Текст книги "Информация как основа жизни"
Автор книги: В. Корогодин
Соавторы: В. Корогодина
сообщить о нарушении
Текущая страница: 11 (всего у книги 17 страниц)
Совершенно ясно, что если w будут приводить к гибели продуцирующих их объектов и не смогут быть утилизированы другими объектами, популяция продуцентов данных w отомрет и никаких последствий для живого мира это иметь не будет. Поэтому мы вправе рассматривать только третий случай, когда w, не вызывая быстрого отмирания своих продуцентов, смогут быть использованы другими организмами и будут служить компонентами их экологических ниш.
Изложенный выше принцип формирования многоярусного строения жизни отражает как структуру феномена жизни, так и процесс его построения, согласно которому появлению обитателей какого-либо яруса жизни обязательно должно предшествовать возникновение комплементарной ему потенциальной экологической ниши.
Принцип автогенеза информации. Эволюция семантики информации.
Вспомним теперь, что побочные продукты w являются неизбежными спутниками любого целенаправленного действия. Согласно второму закону термодинамики, КПД оператора всегда меньше единицы, и поэтому любая информационная система, функционируя, всегда и неизбежно будет изменять среду своего обитания, создавая компоненты новых потенциальных экологических ниш. Это означает, что многоярусное здание жизни может базироваться даже на одной единственной элементарной экологической нише; для его построения, вообще говоря, совершенно не обязательно исходное экологическое разнообразие.
Тот термодинамический закон, согласно которому КПД никакой машины никогда не достигает единицы, может служить основой для формулирования принципа автогенеза информации: раз возникнув, информация, в ходе деятельности кодируемых ею операторов, неизбежно сама создает условия для своего дальнейшего развития. Эволюция информации, реализующая эту возможность, столь же неизбежно должна иметь ярусный характер. Ярусный характер эволюции касается и семантики информации.
Следует заметить, что принцип автогенеза информации теснейшим образом связан с ее полипотентностью. Действительно, именно полипотентность обусловливает возможность существования в единой среде обитания нескольких различающихся информационных систем или, попросту говоря, организмов разных генотипов. Это обстоятельство должно существенно влиять на скорость протекания автогенеза. Проявляться это может двояко: как в увеличении разнообразия новых потенциальных экологических ниш, так и в увеличении разнообразия организмов, способных – в силу их полипотентности! – эти ниши осваивать.
Здесь, однако, неизбежно возникает вопрос о критерии степени подбора или выбора будущих обитателей новых экологических ниш среди множества претендентов, т. е. о критерии значимости. "Ибо много званных, а мало избранных" (Мат. 22, 14). Вопрос этот выходит далеко за рамки формулирования условий, делающих возможным простое заселение новых экологических ниш, и вплотную подводит нас к лучшему пониманию всех развертывающихся вслед за этим событий.
Критерий значимости. Информационные поля.
Очевидно, что заселение новых ниш информационными объектами предполагает как предсуществование таких ниш (безразлично, абиогенного или биогенного происхождения), так и предсуществование способных их заселять живых организмов. Генезис новых ниш обсуждался выше. Заселяются же первоначально эти ниши объектами, ранее существовавшими в других нишах, но способными, в силу полипотентности их информации, осваивать и эти, новые ниши.
Таким образом, в каждую новую экологическую нишу может "вселиться" несколько разных объектов: с течением времени к ним прибавляются те, которые возникают уже в этой нише благодаря изменчивости кодирующей их информации. Между всеми этими обитателями ниши начинается конкуренция за полное овладение ею – процесс, обычно называемый "естественным отбором". При этом все время следует иметь в виду, во-первых, что отбору подвергаются отдельные информационные системы, а во-вторых, что этот процесс автоматический. Его направленность, которую мы постараемся выявить и обосновать, возникает в силу самой природы вещей, носит вероятностный характер и приводит к формированию информации, обеспечивающей через посредство своего оператора – наиболее успешное свое воспроизведение в условиях данной ниши.
