355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Корогодин » Информация как основа жизни » Текст книги (страница 15)
Информация как основа жизни
  • Текст добавлен: 15 октября 2016, 06:38

Текст книги "Информация как основа жизни"


Автор книги: В. Корогодин


Соавторы: В. Корогодина
сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)

Все это придало накоплению опыта и знаний в человеческих популяциях форму взрыва. Количество специфической для человека информации – человеческого знания – начало безудержно возрастать. Объективных верхних границ для накопления такой логической информации, как это было с генетической и поведенческой формами информации, по-видимому, не существует.


Функции информации в человеческих сообществах

Таким образом, первая функция, которую выполняет логическая информация в человеческих сообществах, – это обеспечение быстроты обмена новыми знаниями между членами этих сообществ.

Но передача информации посредством речи не только породила возможность быстрого обмена знаниями, но и сыграла решающую роль в сплочении человеческих сообществ, в связывании отдельных их представителей в единую информационную систему, функционирующую (и управляемую) на основе единого информационного пула. Подобно тому, как генетическая информация обеспечивает слаженность функционирования клеток и организмов, а поведенческая – популяций организмов, обладающих развитой нервной систмой, логическая информация, являясь "общественным достоянием", обеспечивает функциональную слаженность человеческих сообществ. Это – вторая, консолидирующая, функция информации. Такая консолидация людей, в свою очередь, интенсифицирует динамику самой информации. Носителями информации становятся все более многочисленные группы людей, все интенсивнее вовлекаемые в использование имеющейся и создание новой информации.

И наконец, третья функция логической информации, неотрывная от первых двух.

Зарождение и развитие речи, благодаря все возрастающей возможности концентрировать и сохранять знания, естественно сопровождалось умножением и совершенствованием производственных навыков, изготовлением орудий труда, средств потребления, средств производства и, наконец, производством средств производства. На основе первичных примитивных и подчас случайно "изобретаемых" орудий труда начали развиваться различные виды технологий.

Информация, получившая благодаря речи независимое (от отдельных индивидов) существование, породила независимо существующие от отдельных индивидов операторы – орудия труда и производственные навыки. Степень соответствия таких операторов задаваемым целям и условиям обитания определяла сохранность и мультипликацию кодирующей их информации. Ноогенез совершался в теснейшем взаимодействии и взаимосвязи с техногенезом.


Человечество и техногенез

Таким образом, к «феномену человека» относятся три решающих фактора: во-первых, речь; во-вторых, порождаемое речью независимое от отдельных людей существование и развитие информации; и, в-третьих, порождаемое и определяемое информацией – и, в свою очередь, направляющее ее эволюцию – развитие технологий.

Все три ипостаси феномена человека по сути своей сформировались еще на заре человеческой истории и сохранились до сих пор. Все последующее совершенствование языка (устная речь, письменная, записи разного рода, развитие технических систем связи, хранения и обработки информации, в том числе разные варианты компьютеров) служили задачам передачи, приема и хранения информации, а также переработки получаемой информации с целью более компактной ее записи для облегчения ее использования и т. п. Все развитие технологий всегда осуществлялось и осуществляется сейчас как развитие способов и форм реализации логической информации в те или иные технологические объекты, призванные обеспечивать достижение тех или иных целей.

Заметим, однако, что, хотя непосредственными целями использования различных технологий является реализация тех или иных стремлений (задач) владеющих ими лиц или сообществ, одновременно каждый технологический объект неизбежно выполняет и другую функцию – функцию фактора, определяющего судьбу кодирующей его информации. Выражение "практика –критерий истины" как нельзя более подходит к описанию взаимоотношений между эффективностью работы операторов, в роли которых выступают технологии, и жизнеспособностью в данных конкретных ситуациях кодирующей их логической информации.


