таких устройств в ходе развития информационных систем было настоящей революцией. Одним из следствий этого было появление носителей с чрезвычайно большой продолжительностью жизни, а затем использование подобных носителей для хранения информации, вне зависимости от особенностей создающих ее и использующих информационных систем. Так возникли "блоки памяти", или "банки данных", предназначенные для хранения информации, запасенной впрок. Другим следствием появления долгоживущих носителей было резкое расширение возможностей обмена информацией между информационными системами с разными способами ее фиксации. На базе того и другого и образовались технические системы связи, положившие начало "великому объединению" многочисленных разрозненных информационных систем в единую суперсистему, свидетелями чего мы и являемся.
Закономерности передачи информации по различным каналам связи достаточно подробно рассматривает классическая или шенноновская математическая теория связи [6], и мы здесь этого касаться не будем. Отметим лишь универсальность этих закономерностей для любых информационных систем. В основе таких закономерностей, помимо рассмотренных выше свойств информации, лежит также принцип линейной последовательности передачи и приема, а также записи информации. Если прибавить к этому еще и линейный принцип считывания информации в ходе ее реализации, то станет ясно, что принцип этот лежит в основе всех трансформаций, которым может подвергаться информация в ходе осуществления информационных процессов.
Таким образом, по особенностям приема, хранения и передачи информации все информационные системы можно подразделить на два класса. Информационными системами 1-го рода будем называть те, где для всех трех основных информационных актов, а также для реализации информации используются одни и те же системы записи или идентичные физические носители. Информационными системами 2-го рода будем называть те, где для осуществления разных информационных актов могут быть использованы и действительно используются разные носители. Переход от первых ко вторым был обусловлен возникновением устройств, обеспечивающих перевод информации с одних физических носителей на носители другой физической природы. Нетрудно видеть, что подразделение информационных систем по этому признаку полностью совпадает со сделанным выше подразделением по признаку "прочности связи" отдельных блоков автомата фон Неймана. Это совпадение, конечно, совершенно естественно.
Считывание и понимание информации
Будем различать считывание информации и ее понимание, восприятие или рецепцию некоторой информационной системой. «Считыванием» будем называть первый этап процессов, завершающихся либо переводом информации с носителей одной физической природы на носители другой физической природы, либо реализацией информации в оператор. «Пониманием», как мы уже говорили, будем называть перевод информации с какой-либо группы носителей на тот носитель (или систему записи), который делает ее пригодной для реализации. Таким образом, понимание информации предполагает возможность ее считывания, хотя само считывание далеко не всегда может сопровождаться ее пониманием. Очевидно, что понимание информации возможно только для информационных устройств 2-го рода, которые способны понимать информацию не только друг друга, но и ту, которая присуща информационным системам 1-го рода. Последние из-за отсутствия у них соответствующих устройств к пониманию чужеродной информации не способны.
Считывание информации может осуществляться двумя способами: когда считываемая информация сохраняется и, следовательно, может считываться неоднократно и когда информация в процессе ее считывания исчезает, разрушаясь буква за буквой или фраза за фразой. Как тот способ, так и другой могут быть использованы и при переводах, и при реализации информации. Очевидно, что реализация информации по второму способу предполагает наличие в этой же информационной системе одной или нескольких интактных копий этой информации, пригодных для введения в систему следующего поколения.
Очевидно, что возникновение устройства, пригодного для считывания информации в ходе ее реализации и являющегося необходимым компонентом любой информационной системы, должно было предшествовать возникновению устройства, пригодного для перевода информации с носителей одной природы на носители другой природы. Вероятнее всего, первое устройство явилось прототипом второго или даже прямым его предшественником, так как перевод любой информации можно, вообще говоря, трактовать как вырожденную ее реализацию.
Репликация информации: матричный принцип
Матричный принцип репликации информации, впервые описанный Н. К. Кольцовым [7], играет столь большую роль в размножении и динамике как самой информации, так и информационных систем, что на нем следует остановиться подробнее. Суть матричного принципа состоит в том, что сначала с носителя информации изготавливается как бы слепок или негатив, а затем по нему воспроизводится точная копия исходного носителя. Антитезой матричному принципу может служить только принцип гомологичной аттракции, который в природе, кажется, реализации не получил.
Матричный принцип и принцип гомологичной аттракции, по-видимому, исчерпывают логические возможности точного воспроизведения объектов, максимально компактным описанием которых могут служить они сами. Точность такого воспроизведения, однако, не может быть абсолютной – тривиальные термодинамические соображения показывают неизбежность ошибок, и речь может идти лишь об их количестве или частоте.