Вот здесь и возникает проблема критерия значимости, или критерия отбора, призванного определить, что же такое "наиболее успешное". Вообще говоря, может существовать много таких критериев: скорость размножения, конкуренция за субстрат, "перехват" источников энергии и т. п. [11]. Нас, однако, интересует прежде всего такой критерий, который отражал бы не только особенности операторов (подобные только что упомянутым), но и кардинальные свойства самой информации, эти операторы кодирующей. В качестве такого критерия рассмотрим эффективность информации (см. главу 2), проявляющуюся на уровне оператора как его КПД в данном пространстве режимов (см. главу 3).
Насколько наш критерий значимости соответствует действительности, или, точнее, насколько он универсален, без тщательного конкретного анализа сказать трудно. Можно лишь предположить, что он имеет весьма общий характер. Поэтому здесь мы ограничимся лишь теми последствиями, к которым может приводить реализация его в тех или иных ситуациях.
Одно из таких последствий – введение понятия "информационное поле". В главе 2 мы уже отмечали, что зависимость эффективности информации А от ее количества В должна описываться кривой с максимумом. Очевидно, что такую же форму будет иметь и зависимость КПДQ(В). Графически эта зависимость изображена в координатах А, В (см. рис. 2). Кривая А (В) описывает эту зависимость для тех вариантов информации, у которых в данных условиях (т. е. для данной пары Z и s) наблюдаются максимально возможные, при данных В, значения С. Поэтому площадь, ограниченная сверху кривой А (В), будет «заселена» информациями, имеющими меньшие, нежели максимально-возможные при данных В, значения С. Максимум кривой А (В), как уже отмечалось, соответствует той величине Вmax при которой эффективность информации может иметь максимальное (в данном информационном поле) значение, а оператор, такой информацией кодируемый, имеет наибольший из всех возможных КПДQ.
Площадь, ограниченную кривой А (В) в системе координат А,В, и будем называть "информационным полем" для данной пары Z и s. Независимо от специфики Z и s, кривые А (В) всегда имеют максимум, – т. е. для любого информационного поля всегда может существовать хотя бы одна информация, кодирующая оператор с максимально-возможным для данной пары Z и s значением КПДQ.
Каждой экологической нише соответствует свое информационное поле. Очевидно, что информация, попадая в новое, еще не освоенное информационное поле, может располагаться в самых разных его точках, но не вне его пределов. Очевидно также, что в основе динамики информации должен лежать процесс ее миграции (блуждания) в пределах информационного поля, порождаемый присущей ей изменчивостью и направляемый критерием значимости. Очевидно, наконец, что "движущей силой" этой динамики в любом информационном поле будет служить "стремление" достигнуть точки, соответствующей экстремуму кривой А (В).
Этот процесс можно описать статистической моделью, в которой вероятность удвоения информации (или, точнее, информационной системы) будет пропорциональна степени приближения ее к точке экстремума, даже при постоянстве вероятности ее гибели в разных участках информационного поля. Конкретные механизмы, здесь работающие, могут быть самыми разными.
Иерархия экологических ниш
Элементарные экологические ниши, по определению, состоят только из абиогенных компонентов и обладают минимальными из возможных размерностями. Их обитатели – элементарные организмы – занимают 1-й ярус жизни. Количество кодирующей их генетической информации не может быть ниже некоторого минимального значения, определяемого размерностью их экологических ниш, которая может варьировать, по-видимому, в ограниченных пределах. Возможна, конечно, ситуация, когда какой-либо организм может обитать в нескольких разных экологических нишах, – но он все равно остается на 1-м ярусе жизни, просто его экологическая ниша имеет мозаичное строение, а количество генетической информации будет превышать то, которое достаточно для освоения отдельных экологических ниш.