Особенности динамики человеческих популяций

Все человеческие сообщества, или популяции, порождаемые биологической эволюцией, и раньше, и сейчас были и остаются теснейшим образом связанными с экосистемами, в пределах которых они существуют, и со всей биосферой Земли. Рассмотрим поэтому динамику человеческих популяций прежде всего как природных компонентов биоценозов и биосферы.

Выше мы уже говорили, что "расширенное воспроизводство" или "давление жизни" (L > 1) является необходимым условием процветания любой природной популяции. Это полностью относится и к популяциям человека как биологического объекта.

Можно утверждать, что прогрессивная эволюция человечества как биологического вида возможна лишь при условии dn /dt > 0, т. е. при постоянном возрастании его численности, или его биомассы. Условие dn/dt <0 соответствует деградации человеческих популяций, а условие dn /dt = 0 – их стабилизации, что, как мы видели, является неустойчивым состоянием и также чревато гибелью (см. главу 6). Но постоянное возрастание численности людей возможно лишь при опережающем увеличении биомассы тех растений и животных, которых человек использует для питания и удовлетворения других потребностей [15]. Посмотрим, какие из этого можно сделать следствия.


Этапы эволюции человечества

Напомним, что по своему положению в биосфере человек занимает верхний ярус биологической иерархии: он может обитать практически во всех климатических зонах и использовать для своих нужд практически любых представителей флоры и фауны. В силу этого экосистемой современного человечества является вся биосфера Земли.

Эволюцию человека как вида можно разделить на три этапа.

Первый этап, когда накопление биомассы, т. е. суммарный рост численности всех человеческих популяций, шло за счет использования избытков продуктивности занимаемых этими популяциями ценозов, т. е. когда человек "вписывался" в трофический баланс этих биоценозов. Этот этап состоял в освоении все новых зон обитания и сопровождался расселением человека по поверхности планеты, при примерном постоянстве его удельной плотности внутри разных биоценозов. Этот этап сопровождался жестокими стычками человеческих популяций за места обитания. Рудиментами этого этапа являются до сих пор сохраняющиеся кое-где популяции "дикарей", довольствующихся охотой и собиранием плодов, давно стабилизировавшиеся по численности и поэтому находящиеся на грани вымирания. На этом этапе своей эволюции человек в занимаемой им экосистеме исполнял роль одного из ряда сосуществующих с ним трофических аналогов. На этом этапе нарушений стабильнсти заселенных человеком экосистем еще не происходило. Численность таких челвеческих популяций должна была колебаться около нижнего биологически допустимого предела, вписываясь в общую биомассу всей совокупности соответствующих трофических аналогов.

Второй этап, постепенно вызревавший в недрах первого, был характерен тем, что человек уничтожал своих трофических конкурентов, например хищников. Этот этап состоял в постепенном вытеснении человеком из зон своего обитания его трофических аналогов. Благодаря монополизации соответствующих трофических функций человек получал возможность увеличиваться в численности до верхней биологически допустимой границы. Однако, как мы видели выше, сопровождавшее этот процесс уменьшение числа трофических аналогов было далеко не безразличным для состояния включающих их экосистем, так как приводило к уменьшению их надежности. Это, в свою очередь, угрожало дальнейшему приросту численности человека. Поэтому в историческом аспекте данный период развития может расцениваться лишь как паллиатив, ибо он способен обеспечить не неограниченный, а ограниченный лишь более высоким уровнем рост численности человечества.

Наконец, с развитием технологий все больший вес приобретает третий этап эволюции человеческих сообществ. Продолжая уничтожать своих трофических конкурентов, человек начинает замещать некоторые из низлежащих компонентов биоценозов их технологическими аналогами, отличающимися от природных более желательными для человека особенностями биологической продуктивности. Начинается этот этап с возникновения животноводства и земледелия и продолжается до сих пор. С началом этого, третьего этапа развития человечество вступило в эру техногенеза.

Покажем теперь, что наступление эры техногенеза было единственным условием дальнейшей прогрессивной эволюции человечества, а затем рассмотрим факторы, лимитирующие техногенез.