Как и при любых других способах воспроизведения "чего угодно", здесь возможны ошибки двух типов: ошибки, не влияющие на успешность воспроизведения, и ошибки, препятствующие ему. Первые можно назвать "наследуемыми", а вторые "летальными", ибо они прерывают цикл воспроизведения испытывающих их информации и тем самым обрекают эти информации на гибель. Если считать, что вероятность возникновения одной ошибки постоянна на одну букву сообщения, то, следовательно, вероятность ошибки на сообщение в целом будет возрастать с его длиной, т. е. с величиной емкости информационной тары, это сообщение содержащей. Если частота таких ошибок приближается к критическому значению, все большие преимущества будут получать наследуемые изменения, снижающие частоту этих ошибок или помогающие компенсировать их в случае возникновения, – способ репликации будет совершенствоваться в направлении повышения его точности при параллельном (или независимом) развитии систем, обеспечивающих исправление или репарацию информации от возникающих ошибок или повреждений.
В этом процессе интересная роль должна принадлежать недозагруженной емкости информационной тары. Изменения, в ней происходящие, могут иметь либо летальный характер, и тогда они неотличимы по последствиям от подобных изменений самой информации, либо могут приводить к возникновению новой информации, т. е. к увеличению количества информации, содержащейся в данном носителе. Таким образом, разность "Н-В" может оказаться не балластной, а сыграть роль источника сырья при "построении" новой информации.
Как уже отмечалось, уменьшение выхода ошибок при матричном воспроизведении информации возможно не только путем их предотвращения в результате совершенствования механизмов копирования, но также путем следующего за копированием исправления уже возникающих ошибок. Для этого, очевидно, требуется такие ошибки выявлять, что может быть осуществлено путем сопоставления новых копий либо с некоторым эталоном, либо нескольких копий между собой. Эталоном может служить либо образец, подлежащий копированию, либо "шаблон", непосредственно не относящейся к носителям самой информации. Шаблонный способ может служить лишь для отбраковки любых изменений, – и где он возникает, прекращается вообще изменчивость информации, а следовательно, и ее эволюция. Остается сопоставление копии с исходным образцом или с другими копиями. То и другое может помочь выявить изменение, а точнее – различие между несколькими экземплярами носителей одной и той же информации, но решить, какое из них – исходное, а тем более – "правильное", а какое – новое или "ошибочное", невозможно без специальных устройств или шаблонов. Поэтому коррекция ошибок может осуществляться двумя путями – путем исправления нового образца, если его можно отличить от старого, и путем "исправления" в любом из двух образцов, т. е. путем делания их одинаковыми либо возвращая к исходному варианту, либо внося вновь появившееся изменение и в исходный, старый образец.
Можно полагать, что меры по стандартизации реплик будут обходиться тем "дороже", чем большая точность к ним предъявляется, и в реальной ситуации дело должно ограничиваться "сходной ценой": снижением частоты летальных изменений до некоторого "удовлетворительно переносимого" уровня. Автоматизм этого механизма очевиден и в детальном рассмотрении не нуждается. Результатом будет элиминация грозящих "вымиранием" информации летальных изменений и закрепление в новых поколениях информации изменений нелетальных. Все это будет приводить к некоторому постоянно идущему процессу спонтанной изменчивости информации. Механизмы такой изменчивости для информационных систем разных типов могут различаться.
Репликация информации: способы и устройства
Для анализа способов репликации информации и устройств, это осуществляющих, большое значение имеет та особенность информации, на которую выше уже обращалось внимание. Особенность эта состоит в том, что при достаточно компактной записи информации ее невозможно задать более коротким текстом. Иными словами, информация представляет собой класс таких объектов, которые нельзя закодировать более короткими последовательностями символов, нежели те, которые их задают, независимо от их числа.
Хотя это утверждение абсолютно справедливо только для максимально компактных текстов, оно определяет основной принцип репликации или воспроизводства информации: принцип прямого копирования.
Вследствие пассивности самой информации для ее репликации требуется наличие реплицирующего устройства, встроенного в соответствующую информационную систему. Мы уже отмечали, что репликация информации может осуществляться только одним способом – путем точного воспроизведения ее носителей. Логически возможны и в действительности существуют четыре варианта этого способа: последовательное и одномоментное копирование, которые могут осуществляться непосредственно, а могут быть опосредованы "негативом". При этом используемый в том или ином случае вариант определяется как особенностями носителя данной информации, так и особенностями реплицирующего устройства.