Дело, однако, изменяется, когда мы переходим ко 2-му ярусу жизни. Экологические ниши 2-го яруса, как мы помним, включают биогенные компоненты, продуцируемые обитателями одной или нескольких элементарных экологических ниш. Следовательно, экологические ниши 2-го яруса как бы включают в себя одну или несколько экологических ниш 1-го яруса, возвышаясь над ними. Размерность таких ниш возрастает по сравнению с размерностью ниш 1-го яруса. Это предъявляет новые требования к количеству генетической информации у тех объектов, которые могут оказаться способными эти ниши осваивать.
Это же относится и к экологическим нишам всех последующих ярусов жизни. Чем выше иерархическое положение этих ниш, чем большее число ниш низлежащих ярусов они в себя включают, тем большей будет их размерность, и, следовательно, тем больше информации требуется для кодирования информационных систем, способных такие ниши разрабатывать. Иерархическое строение экологических ниш, таким образом, – лишь предпосылка к многоярусности древа жизни. Но такое строение экологических ниш предъявляют к их обитателям одно строгое требование: переход с более низких ярусов на более высокие должен сопровождаться возрастанием количества информации, кодирующей эти организмы.
В терминах информационных полей сказанное выше будет выражаться в том, что с увеличением размерности экологических ниш должно возрастать количество информации, способной обладать максимальной эффективностью в том или ином информационном поле, этим нишам соответствующем. Количество такой оптимальной информации для обитателей все более высоких ярусов жизни может только возрастать.
Последнее высказывание можно сформулировать и по-другому. Действительно, можно утверждать, что с увеличением количества информации размерность пространства режимов, обеспечивающего ее успешную редупликацию, должна возрастать. Попробуем обосновать это утверждение на мысленном примере динамики информации, попадающей в разные информационные поля.
Динамика информации в разных информационных полях: конвергенция и дивергенция, деградация, идиоадаптация и араморфозы
Пусть дано некоторое информационное поле 1 с оптимальным количеством информации В1. Пусть разные точки этого информационного поля заняты информационными системами, кодируемыми информацией с разными значениями В. Пусть эти информационные системы могут размножаться в данном информационном поле со скоростями, пропорциональными А, и в ходе размножения изменяться благодаря изменчивости кодирующей их информации. Такая изменчивость может затрагивать как количество информации В, так и ее семантику, сказываясь во втором случае на ценности С этой информации в данном информационном поле. Введем еще две характеристики информационных систем – скорость их размножения VP, которая может быть выше, а может быть и ниже скорости их гибели Vr.
Нетрудно показать, что с течением времени, при прочих равных условиях, характер заселенности разных участков информационного поля будет изменяться (рис. 4). Хотя изменчивость информационных систем не направлена и, в силу своей случайности, может приводить к их попаданию в любую точку информационного поля, те из них, у которых величина В больше или меньше, чем Вopt, согласно соотношению VP/Vr – окажутся обреченными на прозябание или гибель, а основная масса обитателей информационного поля будет все более с течением времени, сосредоточиваться в зоне его экстремума (где В ≈ Ворt), приближаясь к максимальному значению величины А1=А1max. Налицо конвергентная эволюция информационных систем – их эволюция в направлении оптимального количества информации Bopt и единой семантики, обеспечивающей приближение значений С к величине С1=А1В1.
Рис. 4. Схема миграции информации по информационным полям разных размерностей. Пояснения в тексте.
Допустим теперь, что информационные системы, блуждающие в информационном поле 1, могут выходить за его пределы и попадать в соседние информационные поля типа 2 (с В2 ≈B1), и типа 3 (с В3 < B1) и типа 4 (с В4 > B1). Во всех этих трех ситуациях дальнейшая трансформация их будет подчиняться тем же закономерностям, что и в рассмотренном выше случае (критерием значимости везде остается А), но результаты этих трансформаций окажутся различными. В случаях 2 в каждом из таких информационных полей будут формироваться системы, кодируемые информацией с близкими значениями В, но различающиеся по семантике; в случаях 3 также будет складываться целое семейство информационных систем с различной семантикой, но близкими значениями В3 < В1:2. В случаях 4 характеристическое значение количества информации для таких семейств будет В4 > В1:2 > В3 (см. рис. 4).