Ограничения численности человеческих популяций

Напомним, что продукция биомассы в биосфере является функцией всех входящих в нее биоценозов. Обмен биомассой между отдельными биоценозами относительно невелик и поэтому прирост биомассы во всей биосфере слагается из сумм приростов биомассы в каждом биоценозе (29):

где

N – число всех биоценозов, а скорость Vi накопления биомассы каждым биоценозом задается уравнением типа (22). Если принять, что одним из лимитирующих факторов в производстве биомассы является количество энергии, доступной популяции, сообществу или биосфере в целом, то отсюда следует, что повышение скорости прироста биомассы во всех сообществах и в биосфере возможно лишь при условии еще более интенсивного накопления доступной по форме энергии, т. е. еще более интенсивного ее создания и высвобождения. Поскольку приток энергии на Землю есть величина постоянная, то даже локальное увеличение «полезного потока энергии» может осуществляться лишь «искусственно», т. е. с помощью технологий. Такие же рассуждения справедливы, в принципе, и для других лимитирующих факторов.


Роль технологий в приросте человечества

Будем называть технологией совокупность всех видов операторов, используемых человеком для достижения той или иной своей цели. Как мы уже отмечали, в конечном счете это, как правило, имеет два последствия: способствует размножению человеческой популяции и мультипликации соответствующей информации.

К первым технологиям, по-видимому, можно отнести изготовление простейших орудий труда и овладение огнем. Произошло это еще в ранний период развития человечества и немало способствовало его экспансии – вселению во все новые экологические ниши. Здесь добавочное получение энергии путем сжигания растений существенно способствовало как расширению занимаемых территорий, так и вытеснению (или истреблению) трофических аналогов. Так началось зарождение технологической эры. Переход к скотоводству и земледелию явился непосредственным следствием достаточного развития технологий и увеличения численности человеческих популяций. Можно думать, что переход этот был существенно стимулирован достигнутыми человеческими популяциями численностями, уже выходящими за пределы верхней границы биомассы для компонентов биоценозов данной трофической функции. Только использование технологий позволило преодолеть этот барьер.

Таким образом, благодаря развитию технологий человек вырвался за пределы численности, налагаемые на него его биологической природой и его естественным положением в биосфере. Логическая информация, достигнув должного уровня развития, начала создавать техногенный мир, мир, искусственно создаваемый человеком. Стада первых скотоводов и поля первых земледельцев – вот первые, еще буколические его порождения.


Основные черты техногенеза

Вряд ли есть смысл детально прослеживать дальнейшие пути техногенеза. Уже первые его шаги выявляют присущие ему основные черты. Перечислим их и рассмотрим подробнее.

Техногенез возник и развивался в неразрывном единстве с возникновением и развитием логической информации; технологические объекты – это воплощение или материализация информационных блоков, эти объекты кодирующих. Технологические объекты, используемые человеком для достижения "своих" целей, в то же время служат для проверки истинности кодирующей их информации ("практика – критерий истины") и тем самым определяют, в конечном счете, жизнеспособность, а также возможность и направления дальнейшего развития этой информации. Свойства же и особенности информации определяют целый ряд свойств, и прежде всего КПД, соответствующих технологических объектов.

Одна из таких особенностей логической информации – неограниченные (в принципе) возможности ее количественного нарастания в ходе ноогенеза. Это обусловливает отсутствие принципиальных ограничений на технологические объекты – на их развитие, их мощность и энергоемкость. Другими словами, в принципе возможны технологические объекты любых масштабов и энергоемкости, вплоть до космических, что было подчеркнуто еще С. Лемом [15].

Но, в отличие от информации, их кодирующей, технологические объекты – это машины, функционирующие в материальном мире. Это – объекты, совершающие целенаправленные действия – и, следовательно, наряду с "достижением цели" Z неизменно производящие "побочные продукты" w (см. главу 2). Каков бы ни был КПД таких объектов, он всегда меньше единицы, и избежать образования w невозможно. Но с ростом энергоемкости операторов, даже при постоянном возрастании их КПД, величина w будет столь же неограниченно возрастать. Это должно привести к ряду следствий, непосредственно относящихся к воздействию технологий на экосистемы и биосферу в целом.