Запись информации может быть одномерная, двумерная и трехмерная, – но, согласно свойству инвариантности, каждую из них можно трансформировать в одномерную форму. Справедливо, конечно, и обратное утверждение. Поэтому способы репликации информации безразличны по отношению к размерности ее записи и могут быть рассмотрены на примере линейной последовательности символов. Но вот что существенно и что нельзя забывать: так как реплицирующее устройство никогда не "знает", сколь компактен текст, который ему предстоит реплицировать, то как сама репликация, так и процедуры, с ней связанные, всегда осуществляются так, как будто бы они имеют дело с максимально компактной записью. Выражается это в том, что собственно репликации всегда и без исключения подвергается не сама информация как таковая, а содержащие ее носители. Поэтому задача репликации информации в действительности сводится к репликации ее носителей, воспроизведение же самой информации является лишь неизбежным следствием этой процедуры. Репликация информации, следовательно, может осуществляться без соответствующего ее понимания и реализации информационной системой.
Соответственно четырем названным выше вариантам репликации информации может существовать четыре типа устройств, для этого предназначенных. Принципиальные схемы их конструкций тривиальны и специально рассматриваться не будут. Важно лишь отметить, что в природных (а не технических) информационных системах доминирует последовательный негативный способ, который обычно и называют матричным. В искусственных или технических системах используются все четыре способа, развившиеся из доминирующего в природных системах.
Реализация информации: построение оператора
Реализацию любой информации можно разделить на два этапа: построение оператора (собственно реализация или материализация информации) и работа оператора по осуществлению целенаправленного действия. Рассмотрение реализации информации начнем с первого этапа.
Материализация информации предполагает, прежде всего, наличие устройства, ее осуществляющего. Любую информацию, согласно нашему определению, можно представить себе как программу для построения некоторого объекта – оператора. Это не что иное, как алгоритмическое определение информации по А. Н. Колмогорову [1], подчеркивающее ее действенность. Но информация сама по себе пассивна – это лишь программа, вводимая в "реализующее устройство". Такое устройство, само являющееся оператором, выполняющим определенное целенаправленное действие, не может возникнуть само по себе, а может быть создано лишь на основе какой-то информации. Как и другие объекты материального мира, реализующее устройство не вечно и, конечно, изнашивается и нуждается в замене. Для построения нового реализующего устройства опять требуется соответствующий оператор и т. д. Возникает порочный круг. Выходом здесь может быть лишь предшествующее каждому новому циклу реализации информации построение новых реализующих устройств с помощью старых, оставшихся от предыдущего цикла, а затем с их помощью уже построение самого оператора. Так мы опять возвратились к схеме работы автомата фон Неймана (см. рис. 3).
Таким образом, полная реализация информации может представлять собой лишь ряд последовательных шагов, т. е. построение ряда промежуточных операторов, так, чтобы лишь последний окончательно выявил ее семантику, совершив, наконец, заключительное действие, целью которого, как мы помним, является воспроизведение информации, относящейся к данной информационной системе (см. главу 2).
А. Н. Колмогоров в своих эссе об алгоритмическом определении информации [1] разделяет собственно информацию о некотором объекте и программу построения этого объекта по данной информации. По-видимому, информацию, и притом любую, всегда достаточно рассматривать как некоторую программу или как руководство к действию, которые, однако, никогда не могут быть исчерпывающе полными. Реализация таких программ всегда предполагает нечто, предопределяемое особенностями самого реализующего устройства, и вопрос о том, насколько по такой программе можно априори воссоздать оператор в его окончательном виде, всегда остается открытым. Не это ли имел в виду А. Н. Колмогоров, говоря о недискурсивности функций, представляющих собой такие программы? Тогда максимально-компактной записью информации можно называть минимальную длину программы (из всех возможных), допускающей построение оператора.
Здесь возникает интересный вопрос о соотношении сложности и специфики самого оператора, его описания и программы для его построения. Подробнее эти вопросы будут рассматриваться ниже.
Мы должны здесь подчеркнуть две стороны процесса построения оператора на основании данной информации, завершающегося возникновением оператора для осуществления целенаправленного действия. Первое – этот процесс требует притока вещества и энергии. Второе – ошибки копирования, о которых мы говорили выше, будут отражаться в построении промежуточных операторов в качестве "мутаций" или "флуктуации". Эффективность или жизнеспособность конечного продукта будет зависеть от этих промежуточных операторов, которые являются, таким образом, материалом для дарвиновского отбора.