Рассмотренные ситуации могут служить примерами разных вариантов дивергентной эволюции информационных систем. Но результаты дивергенции во всех трех случаях будут принципиально различаться. В случаях 1 и 2 налицо идиоадаптивный характер дивергенции: оставаясь на одном и том же ярусе жизни (или, что то же самое, на одном и том же уровне организации, о чем свидетельствуют близкие значения В1 ≈ В2), информационные системы просто «расползаются» по ближайшим экологическим нишам одного и того же яруса, постепенно ими овладевая. В случае 3 динамика информации хотя и носит дивергентный характер, но приводит к уменьшению характеристических значений В, что свидетельствует об упрощении организации соответствующих информационных систем, связанном с переходом к существованию в экологических нишах меньших размеров и, следовательно, занимающих более низкие ярусы древа жизни. Наконец в случаях 4 результатом динамики информации будет увеличение характеристических значений В по сравнению с исходными, что свидетельствует о повышении уровня организации информационных систем, и необходимо им для успешного освоения экологических ниш большей размерности, занимающих более высокое положение в жизненной иерархии по сравнению с предыдущими ситуациями.
Таким образом, адаптивный характер изменчивости генетической информации, осуществляющейся в одном и том же информационном поле (или в одной и той же экологической нише), всегда имеет конвергентный характер, направленный в сторону увеличения ее эффективности А, что может сопровождаться как уменьшением, так и увеличением ее количества, – в обоих случаях в сторону В. Идио-адаптивная изменчивость может происходить только в разных информационных полях, соответствующих экологическим нишам близких размерностей, размещенных на одном и том же ярусе жизни. В этом случае сближение значений В будет сопровождаться все возрастающим семантическим разнообразием эволюционирующей информации. Деградационный, или регрессивный, тип эволюция информации приобретает тогда, когда кодируемые ею информационные системы должны адаптироваться к экологическим нишам меньшей, чем исходная, размерности и когда повышение эффективности информации А неизбежно сопровождается уменьшением ее количества В. Наконец, характер динамики информации, связанной с увеличением как А, так и В, обусловливаемый необходимостью адаптироваться к экологическим нишам большей, чем исходная, размерности, можно называть прогрессивной эволюцией.
Заметим, что в основе всех трех вариантов динамики информации, связанных с ее попаданием в новые экологические ниши и их последующим освоением, лежит присущее любой информации свойство полипотентности. Принцип поризма срабатывает там, где, благодаря изменчивости информации, возникают ее варианты, как благоприятствующие заселению ею данной экологической ниши, так и создающие возможность освоения экологических ниш большей размерности, т. е. подъема на более высокие ярусы жизни. Араморфозы, представляющие собой результат реализации поризмов на уровне операторов, могут сохраняться на протяжении ряда переходов информационных систем на все более высокие ярусы жизни (см., напр., [12].)
Таким образом, монотонное повышение эффективности информации (до определенного предела) характерно для адаптивного типа ее динамики. Для других типов динамики, а именно, идиоадаптивного, регрессивного и прогрессивного, характерна циклическая изменчивость значения А, когда уменьшение А, часто сопутствующее переходу информации из одного информационного поля в другие, сменяется его повышением, затем – опять снижением и т. д.[5] При этом идиоадаптивный тип динамики сопровождается колебаниями величины В около некоторого постоянного значения, регрессивный – уменьшением величины В, а прогрессивный, напротив, увеличением В.
Точки бифуркации и принцип поризма
Пусть некоторая система движется (развивается) по некоторой траектории, причем закономерности этого движения таковы, что траектория имеет одну или несколько точек X1 достигнув которых наша система с равными вероятностями может перейти в одну из следующих точек Х2, уже жестко определяющих последующий ход ее (системы) развития. Такие точки X1 называются «точками бифуркации» [13]. Этот феномен исключает возможность предсказать по предшествовавшей траектории направление движения системы после точки бифуркации. Ситуация еще больше усложняется, если общая траектория движения системы имеет не только разветвляющийся (охватывающий все возможности), но и сетчатый характер, т. е. включает в себя не только дивергенцию, но и конвергенцию. Тогда исчезает возможность не только предсказать будущее системы, зная ее настоящее и прошлое, но также возможность воссоздать прошлое, зная настоящее. «Древо» эволюции превращается в «мангровые заросли» [14].