Интенсивный период техногенеза и его особенности

Мы уже отмечали, что только технология позволила человеку вырваться за пределы «природной» численности, налагаемые его положением в биосфере как биологического объекта. Начальный период этого процесса, который можно назвать экстенсивным, состоял в экологической экспансии и вытеснении трофических аналогов из различных захватываемых человеком биоценозов. Результатом этого явилось недостижимое для других биологических видов расширение ареалов обитания. Здесь технологические объекты играли в основном роль оружия. Следующий, продолжающийся до сих пор интенсивный период развития технологий состоит в постепенной замене различных биологических компонентов биосферы их технологическими аналогами. Здесь технологические объекты уже выполняют роль орудий труда – в самом широком смысле этого слова.

Необходимо подчеркнуть, что процесс этот был природным, естественным и лишь сравнительно недавно начал осознаваться человеком. Мы уже отмечали, что техногенез есть непосредственное (и неизбежное) следствие ноогенеза: развитие идей, логической информации, всегда предшествовало и предшествует их технологической реализации. Весьма распространенные высказывания типа "Только сейчас наука становится движущей силой развития промышленности", "Наш век – век научно-технической революции" и т. п. – лишь отражение того, что только сейчас люди стали замечать это и понимать то, что всегда, на протяжении всей обозримой человеческой истории, имело место и благодаря чему человек – повторим еще раз – переступил отведенные ему природой границы численности. С развитием технологий, как мы уже отмечали, неизбежно ускорялось и накопление общего количества логической информации, усиливалось ее консолидирующее воздействие на человеческие сообщества. Постепенно формировался – и теперь этот процесс уже всеми осознан – глобальный информационный пул, сплачивающий все человеческие сообщества в единую информационную суперсистему. Стираются грани между отдельными племенами и народностями, между отдельными странами. Параллельно формированию единого информационного пула идет формирование единого общепланетарного рынка, возникают межнациональные технологические комплексы, процесс техногенеза все более подпадает под осознанный контроль со стороны таких международных организаций, как ООН, ВОЗ, МАГАТЭ и другие. Техносфера все плотнее охватывает планету, образуя единую техногенную среду обитания человека.


Техногенез и проблема автотрофности человека

Как мы уже отмечали, замена биологических компонентов биосферы их технологическими аналогами началась уже на заре человеческой истории. Использование огня, шкур животных, постройка жилищ и, наконец, скотоводство и земледелие – процессы, которые с развитием рыбоводства и освоением «морских пастбищ» завершат технологизацию природных источников питания и одежды.

Позже начался и нарастает, параллельно с этим процессом, когда один природный продукт заменяется другим, более выгодным, другой процесс – процесс такой замены продуцентов, когда продукт перед использованием требует технологической доработки, "доведения", например искусственное волокно взамен шерсти или льна и т. д. Этот процесс набирает все большую мощность. В некоторых областях человеческой жизни такая замена произошла почти полностью. Так, например, на смену последовательности событий "выпас лошадей – кормление их в стойлах – использование лошадей для поездок верхом и перевозки вьюков – изобретение колеса – использование легких повозок – использование больших упряжек" пришла принципиально новая последовательность "автомобиль – трактор – паровоз – электровоз". "Почти полностью" потому, что непосредственным источником энергии как в первой, так и во второй последовательности служат природные биогенные продукты – трава и зерно, скармливаемые лошадям, или бензин, уголь, газ, используемые техническими средствами транспорта.