Ощущение порочного круга – реализация информации через реализующее устройство, построение которого также требует информации, – отражает не тавтологичность наших рассуждений, а тот объективный факт, что никакой информации вне связи с информационными системами не существует и существовать не может. Любая же реальная информационная система возникла в ходе преемственности, развилась из ранее существовавших, а не спонтанно. Это приводит к простому выводу, что возникнуть информация могла лишь в единстве с ее информационной системой, в максимально простом из возможных ее вариантов. Только дальнейшее развитие такой системы, с вычленением отдельных блоков (или устройств), представляло собой реализацию потенций, заложенных (или, точнее, скрытых) в этой прародительской информационной системе.
Операторы и их характеристики
Мы уже говорили, что любой оператор, от считывающего и реализующего устройства до всей информационной системы в целом, можно рассматривать как машину, призванную осуществлять то или иное целенаправленное действие. Теория таких машин кратко изложена Л. А. Блюменфельдом [8], и повторять ее нет надобности. Здесь же нас интересуют лишь самые общие характеристики операторов и особенности их связи со свойствами кодирующей их информации.
Чтобы в дальнейшем не возникало недоразумений, следует, пожалуй, еще раз подчеркнуть, что оператор – это любой объект, возникновение которого возможно только на основе предшествующей информации. Таким образом, к классу операторов мы должны относить и молекулы белка, и рибосомы, и всю совокупность негенетических компонентов клеток, и всех живых организмов, и все, что изготавливают эти организмы для поддержания своего воспроизведения, а также любой объект человеческих технологий и весь технологический комплекс в целом. Построение любого оператора всегда и неизбежно, как мы видели, предшествует воспроизведению кодирующей его информации и необходимо для осуществления этого воспроизведения, хотя обратное заключение не обязательно верно (действительно, информация IА может кодировать оператор, обеспечивающий воспроизведение информации IА + IВ + IС + ...). Поэтому любой оператор может быть отнесен к системам обеспечения воспроизведения информации. Таким образом, любой оператор всегда выполняет две функции: осуществление целенаправленного действия, для чего он непосредственно предназначен, и обеспечение воспроизведения кодирующей его информации, что может либо полностью совпадать с первой функцией, либо быть весьма опосредованной, отдаленной, но все равно строго обязательной целью его деятельности.
Однако, каким бы ни был оператор и сколь бы опосредованной ни была его связь с достижением конечной цели, его всегда можно охарактеризовать в трех аспектах: сложностью его организации, спецификой строения и коэффициентом его полезного действия. Рассмотрим последовательно эти три характеристики.
Сложность оператора и количество информации
Сложность организации операторов, как и любых других объектов, можно задавать несколькими способами, в соответствии с чем и меры сложности могут быть разными.
Действительно, сложность организации любого объекта можно, по-видимому, выразить числом знаков (напр., бинарного кода), требующихся для описания этого объекта; числом и разнообразием составляющих данный объект элементов; числом "шагов" (операций), требующихся для построения этого объекта из исходного сырья, и т. п. И хотя каждый из таких подходов к выражению сложности объекта требует своего ограничения (т. е. до какого уровня следует доводить детализацию), причем условность здесь неизбежна, очевидно, что все эти способы связаны друг с другом так, что при возрастании любой избранной меры сложности будут возрастать значения и других.
Если в качестве меры сложности объекта использовать число знаков бинарного кода (т. е. биты), требующихся для его описания (на избранном уровне организации), а в качестве меры количества кодирующей его информации – число знаков бинарного кода, задающих программу его построения (на этом же уровне организации), то мы получим возможность сравнивать их друг с другом.
У А. Н. Колмогорова [1] существует высказывание, что с увеличением сложности объекта и, следовательно, числа битов, требующихся для полного его описания, количество информации, кодирующей построение этого объекта, будет так возрастать, что в конце концов, при достаточно большой сложности объекта, полностью совпадет с его описанием. Так ли это? Если программу построения объекта задавать, следуя дихотомическому принципу, то количество информации, кодирующей объект, будет возрастать как логарифм его сложности, т. е. будет все более отставать от степени его сложности. Можно, по-видимому, доказать утверждение, сформулированное выше, что сложность объектов возрастает быстрее, чем количество кодирующей их информации, например, как его степенная функция. Тогда разрыв между числом битов, описывающих объект, и числом битов, задающих программу его построения, с увеличением сложности объекта будет только возрастать.