Роль бифуркаций в эволюции хорошо показана в работе Б. И. Сарапульцева и С. А. Гераськина [15]. Примеры конвергентной эволюции, а также еще более яркие примеры слияния в одну кривую нескольких траекторий, берущих начало из разных, весьма удаленных, ветвей древа жизни, и называемые симбиотической эволюцией, в изобилии имеются в различных работах по таксономии (см., напр., [16]) и в монографии Л. Маргелис [17].
Можно думать, что все три типа траекторий – дивергентная, конвергентная и сетеподобная – присущи динамике любой информации – генетической, поведенческой и, конечно, логической. Тем большее значение приобретает вопрос о природе ситуаций, определяющих возможность как бифуркационных состояний, так и состояний, допускающих симбиотический тип динамики информации, всегда имитирующий араморфозы, а поэтому также относящийся к поризмам.
Бифуркации имеют место, когда система становится неустойчивой и начинается поиск другого состояния[6]. В нашем контексте бифуркации наступают, когда популяции информационных систем находятся в критическом состоянии, например, из-за перенаселенности их места обитания или из-за избыточного мутационного давления, и при этом имеется несколько возможностей выхода из создавшегося кризиса путем переходов в еще свободные экологические ниши такого же, или более высокого, или, напротив, более низкого яруса жизни. Чтобы выйти из состояния бифуркации, популяция должна содержать мутанты в достаточном количестве, чтобы могли реализоваться все возможные варианты выхода из кризиса, неважно, какой ценой – ценой ли упрощения или усложнения или, напротив, при сохранении уровня их организации. В отличие от этого, симбиотический вариант динамики информации, как и любой другой вариант поризма, реализуется скорее всего вне кризисных ситуаций, как одно из возможных решений ординарных задач, а именно как решение, открывающее новый путь идиоадаптивного развития на новом, более высоком, ярусе жизни.
Таким образом, бифуркации и поризмы не противостоят, а дополняют друг друга, причем для информационных систем, находящихся в разных фазах своего развития, вероятности осуществления бифуркаций или поризмов могут существенно различаться. В своем развитии информационные системы, начинающие осваивать новые экологические ниши, обычно проходят четыре фазы. Первая – это адаптационная фаза, когда численность популяций еще невелика, "жизненного пространства" достаточно и залогом успеха служит лишь скорость размножения. В этой фазе подхватываются и суммируются все мелкие семантические новшества, облегчающие или ускоряющие процесс самовоспроизведения информационных систем. Затем для наиболее преуспевающих в этом отношении представителей молодой популяции наступает фаза логарифмического роста, когда численность популяции непрерывно возрастает, стремясь к своему пределу. Непрерывно растущие популяции обычно весьма однородны по их информационным характеристикам. Наконец, при некоторой "плотности населения" популяция стабилизируется. Такая фаза стабильности может наступить на уровне численности, вполне приемлемой для длительного сохранения динамического равновесия, а может наступить и при состоянии "перенаселенности" – и тогда стабильность непродолжительна и быстро сменяется фазой деградации популяции. Фаза стабильности и фаза деградации наиболее благоприятны для осуществления бифуркаций. Поризмы же, как события крайне редкие, – по-видимому, более характерны для второй и третьей фаз.
Биологическая иерархия и возникновение биосферы
Итак, в силу причин, рассмотренных выше, автогенез информации должен неизбежно приводить к иерархии информационных систем. Движущих сил здесь две: побочные продукты (которые, накапливаясь в низлежащих экологических нишах, постепенно формируют потенциальные экологические ниши все большей размерности) и изменчивость информации (порождающая информационные системы, способные такие ниши разрабатывать). На уровне биологической организации жизни – это изменчивость генетической, а позже – и поведенческой информации, проявляющаяся в изменениях ее количества и семантики. Результатом было формирование биологической иерархии и возникновение биосферы – тонкого слоя живого вещества, охватывающего нашу планету и производящего постоянную работу по «биологическому круговороту веществ» [18].