Процесс такой технологизации биосферы развивается в ясно прослеживаемом направлении – в направлении уменьшения числа биологических звеньев в потоках вещества и энергии, обеспечивающих существование человека. В направлении все более непосредственного использования, с помощью технологических устройств, первичных источников того и другого, т. е. солнечной (и, возможно, ядерной) энергии и базовых неорганических источников атомов. Уже намечаются контуры замены биосферы техносферой, когда поддержание гомеостаза в биосфере – газового состава, температуры, круговорота воды, углерода и других атомов – будет выполняться технологическими аналогами зеленых растений, различных микроорганизмов и т. п.

Но ясно, что это – далеко еще не все. В ходе такого замещения пул атомов, вовлеченный в круговорот биосферы, может некоторое время оставаться постоянным, и дело будет ограничиваться только их перераспределением: из разветвленного потока в тысячи ручейков, поддерживающих жизнь тысяч различных организмов, все большее количество биогенного вещества будет сливаться (с помощью технологий) в единый поток, обеспечивающий существование все возрастающей биомассы человечества. Но тогда общий запас таких атомов положит последний верхний предел численности человека, последний барьер, который ему предстоит преодолеть.

Развитие технологий в этот период (если он когда-либо наступит) подготовит "последний прорыв" – непосредственное извлечение атомов из абиогенных источников и направление их потоков на поддержание и увеличение численности людей сверх всяких природных ограничений. Это будет завершение перехода человечества к полной автотрофности, т. е. начало предугаданной В. И. Вернадским [16] эры автотрофного человечества.

В автотрофном состоянии предел численности единой человеческой популяции будет задаваться лишь двумя факторами: достаточностью источников энергии и доступностью вещества, которое с помощью этой энергии можно трансформировать в формы, приемлемые для жизнеобеспечения людей. Можно думать, однако, что помимо этих, предвидимых лимитирующих факторов в этот период развития человечества все большее значение будет приобретать еще один, непредвидимый фактор – глобальные катастрофы. Но прежде чем приступить к анализу катастроф, рассмотрим еще раз основные информационные аспекты техногенеза.


Информационные аспекты техногенеза

Все технологические объекты, как уже говорилось, представляют собой операторы, используемые человеком для осуществления целенаправленных действий. Но каждое целенаправленное действие характеризуется не только вероятностью Р достижения некоторой цели Z, но и образованием побочных продуктов w (см. главу 2).

На примере развития биогеоценозов мы показали, что w служат основой формирования биологической иерархии и экологических сообществ – экосистем и биоценозов. Если бы побочных продуктов вообще не образовывалось, то ни экосистемы, ни сама биосфера не смогли бы возникнуть, не говоря уже о ярусной структуре феномена жизни.

Но совершенно другую роль в существовании биосферы играют побочные продукты w техногенного происхождения. Напомним, что техногенез с первых же шагов имел экспансивный, а не адаптивный характер. Это всегда было вторжением в уже сбалансированные ценозы – вторжением, вызывающим их нарушения и даже разрушения. По своим масштабам и скорости осуществления, по сравнению с другими процессами, разыгрывающимися в биосфере, эти вторжения были таковы, что практически исключали релаксацию: вместо восстановления исходного состояния вслед за прекращением таких вторжений начиналось формирование новых ценозов, с ярко выраженным техногенным отпечатком. Обратные связи начинали действовать (например, вытаптывание большими стадами северных оленей весенних пастбищ влекло за собой гибель части поголовья), но человек этому всегда противился. Урбанизация, мелиорация, химизация сельского хозяйства, гербициды, пестициды особенно, а затем – химические отходы предприятий, глобальное замусоривание неутилизируемыми биотой "побочными продуктами" (керамикой, стеклом, пластиком), – все эти неизбежные спутники техногенеза вызывают в биосфере все более ощутимые изменения. В то же время из недр Земли извлекается все в больших количествах "побочные продукты" прошлых жизней – нефть, уголь, руды биогенного происхождения и другие наследия биогенных процессов далеких веков, и в ходе техногенеза все это трансформируется в CО2 и другие неконтролируемые «отходы производства», накапливающиеся в атмосфере, гидросфере и в почве.