Увеличение сложности объекта с увеличением количества кодирующей его информации означает, что в общем случае при этом увеличивается число составляющих его деталей, усложняется их взаиморасположение, возрастают энергозатраты как на построение такого объекта, так и на обеспечение его функционирования. В случае операторов – а мы уже условились, что все без исключения объекты, возникающие при участии информации, можно считать операторами, – это утверждение справедливо, конечно, лишь по отношению к тем ситуациям и целям, для которых эффективность соответствуюей информации больше нуля.
Таким образом, мы приходим к выводу, что сложность строения операторов всегда увеличивается так же или быстрее, как и количество кодирующей их информации. Это означает одновременное увеличение энергозатрат как на изготовление, так и на обеспечение функционирования этих операторов.
Специфика операторов и семантика информации
Семантику информации мы определили выше как ту ее особенность, которая обусловливает специфику кодируемого ею оператора. Из-за условности любой информации очевидно, что понятие «семантика» имеет смысл лишь по отношению к данной информационной системе, или, точнее, данному реализующему устройству этой системы. Под «спецификой» оператора имеютя в виду особенности слагающих его компонентов и характер связей между ними, что, в конечном счете, и определяет успешность участия оператора в осуществлении того или иного целенаправленного действия. Следовательно, именно семантика информации определяет ту специфику оператора, благодаря которой вероятность успешного достижения цели, а следовательно, и ценность данной информации, имеет то или иное распределение на множестве пар «ситуация-цель» (см. глава 2). Способы выражения как специфики оператора, так и ценности информации оказываются идентичными.
Работа оператора, ее характеристики
Первым этапом реализации информации является, как мы помним, создание оператора. Второй этап – деятельность, или работа этого оператора, результатом чего и будет осуществление события цели Z и возникновение побочных продуктов w, этому сопутствующее. Очевидно, что оба этапа реализации информации могут быть существенно разделены во времени, вплоть до такого крайнего случая, когда первый может произойти, а второй – нет. Очевидно также, что лишь завершение второго этапа является полной реализацией информации, и только от этого зависит ее дальнейшая судьба – как в том случае, когда успешность работы операторов побуждает «расширять их производство» и, следовательно, будет приводить к мультипликации кодирующей их информации, так и в том случае, когда итогом их работы является непосредственное воспроизведение информации.
Работа операторов, как и любых машин, требует, прежде всего, затрат определенного количества энергии. Это обстоятельство сразу же вводит нас в круг привычного царства законов механики и термодинамики. Мы можем здесь, следовательно, говорить о затратах энергии на работу операторов, о расходовании энергии на "полезное действие" (достижение Z) и на производство "побочных продуктов" (w).
Особенности информации определяют специфику оператора, а эта последняя – его термодинамические характеристики в данном информационном поле. Эти характеристики, в свою очередь, влияют на динамику самой информации, определяя скорость ее воспризведения и степень мультипликативности. Поэтому динамику информации невозможно понять, не уяснив себе предварительно характер связей между ее свойствами и термодинамическими особенностями оператора.
КПД оператора и характеристики информации
КПД оператора, как и любой другой машины, можно выразить отношением полезно затрачиваемой энергии к общему ее расходованию оператором при осуществлении целенаправленного действия. Согласно определению, полезной будем называть ту энергию Ez, которая расходуется только на осуществление «полезного действия», т. е. на достижение цели Z. Следовательно, разность между общей и полезной энергией идет на «производство» побочного продукта w данного целенаправленного действия (17):
Какие же характеристики информации и в какой мере обусловливают КПД ее оператора?
К сожалению, строгих подходов к ответу на этот вопрос пока не существует. Лишь интуитивно можно полагать, что в самом общем случае расходы энергии на работу оператора должны возрастать с увеличением его сложности, а чем больше относительное количество "полезно" затрачиваемой энергии Ez, тем больше вероятность достижения цели в данном пространстве режимов при использовании данного оператора. Но, как мы видели выше, сложность оператора отражает количество Bz кодирующей его информации, а вероятность достижения цели определяет ее ценность Cz. Поэтому на основании чисто интуитивных соображений можно высказать предположение, что КПД Q увеличивается с ростом С/В =А1, т. е. что КПД оператора возрастает пропорционально ценности С и обратно пропорционально количеству В кодирующей его информации, или, что то же самое, пропорционально эффективности А, этой информации. Конечно, это справедливо только для пар «информация-оператор» данного типа и может проявляться лишь в последовательном ряду преемственных пар «информация-оператор».