Подчеркнем два обстоятельства, игравших здесь важную, если не решающую роль. Первое – это пространственная ограниченность экологических ниш и биосферы в целом [19]. Второе – постоянное действие принципа отбора [20]. Оба эти обстоятельства действовали совместно. Действительно, еще А. С. Серебровский [21] отмечал, что если бы жизненное пространство было однородным и безграничным, то самые простые статистические соображения приводят к выводу, что никакой конкуренции между его обитателями (за источники субстрата и энергию, за территорию и пр.) не могло бы возникнуть, и с течением времени относительное возрастание численности было бы функцией только скорости размножения: чем быстрее размножались бы те или иные организмы или вновь возникающие варианты, тем большее распространение они бы получали. А так как скорость размножения, как правило, тем выше, чем проще организована самовоспроизводящаяся система, то следствием такой "эволюции" в безграничной однородной экологической нише было бы общее упрощение, деградация жизни. К этому можно добавить еще один аргумент. В безграничном жизненном пространстве не могли бы накапливаться побочные продукты жизнедеятельности его обитателей, – и потенциальные экологические ниши больших размерностей просто не могли бы формироваться. С другой стороны, первичные зоны обитания не могли бы быть и слишком ограниченными – тогда, несмотря на быстрое формирование новых экологических ниш, просто не успевала бы срабатывать наследственная изменчивость, чтобы породить их потенциальных обитателей. Впрочем, к этому вопросу мы еще вернемся.
Таким образом, иерархическое строение биосферы явилось следствием четырех объективных обстоятельств: ограниченности объемов реальных экологических ниш; накопления в них побочных продуктов жизнедеятельности их обитателей; изменчивости генетической информации и давления естественного отбора, проявляющегося в форме конкуренции за самые разнообразные жизненно необходимые факторы среды обитания.
Прогрессивное развитие информации. Факторы, его обусловливающие.
Сам факт иерархичности строения биосферы означает, что все вновь возникающие экологические ниши верхних ярусов жизни неизменно заселялись информационными системами, кодируемыми все большим количеством информации. Рассмотрим условия, этому благоприятствующие.
В главе 5 мы фактически уже подошли к формулированию таких условий. В соответствии с интуитивным представлением о "биологическом прогрессе" прогрессивным мы назвали такое направление развития, в ходе которого происходит увеличение количества информации, кодирующей информационные системы, при сохранении максимального значения ее эффективности. Очевидно, что утверждение это можно распространять на все виды информации, а не только на информацию генетическую.
Однако сохранение эффективности информации при возрастании ее количества может описываться монотонной кривой лишь в сглаженном виде. Реально переходы информации в пространства больших размерностей могут сопровождаться первоначальными уменьшениями эффективности, и лишь впоследствии, в ходе адаптации к новым условиям, эффективность будет вновь повышаться до максимального (для данного информационного поля) значения, что может сопровождаться как увеличением, так и уменьшением исходного ее количества. Только по достижении точки экстремума кривой А (В) информация уже адаптированной системы оказывается столь же эффективной, как и информация, адаптированная к предшествовавшим пространствам режимов, но будет превосходить ее по количеству.
Такой характер прогрессивного развития информации, следующий из закономерностей ее динамики, разрешает парадокс, связанный с представлениями о "биологическом прогрессе" у эволюционистов 30-х годов (см. [22]). Если под "биологическим прогрессом" понимать все большую адаптацию, приспособленность, к условиям существования, то возникают два вопроса. Первый вопрос: можно ли полагать, что предки ныне живущих организмов, в том числе и далекие, "проще организованные", были и "менее приспособлены", чем современные нам живые существа, а потому и "вымерли"? Но отсюда следует, что "примитивные" прародители современных организмов были "очень мало приспособленными", и совершенно непонятными становятся как периоды их процветания в далеком прошлом (о чем свидетельствует палеонтология), так и их мощные эволюционные потенции. Второй вопрос был сформулирован Дж. Хаксли и звучал примерно так: кто более "высоко организован" – человек или обитающая в нем туберкулезная бацилла?..