Но такое монотонное "засорение" биосферы – лишь одно из негативных последствий техногенеза. Оно ведет, как мы видели, к разрушению биологических компонентов биосферы, еще не замещенных технологическими аналогами. Другое последствие, по разрушительности, возможно, еще более значительное, – это периодически и случайно происходящие в техносфере катастрофы и вызываемые ими катастрофические изменения в окружающей среде. Посмотрим, как экологические последствия техногенных катастроф могут быть связаны с энергоемкостью технологий.


Энергоемкость технологий

Воспроизведения каждого живого объекта (бактериальной клетки, растения, животного) обеспечиваются должными направлениями потоков требующихся для этого вещества и энергии. Направленность этих потоков и избирательность по отношению к исходному материалу определяются генетической информацией, кодирующей данные объекты, а само движение – энергозатратами, восходящими для подавляющего большинства живых систем к единому источнику – Солнцу. Если по отношению к веществу можно говорить о круговороте, то по отношению к энергии – лишь о потоке, с постоянной диссипацией «отработанной» энергии в тепло. Воспроизводство каждого организма может быть охарактеризовано довольно константными значениями количества требуемого для этого вещества и величиной энергозатрат.

Количество вещества и энергии, потребляемое каждым индивидом от зачатия до смерти (клеткой – от деления до деления), можно выразить по отношению к массе данного объема (максимальной в его онтогенезе). Величина эта, постоянная для организмов одного и того же вида, не зависит от численности популяций, в которые он входит, и от продолжительности существования этого вида.

В человеческой же популяции такое постоянство относится только к потребляемым людьми продуктам питания. Однако расход всего вещества и всей энергии, приходящихся на одного человека, неуклонно возрастает с увеличением численности популяций. Сюда относятся расходы вещества и энергии на одежду, обогрев, места жительства, транспорт и связь, на изготовление и использование орудий труда, оружия, наконец, предметов развлечения, роскоши и пр. Это плата за техногенез, или, точнее, это и есть мера техногенеза, цена продолжающегося роста численности человеческой популяции. Это – расход на те техногенные компоненты человеческой экосистемы, которые постепенно заменяют собой его исходное биогенное окружение.

Общий расход вещества и энергии, приходящихся на воспроизведение одной человеческой жизни, можно выразить в энергоэквивалентах и отнести к энергоэквиваленту расхода на одно только питание. Так мы получим меру технологического обеспечения воспроизводства человеческих популяций. Этот показатель неуклонно возрастает с увеличением численности людей, что особенно ярко выражено в последние сотни лет и пока не имеет тенденции к стабилизации. Можно думать, что даже переход на полную автотрофность не положит предела возрастанию этой величины, которую можно рассматривать также как энергоэквивалент человеческой экспансии.

Рост технологических энергозатрат происходит как за счет роста численности отдельных технологических объектов, так и за счет роста энергоемкости объектов, все вновь и вновь вводимых в производственную практику; это – и экстенсивный, и интенсивный рост. Повышение энергоэквивалента человеческой жизни с увеличением численности человеческой популяции обусловливается обоими этими факторами, даже при стабилизации численности населения, как, например, в современной Европе. Стабилизация численности людей не положит предела этому процессу.

Как мы помним, w всегда больше нуля. Отсюда следует, что с общим ростом энергоэквивалента человеческой экспансии будет неизбежно возрастать (в расчете и на одного человека, и на все человечество) выход побочных продуктов техногенеза. Это –дополнительная цена, которой расплачивается природа за развитие порожденного ею человечества. Цена эта, как правило, имеет форму экологических катастроф.


Техногенез и экологические катастрофы

Экологические катастрофы, как природные, так и антропогенные, в аспекте их воздействия на биосферу в целом есть столь концентрированные в пространстве и во времени изменения ее статуса, что они (эти изменения) не могут быть компенсированы кондиционирующей активностью среды или корректирующей деятельностью человека. В этом аспекте все техногенные катастрофы можно подразделить на экологические и технологические (или, точнее, технические), причем последние, как правило, влекут за собой и экологические последствия.