Таким образом, можно высказать предположение, что коэффициент полезного действия оператора возрастает с увеличением эффективности кодирующей его информации.
Это предположение, если его удастся строго доказать, может вполне претендовать на роль основной теоремы будущей теории информации. Предположение это столь фундаментально, что его следует рассмотреть более внимательно. Роль этого предположения состоит в том (как будет показано в главе 5), что только на его основе можно строить учение о динамике информации. Поэтому приведенное выше предположение можно рассматривать как "центральную догму" общей теории информации, без доказательства или принятия которой невозможно последовательное ее построение. Будем надеяться, что в недалеком будущем удастся не только доказать справедливость этого предположения, но и выяснить (хотя бы в общем виде) форму зависимости КПДQ от А1.
Какова же может оказаться форма этой зависимости? Вряд ли она будет линейной. Скорее всего, зависимость эта будет иметь более сложный характер, и в нее будут входить коэффициенты, отражающие другие свойства и особенности информации, помимо ее количества и ценности. Но при константных значениях таких коэффициентов с увеличением А1 значение КПДQ будет, скорее всего, монотонно увеличиваться, и пока для нас этого вполне достаточно. Ведь вряд ли можно сомневаться, что значения этих коэффициентов будут отражать, главным образом, специфику пространства режимов и информационных полей.
Из соотношения (15) можно вывести ряд следствий.
Первое следствие. КПДQ не есть постоянная величина, но зависит от особенностей пространства режимов и информационного поля (т. е. от ситуации, при которой «работает» оператор, и той цели, для достижения которой он служит). Но распределение КПДQ по множеству информационных полей должно если не совпадать, то «однонаправленно отображать» распределение эффективности А, соответствующей информации.
Второе следствие. КПДQ отображает «эффективность» достижения цели, мерой которой в информационном аспекте служит эффективность А1 самой информации. Это очень важное следствие. Оно наполняет реальным физическим содержанием понятие «эффективность информации», введенное выше чисто формально (см. главу 2). Нетривиальность ситуации состоит в том, что максимум КПДQ далеко не всегда и далеко не обязательно должен соответствовать максимуму вероятности достижения цели: лишь в начале, при значениях С ›› 1, КПДQ будет возрастать с увеличением С, а затем может либо стабилизироваться, либо начнет уменьшаться, изменяясь в разных ситуациях с разными скоростями. Но во всех случаях максимумы кривых КПДQ(В) и А1(В) должны совпадать, точнее, должны совпадать их положения по оси абсцисс, т. е. оба максимума должны приходиться на одни и те же значения В = Ворt.
Третье следствие. Хотя величина КПДQ может изменяться в интервале от 0 до 1, т. е. пробегать те же значения, что и Р – вероятность достижения цели в данном целенаправленном действии, а также С – ценность информации, это еще не означает, что КПДQ однозначно, хотя бы по направлению, отражает значение Р и С. Можно лишь думать, что при достаточно больших значениях КПДQ величины Р и С не должны быть очень малыми, хотя обратное заключение может быть неверным, ибо высоким значениям Р и С могут соответствовать очень низкие значение КПДQ. Примеров этому, пожалуй, можно привести множество. Это следствие очень богато содержанием и, можно думать, имеет огромное значение для анализа конкретных путей динамики информации.
Четвертое следствие. Очевидно, что на производство "побочных продуктов" w расходуется лишь некоторая доля от всей энергии, требующейся оператору для осуществления целенаправленного действия: EW = Е (1 –КПДQ). Это, однако, не означает, что с увеличением КПДQ выход побочного продукта будет уменьшаться, а «безотходность производства» – возрастать. Можно думать, что выход побочного продукта будет примерно пропорционален абсолютному значению «бесполезного» расходования энергии в данном объеме пространства – именно пространства, а не «пространства режимов»! Поэтому выход побочного продукта и должен быть пропорционален ЕW = ( EQ – Ez) = Eq (1 – КПДQ). В общем случае форма зависимости выхода побочного продукта w от КПДQ и, следовательно, от характеристик информации может иметь весьма сложный характер, но мы этот вопрос рассматривать не будем.