Оба этих вопроса, как легко видеть, связаны с отсутствием строгого определения понятия "приспособленность". В вышеприведенном абзаце этот термин носит явный антропоморфный оттенок. Достаточно подчеркнуть, что о "приспособленности" можно говорить только по отношению к своей экологической нише, чтобы стала ясной неправомочность определения биологического прогресса через степень приспособленности. Динамика информации, как мы видели (глава 5), в своем информационном поле принципиально отличается от ее динамики при переходе в новые информационные поля. В своем информационном поле (или, что в данном контексте одно и то же, в своей экологической нише) динамика информации всегда имеет адаптивный характер, т. е. направлена на достижение максимальной эффективности, что в случае биологических объектов и означает – максимальной приспособленности к своей экологической нише. Все организмы, достаточно освоившие свою экологическую нишу, обладают поэтому в равной мере высокой приспособленностью. Переходы же в новые, потенциальные, экологические ниши, как правило, должны сопровождаться уменьшением приспособленности, с последующим ее увеличением в ходе адаптации к новому местообитанию. Возможность осваивать новые экологические ниши (безразлично, большей или меньшей размерности, чем предыдущие) обусловлена не большей к ним приспособленностью по сравнению с предыдущими, а их незанятостью, т. е. отсутствием жесткой конкуренции. По мере возрастания численности ее обитателей будет возрастать и конкурентное давление, начнет ужесточаться отбор, и степень приспособленности к этой нише также начнет увеличиваться – кодирующая их информация будет стремиться к значению А =А.
Теперь мы можем сформулировать условия [23], необходимые для осуществления прогрессивного развития информации. Возможность такого развития определяется наличием или все новым возникновением потенциальных экологических ниш все большей размерности. В отсутствие таковых, сколько бы ни была "потенциально прогрессивна" информация, предшествующая в какой-либо из экологических ниш меньших размерностей, она обречена или на прозябание, или на гибель в ходе конкуренции, т. е. никогда не сумеет выявить присущие ей потенции. Реализация же возможности прогрессивного развития обеспечивается именно предсуществованием на низших ярусах жизни информационных систем, способных осваивать потенциальные экологические (или, в случае логической информации, – "психологические") ниши больших размерностей в силу присущей информации полипотентности. Тогда информационные системы, прозябавшие на низших ярусах жизни, попадая тем или иным путем в экологические ниши больших размерностей, начнут там реализовывать скрытые ранее возможности и возрастать в численности. Кодирующая их информация вступит в очередной цикл адаптивной динамики, стремясь к более высоким значениям В0.
Поведенческие реакции. Поведенческая информация.
Благодаря прогрессивному развитию информации, наряду с существованием и продолжающейся адаптивной эволюцией относительно просто организованных биологических объектов, занимающих нижние ярусы жизни, формировались и осваивались пространства режимов все большей размерности. В результате возникали биологические объекты все более высокой организации. С повышением уровня их организации возникали и закреплялись специализированные приспособления, обеспечивающие регулярный обмен генетической информацией между особями, заселяющими идентичные или близкие экологические ниши.
Крупнейшим достижением здесь стал регулярный половой процесс, который возник еще на уровне одноклеточности и повлек за собой, как мы уже отмечали, дифференциацию гамет, формирование оогамии и, на ее основе, многоклеточности. С увеличением количества генетической информации, приходящейся на одну особь, и закреплением полового процесса изменчивость информации возросла: к мутационной изменчивости прибавилась рекомбинационная, способствовавшая формированию вариантов с расширенной полипотентностью и повышенной способностью адаптироваться к новым экологическим нишам.