Особенность всех катастроф та, что относительно небольшие (в энергетическом эквиваленте) причины могут приводить к совершенно несопоставимым, намного превышающим их последствиям: нарушения равновесия в подвергающихся катастрофическим воздействиям экосистемах могут вызывать бурные и продолжительные пертурбации, с последующим установлением равновесия совершенно иного рода или даже разрушением всех затронутых катастрофой экосистем. Крайним вариантом таких последствий может быть изменение параметров, характеризующих надежность биосферы.

Особо важное значение в аспекте техногенеза имеет связь между энергоемкостью технологических объектов, с одной стороны, и вероятностью и величиной экологических последствий катастроф, с другой.

Можно полагать, что с увеличением энергоемкости технических систем вероятность отказов, завершающихся катастрофами, будет возрастать пропорционально, а величина (в энергоэквиваленте) экологических последствий этих катастроф – как степенная

функция, т. е. значительно быстрее [8]. Вследствие этого при графическом изображении величина экологических последствий катастроф, возрастая с увеличением энергоемкости технологий, в некоторой критической точке Е будет пересекать величину энергоемкости «полезного продукта» этих технологий и, с дальнейшим ростом последней, быстро устремится вверх (рис. 5).


Рис. 5. Схема зависимости энергоемкости полезного продукта Ez и экологических катастроф Ew от энергоемкости технологий E

Это налагает особо жесткие требования на обеспечение надежности технологических систем с увеличением их энергоемкости, что будет, очевидно, все более их удорожать. Но сколь бы ни удалось уменьшить вероятность возникновения катастроф (с повышением надежности технологических систем), свести ее до нуля никогда не удастся. С ростом энергоемкости технологий степенная зависимость от этой величины экологических последствий катастроф все равно рано или поздно даст себя знать (печальным примером чему может служить авария на Чернобыльской АЭС).

Одно из главных следствий сформулированной выше закономерности целесообразность замены больших по энергоемкости технологий (т. е. таких, у которых энергоемкость превосходит критические значения Е) эквивалентным (по выработке полезного продукта) числом малых технологий (энергоемкость которых ниже критического значения). В этом случае даже сумма катастрофических последствий всех таких малых технологий будет значительно меньше таковых от больших технологий. Это следует иметь в виду всегда, когда только возможно. Технологии с энергоемкостью выше критической должны быть допустимы лишь в случаях абсолютной жизненной необходимости. При этом следует учитывать все возможные разрушительные последствия катастрофических ситуаций, которые могут реализоваться хотя и с очень малой вероятностью (при высокой надежности соответствующих технологий), но с вероятностью, всегда превышающей нуль.

Еще раз следует подчеркнуть, что процесс ноогенеза, приводящий к постепенной, все более полной замене биосферы техносферой, всегда и неизбежно связан со все возрастающей опасностью техногенных экологических катастроф, носящих все более глобальный характер и, в предельном случае, угрожающих существованию не только всего человечества, но и биосферы в целом.


Стратегия выживания человечества

Стратегии выживания человека как биологического объекта должны быть подчинены тем же закономерностям выхода из критических ситуаций, которые были рассмотрены выше (см. главу 3). Коренное отличие от других биологических объектов здесь вот какое. В случае других живых организмов давление жизни L > 1 призвано противостоять давлению внешней среды ценой гибели подавляющего большинства все вновь возникающего потомства, что и обеспечивает стабильность численности биологических популяций. У человека же биологически обусловленное превышение рождаемости над смертностью реализуется не столько в противостоянии помехам внешней среды (что обеспечивается технологическими приемами), сколько в постоянном возрастании численности человечества. Здесь, следовательно, неравенство L > 1 обеспечивает не стабильность популяции, а, напротив, дестабилизацию ее взаимоотношений с природной средой обитания.


    Ваша оценка произведения:

Популярные книги за неделю